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Abstract: A polyhex is either a benzenoid system or a coro-
noid system. A Kekuléan polyhex is a polyhex with Kekulé
structures. An essentially disconnected polyhex is a Kekuléan
polyhex with fixed bonds. Polyhexes and their Kekulé struc-
tures represent the molecules of certain aromatic hydrocarbons
and their Kekulé patterns, respectively. In this paper, a uniform
criterion is given to recognize essentially disconnected polyhexes.

INTRODUCTION

A benzenoid system/[1] is a finite 2-connected plane graph in which every inte-
rior face is bounded by a regular hexagon of side length 1. Coronoid systems|2]
can be regarded as a sort of benzenoid systems with holes. A coronoid system
G can be obtained from a benzenoid system H by deleting all the vertices and
edges in the interior of a group of pairwise disjoint cycles Cy,Cy, -+, Crp(m 2 1)
which are inside H, i.e. C; contains no vertex on the boundary of H. These
cycles are called the inner boundaries of G, while the boundary Cy of H is called
the outer boundary of G, or simply, the boundary of G. If G has exactly one
inner boundary, G is called a single coronoid system; otherwise, G is called a
multiple coronoid system. A coronoid system is either a single coronoid system
or a multiple coronoid system.

The term "polyhex” [2] is used to denote benzenoid systems and coronoid
systems together. Polyhexes are of great chemical relevance[l,2] since they are
the natural graph representations of the skeletons of benzenoid hydrocarbons
and coronoid hydrocarbons. Research in this area has attracted the constant
attention of both chemists and mathematicians.

Recall that a Kekulé structure of a polyhex G is an independent edge set
of G such that every vertex of G is incident with an edge in the set. Kekulé
structures play a more or less significant role in numerous chemical theories, of
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which the resonance theory and the valence bond theory are the best known
examples [3]. A Kekuléan polyhex is a polyhex with Kekulé structures.

It may happen that an edge of a kekuléan polyhex in a particular position is
always or never selected in all the Kekulé structures of that kekuléan polyhex.
The fixed double or single bonds are just associated with such edges. The exis-
tence of fixed bonds has been known to chemists [4,5]for a long time. Cyvin and
Gutman are the first to use the term “essentially disconnected” [6] to indicate
those kekuléan polyhexes with fixed bonds. Later the authors of [8] strictly
proved that the subgraph , obtained from an essentially disconnected polyhex
by deleting all the fixed single bonds and all the end vertices of the fixed double
bonds, is disconnected. This is just what the term "essentially disconnected”
means.

The concept “essentially disconnected” has proved to be very useful in cer-
tain enumeration techniques for kekulé structures [7], and in classification and
enumeration of kekuléan polyhexes [8]. Many attempts have been made to rec-
ognize essentially disconnected polyhexes [6-16]. Several methods have been
reported to find fixed bonds in Kekuléan polyhexes. In the past, essentially
disconnected benzenoid systems and essentially disconnected coronoid systems
were dealt with separately. This is mainly because coronoid systems are not
simply connected [1]. So, many elegant and powerful statements valid for ben-
zenoid systems do not hold for coronoid systems.

In this paper, a uniform approach is given to recognize essentially discon-
nected polyhexes, whether they are benzenoid systems or coronoid systems.

DEFINITIONS

let G be a polyhex. Denote the outer boundary of G by C; , and by
Cy,Cy, -+, Cy, the inner boundaries of G (if any).
Definition 1[11] A straight line segment P, P; is called an elementary cut seg-
ment from C; to C; if
1. P is the center of an edge e; on C; and P, is the center of an edge e, on C};
2. PP, is orthogonal to both e; and eg;
3. any point of Py P; is either an interior or a boundary point of some hexagon
of G.
Definition 2 [11] A broken line segment P,QP; is called a generalized cut
segment from C; to C; if
1. Py is the center of an edge ) on C; and P; is the center of an edge e, on Cj;
2. P,Q and P,Q are orthogonal to e, and ey, respectively;
3. Q is the center of a hexagon of G, P,Q and P,Q form an angle of 7/3 or
57 /3;
4. any point of PyQP; is either an interior or a boundary point of some hexa-
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gon of G.

Definition 3 [11] A special cut segment is either an elementary cut segment
or a generalized cut segment. A special edge cut Ej; from C; to Cj is the set
of edges of G intersected by a special cut segment form C; to C;. Two special
edge cuts are said to be disjoint if their corresponding special cut segments are
disjoint.

Definition 4 [11] A special edge cut Ej; is said to be of type I if i = j:
otherwise, Ej; is said to be of type I1.

From the definition of polyhexes, it is easy to see that a polyhex is a bi-
partite graph with bipartition (B(G), W(G)), where B(G) and W(G) are the
set of black vertices of G and the set of white vertices of G, respectively. Thus
polyhexes are 2-colorable. In the following, we make the convention that the
vertices of a polyhex G in question have been colored black and white so that
the end vertices of any edge have different colors. Let E be a special edge cut
of G. G — E is the subgraph of G obtained by deleting all the edges of E. It
is evident that G — E has exactly two components if F is a special edge cut of
type I, and the end vertices of the edges of E have the same color when they
lie in the same component of G — E. If E is a special edge cut of type I], then
G — E is still connected. Suppose that E; ,,, Eiyi, - - -, By s, are 7 disjoint special
edge cuts of type I7, where Ej ;, corresponds to a special cut segment from Cj,
to Cy,,and ig # 4y if s #¢. Let E=E;;, UE;,;, U---UE;;,. Then G- E is
disconnected and has exactly two components.
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Definition 5 Let F = .E,,,.2 U E!-gta Uy E,',l , where Eh;.z, E,'m'_” i Eh,'l
are r disjoint special edge cuts of type II, Ey;, corresponds to a special cut
segment from C;, to Cj,, and i, # ipif s # t. E is said to be a standard
combination if the end vertices of the edges of E have the same color when they
lie in the same component of G — E.

The polyhex G depicted in Fig.1 is a multiple coronoid system. Four special
cut segments are given for G. Among them Pj4Q4F2q is a generalized cut seg-
ment, and the other three special cut segments are all elementary cut segments.
let Ep, be the special edge cut corresponding to the elementary cut segment
PLuPaa, Fiy the special edge cut corresponding to the elementary cut segment
Py Pay, Es the special edge cut corresponding to the elementary cut segment
P, Py Ego the special edge cut corresponding to the generalized cut segment
PiyQ4Pag. Then E = Ey U Ejp U Ey is a standard combination. While oy,
and Ey; do not constitute a standard combination.

Let K be a Kekulé structure of polyhex G. An edge € of G is said to be a
K double bond if e belongs to K. Otherwise ¢ is said to be a K single bond.
A path L is said to be a i alternating path if the edges in L are alternately
K double bond and K single bond. Similarly, a cycle D of G is said to be a K
alternating cycle if the edges in D are alternately K double bond and K single
bond.

Suppose that T is a subset of the vertex set V(G) of G. By (T) we denote
the induced subgraph of G, i.e. the subgraph of G whose vertex set is T’ and
whose edge set is the set of those edges of G that have both end vertices in T.
The neighbour set N(T) of T is the set of vertices which are not in T" but are
adjacent to at least one vertex in T. Let G* be a subgraph of G. Denote by
G* = G — G* the subgraph of G obtained from G by deleting all the vertices of
G* together with their incident edges, and denote by [G*,G”] the set of edges
each of which has one end vertex in G* and the other in G*.

LEMMAS

Lemma 1 Let G be a Kekuléan polyhex. If G is essentially disconnected ,
then there is a connected subgraph G* of G satisfying:

1. G* = (SuU N(S)), where S is a subset of W(G) or B(G) with |S| = |N(3)|;
2. G* has a Kekulé structure;

3. there is at most one vertex in N(S) adjacent to exactly one vertex in S.

4. all the edges of [G*,G"] are fixed single bonds.

Proof. Since G is essentially disconnected, G has a fixed single bond, say
e = (z,y). Without loss of generality, we may assume that the end vertex z is
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in W(G). Hence the end vertex y is in B(G). Let K be a kekulé structure of
G. By T we denote the set of vertices to each of which there is a K alternating
path starting from x and containing the fixed single bond e. We claim that
vertex z is not in 7. Otherwise, there is a K alternating cycle D containing the
fixed single bond e, contradicting the fact that a fixed single bond can never
be contained in a K alternating cycle . Let T* = T U {y}, and let G* be the
subgraph induced by T", i.e. G* = (T*).

Let S = W(G*). We claim that G* = (SU N(S)). It suffices to prove that
N(S) = B(G*). For each vertex u in N(S}, u is adjacent by an edge, say €”, to
a vertex v in S. By the definition of S, there is a K alternating path P from
7 to v containing e. It is not difficult to see that the last edge in P is a K
double bond. Hence e* is a K single bond. Therefore, there is a K alternating
path P’ = PU {e*} from = to u containing e, which implies that u is in G".
As v is in W(G*), u is in B(G*). We have proved that N(5) € B(G"). For a
vertex w # y in B(G*), by the definition of G*, there is a K alternating path
P from z to w containing e. Thus the white vertex on P which is adjacent to
w is in W(G*) = S. Hence w is in N(S) which implies that B(G*) € N(S).
Consequently, N(S) = B(G*). From the definition of G*, it is not difficult to
see that G* is connected. Moreover, one can see that G* has a Kekulé structure
K* = K NG*. Hence |S| = |W(G")| = |B(G*")| = |N(5)|.

Let h (h # y) be a vertex in N(S). We claim that h is adjacent to at
least two vertices in S. From the definition of G* there is a K alternating path
P=ugy-- - zph from x to h. One can check that the last edge (xp, h) is
a K single bond since i is a black vertex. As G* has a Kekulé structure, h
is saturated by a K double bond (h, f). Hence there is a K alternating path
P’ = zy---z,hf from z to f. This implies that the vertex f is in S. Therefore,
h is adjacent to at least two vertices in S, i.e. 7, and f . Consequently, the
vertex y is the only possible vertex in N(S) which is adjacent to exactly one
vertex in S.

Note that for any Kekulé structure of G*, the vertices of S are saturated
only by the vertices of N({S). Since |S| = [N(S)|, none of the vertices of N(S)
can match the vertices of G*. Therefore, all the edges of [G*, G*] are fixed single
bonds.

Lemma 2 An essentially disconnected polyhex G has at least one fixed single
bond on the boundary of G.

Proof. We use the notations introduced above. By Lemma 1, G has a con-
nected Kekuléan subgraph G* such that all the edges of [G*, G*] are fixed single
bonds, where G* = G — G*. In order to separate G* from G*, we use a Jordan
curve J, i.e. a closed non-self-intersected curve in the plane. We make the con-
vention that J intersects each edge in [G*, G| at the midpoint of the edge, and
the segments of J within G is either a line segment or a broken line segment,;
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and if J passes a hexagon of G, it must pass its center; and if .J turns within a
hexagon of G, it must turn at the center of the hexagon. Since G* = (SUN(S))
with S being a subset of W (G), the end vertices of edges in [G*, G*] are of black
when they lie in G* | and the end vertices of edges in [G”, G*] are of white when
they lie in G*. Thus at each turning point of J the angle is 7/3 or 57/3. Note
that all the edges of [G*, G*] are fixed single bonds. There cannot be two con-
secutive turning points with the same angle 7 /3 or 57/3. Otherwise, no matter
whether the vertices within the angle of 7/3 belong to G* or G*, a vertex within
the angle of /3 cannot be saturated by a K double bond , contradicting that G
is Kekuléan. Bear in mind that at each turning point of J if the vertices within
the angle of 7/3 belong to G*, then there is a vertex in N(S) which is adjacent
to exactly one vertex in S. By the construction of G*, vertex y is the only
possible vertex which is adjacent to exactly one vertex in S. Therefore, there
are at most one angle of 7 /3 facing the interior of G*, and the total number
of turning points is at most three. Consequently, each segment of J within G
can only be one of the following four modes: 1. a line segment without turning
point; 2. a broken line segment which has exactly one turning point with angle
w/3 or 57/3; 3. a broken line segment which has two turning points, one with
angle 7/3 and the other with angle 57/3; 4. a broken line segment which has
three turning points, the order of angles is: 57/3, 7/3 and 57/3. One can check
that in each case, the segment of J within G cannot be closed. Therefore, J
must meet some boundary of G. This implies that there must be some fixed
single bonds of [G*, G*] lying on some boundary of G.

Lemma 3 Let G be a Kekuléan polyhex. If G possesses a special edge cut F
of type I, or a standard combination E such that |B(G;)| = |W(G,)| for the
two components G;(i = 1,2) of G — E, then G is essentially disconnected.
Proof. Since E is a special edge cut of type I, or a standard combination, the
end vertices of the edges in E have the same color when they lie in the same
component of G — E. Without loss of generality, we may assume that the end
vertices of the edges in E are black when they lie in G;. Denote by S the set
of white vertices of Gy, i.e. § = W((,). Then the set of black vertices of G is
N(S), i.e. N(S) = B(Gy). Hence G, = {SU N(S)). It is evident that in any
Kekulé structure of GG, the vertices in S can only be matched by the vertices in
N(S5). By the condition |B(G)| = [W(G,)|, we have |S| = |N(S)|. This means
that none of the vertices of N(S) can match the vertices of Gy. Therefore,
none of the edges in E belongs to any Kekulé structure of ¢, which implies
that all the edges in E are fixed single bonds. Consequently, G is essentially
disconnected.

Now we are in the position to formulate our main result.
Theorem Let G be a Kekuléan polyhex, Cy the boundary of G; Cy, Cs, -+, C,,
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the inner boundaries of G (if any). Then G is essentially disconnected if and
only if G possesses a special edge cut E of type I, or a standard combination
E such that |B(Gy)| = |W(G;)| for the two components G;(i = 1,2) of G — E.
Proof. Sufficiency follows immediately from Lemma 3.

Necessity. Suppose that G is essentially disconnected. Then G has a fixed
single bond, say e; = (z,y), lying on some of the boundaries of G {Lemma 2).
Without loss of generality, we may assume that the end vertex z is in W(G).
Hence the end vertex y is in B(G). Let K be a Kekulé structure of G. By
T we denote the set of vertices to each of which there is a K alternating path
starting from z and containing the fixed single bond e;. Let T* = T U {y},
and let G* be the subgraph induced by T*, i.e. G* = (T*). From the proof of
Lemma 1, one can see that G* is connected and satisfies: 1. G* = (S U N(5)),
where § = W(G*) and N(S5) = B(G") with |S| = |N(S): 2. K*=KnNG*isa
Kekulé structure of G*: 3. vertex y is the only possible vertex in N(S) which is
adjacent to exactly one vertex in S; 4. all the edges of [G*, G*] are fixed single
bonds.

Now we use a Jordan curve J to separate G* from G*. As before, We
make the convention that J intersects each edge in [G*,G*] at the midpoint
of the edge, and the segments of J within G is either a line segment or a
broken line segment; and if J passes a hexagon of (7, it must pass its cen-
ter; and if J turns within a hexagon of G, it must turn at the center of the
hexagon. Suppose that the edges in [G*,G*] are met by J in the cyclic order:

€1,€2, " "y €p i Cprlytt a Epyy 3 €pg—g+1a " "1 Cpg_y i €pynily "3 Epy) where e,
and e, ; are on C,, for i = 1,2,---,9 — 1; ¢; and e,, are on C,,; where
{ur, ug,------ Jtugt € {1,200 ,in}; e; is not on any boundary of G when j #
Lpnpi+1,pg, e Pe—2+ L, Pg-1, D1+ 1,0 Let Br = {ep, 11, €p 42,0,

ey, }(r =1,2,---,q), here we make the convention that p, = 0. Denote by J,
the segment of J intersecting the edges of E,, i.e. the segment between the
midpoint of ey, _ 41 and the midpoint of ep, .
We distinguish two cases:

Case 1: G is a benzenoid system. Then G has exactly one boundary Cy. There-
fore, ¢ = 1, e; and e,, are on Cp. As indicated in the proof of Lemma 2, .J,
can only be one of the following four modes: 1. a line segment without turning
point; 2. a broken line segment which has exactly one turning point with angle
n/3 or 57 /3; 3. a broken line segment which has two turning points, one with
angle 7/3 and the other with angle 57/3; 4. a broken line segment which has
three turning points, the order of angles is: 57/3, 7/3 and 57/3. Note that e,
lies on Cy. One can check that J; cannot be of mode 4. If J| is of mode 1 or
mode 2, then J) is already a special cut segment from Cy to Cp. This means
that E = E, is a special edge cut of type I. Since all the edges in E are fixed
single bonds, each component of G — E has a Kekulé structure. Hence we have
|B(G;)| = |W(G;)| for the two components G;(i = 1,2) of G — E. Now suppose
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that J, is of mode 3. Since all the edges intersected by J, are fixed single bonds,
we find a series of fixed double bonds (indicated by double lines in Fig.2). Shift
Q.1Q; to Q,Q,. 1f Q,@Q, does not intersect Cy, then replace E; by E, which
corresponds to the generalized cut segment Q,Q3P,. Then E| is a special edge
cut of type I consisting of fixed single bonds such that |B(G;)| = |W(G;)| for
the two components G;(i = 1,2) of G — E}. If Q',Q2 intersects Cp, then we can
find at least a special edge cut E’ (cf.Fig.2) consisting of fixed single bonds such
that |B(Gy)| = |W(G,)| for the two components Gy(i = 1,2) of G — E .

Fig.2

Case 2: G is a coronoid system. For r = 1,2,--- ¢, J; is one of the four modes
as indicated in the proof of Lemma 2. Bear in mind that at each turning point
of J if the vertices within the angle of 7/3 belong to G*, then there is a vertex
in N(S) which is adjacent to exactly one vertex in S. Note that vertex y is
the only possible vertex which is adjacent to exactly one vertex in S, and y
is on boundary Cy,. One can check that J;, J3,- -+, J, must be an elementary
cut segment or a generalized cut segment with turning angle being 57/3. Now
consider J;. By a similar reasoning as above, J, can not be of mode 4. If .J;
is of mode 1 or mode 2, then .J; is already an elementary cut segment or a
generalized cut segment. This means that F; is a special edge cut of type I1.
One can check that £ = E} UE;U---UE, is a standard combination such that
|B(Gy)| = [W(Gj)] for the two components G;(i = 1,2) of G — E. Now suppose
that Jy is of mode 3. In a similar way as in case 1, we find a series of fixed
double bonds (indicated by double lines in Fig.3). Shift @,Q; to Q,Q5. If Q\Q,
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does not intersect any boundary of G, then replace E; by E| which corresponds
to the generalized cut segment €)@, P,. Then E' = E{UE,U---UE, isa

Fig.3

standard combination such that |B(G;)| = |W(G))| for the two compo-
nents Gi(1 = 1,2) of G — E'. If Q\,Q, intersects some boundary C;, more
than two times, then we can find a special edge cut E' of type I correspond-
ing to an elementary cut segment (see Fig.3). One can check that E' con-
sists of fixed single bonds such that |B(G;)| = |W(G;)| for the two compo-
nents G(i = 1,2) of G — E'. Now we consider the case that (@), intersects
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some boundaries of G : Cy,,Cay, -+, Cy,(p = 1), and Q) intersects each of
them exactly two times (¢f. Fig.3 ). If none of Cy,Cay, - -, Cy, belongs to
{Cuyy Cuyy -+ - Cuy by then we replace Ey by a series of special edge cuts Eyy,
FEia, ---, Eu, each of them corresponds to an elementary cut segment, to-
gether with a special edge cut Ey 44 which corresponds to a g-cut segment.
Let E' = (BEZUER U - UEUE ) UE,U---UE,. One can check
that E' is a standard combination such that |B(G;)| = |W(G,)| for the two
components G,(i = 1,2) of G — E". If some of Cy;,Cy,, - -, Cy, belongs to
{Cui, Cupr -+ - .}, let (1 < t < p) be the smallest natural number such that
Cy, is among Cy,, Cyy, -+ -, Cy,. Suppose that Cy, = C,,. We replace E) by a
series of special edge cuts Eyy, Eyy, -+, By (f. Figd). One can check that
E =(E,UE,U---UE,)UE; 1 UE; ;U - UE, is a standard combina-
tion such that | B(G:)| = |W(G,)| for the two components G;(i = 1,2) of G— E'.

Eq

i
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