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ABSTRACT
In their fundamental paper from 1929, Lunn and Senior show that the groups of sub-
stitution isomerism and stereoisomerisin of cyclopropane can be reconstructed up to
eonjugation if one knows the numbers of its mono-substitution and di-substitution ho-
mogeneous derivatives. The proof is an exhaustive quest through the list of orbit numbers
for all subgroups of the symmetric group of degree 6. Here we present more conceptual
proofs of these statements.

5. INTRODUCTION

5.1. We consider the three carbon atoms of cyclopropane C'3 Hg, which are united by
single bonds, as a skeleton = with 6 univalent substituents. The following numbers of
substitution isomers of cyclopropane are experimentally known:

N(s1y:x = 1 (mono-substitution derivatives}),
Nig2y.x = 4 (di-substitution homogeneous derivatives).
This paper contains proofs of the next theorem, and its two corollaries:

THEOREM 5.1.1. Let G < Sg be a permutation group. The equalities

nsape =1 nuge =4 (5.1.2)

hold if and only if G is conjugated in S¢ to the group
((123)(436), (14)(26)(35))
of order 6. which is isomorphic to the dihedral group of order 6.

COROLLARY 5.1.3. The group G < Sg of substitution isomerism of cyclopropane coin-
cides up to conjugacy with the group



((123)(456), (14)(26)(35))
of order 6. which is isomorphic to the dihedral group of order 6.

COROLLARY 5.1.4. The group G' < Sg of stereoisomerism of cyclopropane coincides
up to conjugacy with the group

((123)(456), (14)(26)(35), (14)(25)(36))
of order 12, which is isomorphic to the dihedral group of order 12.

In Lunn-Senior’s paper [6. V], the previous statements are proved by using only the list
of the orbit numbers of all subgroups of the symmetric group Sg. In the present paper
we give conceptual proofs of these results.

5.2. In Section 6 we establish the cycle type statistics of the group G of cyclopropane.
Here we use the graph T' = TG, H, (4,2)) which was introduced in (3, 2.2], in order to
show that G contains neither transpositions nor 3-cycles. Since the partition (4, 1%) is
less than the partition (4,2) with respect to the dominance order, the inequalities [2.
5.3.2] allow us to use the results from [3, Section 3], and this makes possible for the
linear system [3, 1.2.6] to be solved. Section 7 is devoted to proofs of Theorem 5.1.1,
and its Corollaries 5.1.3, and 5.1.4. As in Part I of this paper (see [3]), the main tools
nsed in these proofs are Sylow’'s theorems.

6. THE CYCLE TYPE STATISTICS OF THE GROUP OF CYCLOPROPANE

6.1. We can identify the set Tjy ) of all tabloids A = (A, Ay) of shape (4,2) (see [4,
Ch. 2, 2.2]) with the set of all two-element subsets {i, j} of the integer-valued interval
[1,6], via the rule 4, = {i,j}.1<i< j <6.

LEMMA 6.1.1. Let G < Se be a transitive permutation group. Then the inequality
Ny2y.6 = 3 implies gz 4.6 = 9356 = 0.

PRoOOF: For, since the inequality ng ). > 3 holds, the graph I' = I'(G, H,(4,2)) has
at least 3 connected components, that is. the corresponding partition v = (G, H.\)
has length > 3 for any subgroup H < G (see [3, 2.2]).

Since the group G is transitive, for any pair i, j, 1 <7 # j < 6, there exists an element
;5 € G, such that o,;(1) = j.

Let us suppose that g5 14, > 1. The transitivity of G yields the existence of two
transpositions in G with disjoint supports (see the proof of [3, 3.2.2, (ii)]). After eventual
conjugation in S, we can assume (12) € G, and (34) € G. We set H = ((12),(34)).
There are 8 H-orbits in T4 »5:

(D (I (Jvy (V) (VI) (VII) (VII)
{12} {1,3} {3.4} {15} {16} {3,5} {3.6} {5.6}
El 4% {25} {2,6} {4,5} {4,6}

{2.4}

We consider the graph T' = [(G. H, (4, 2)) with vertices (I),...,(VIII). and the corre-
sponding partition v = v(G, H.(4.2)) of 8. (see 3, 2.2]).



The triples of equalities o14{1.2} = {6.015(2)}. 0'15{1.2} = {5,01:5(2)}, 014{1,2} =
{4,014(2)}. and 036 {3.4} = {6.035(4)}. 035{3.4} = {5.035(4)}, 051 {3.4} = {L.o51(4)}.
yield deg(1) > 2 and deg(I11) > 2, respeetively.

Since at least one of the two-clement subsets o16{1.3} = {6,016(3)} and 016{1.4} =
{6, 715(4)} does not coincide with {5,6}, the equality oy5{1,3} = {5,0:5(3)} implies
deg(I1T) > 2.

We have a5 {1.5} = {osa(1).4}. 754{2.5} = {o54(2),4}, and 036 {1,5} = {o56{1),6}.
If we assuine that these three two-element subsets belong to the same H-orbit, then
this is necessarily orbit (VIT}, so o54(1) = 554(2) = 6 — a contradiction. Thercfore
deg(IV') > 2.

Similarly, the equalities o6, {1.6} = {764(1),4}, 061{2.6} = {065(2).4}, and 545{1.6} =
{o64(1), 5}, yield deg(V) > 2.

Transposing 1 and 3, and 2 aud 4. we replace the vertices (I'V7) and (V) with the vertices
(VI) and (VII). respectively. Hence the above considerations yield deg(VI) > 2 and
deg(VIT) > 2.

Finally, it is obvious that deqg(V II1T) > 1. If the connected component of I' that contains
the vertex (VIIT), consists of two vertices, we would get a contradiction with the above
inequalitics. Hence this connected component consists of at least three vertices: in
particular, deg(VIII) > 2.

If v = (11,122, 3,.-.), then the degree sequence of I’ yields vy > 3, 1, > 3, and 3 > 3,
which contradicts the equality vy + vy +v3 +... =8,

Now, suppose that g3 ja),; > 1. Then, up to conjugation in Ss, we can assume (123) €
G. Set H = ((123)}. There are 7 H-orbits in T4 o):

(Y (I (I vy (V) (VI) (VI
{12} {14} {15} {L.6} {45} {4.6} {5.6}
(2.8} {2.4} {2.5) {2.6}
(1,3} {3.4} {3,5} {3.6}

We consider the graph T' = I'(G. H.(4,2)) with vertices (I)....,(VII), and the corre-
sponding partition » = »(G, H.(4.2)) of 7.

Because of m16{1,2} = {6,016(2)}. 015{1,2} = {5,015(2)}, and 014 {1,2} = {4d. 514(2)},
we obtain deg(I) > 2.

At least onc of the sets o46{1,4} = {o46(1).6}, and 04{2.4} = {044(2),6}, contain an
element i with 1 < ¢ < 4. Then the equality 045{1,4} = {045(1), 5}, implies deg(11) > 2.
If we transpose 4 and 5 (respectively, 4 and 6), we get vertex (II1) (respectively, (IV)),
instead of vertex (I1); hence deg(I1T) > 2 and deg(IV) > 2.

The inequalities deg(V') > 1, deg(VI) > 1, and deg(V II) > 1, are obvious.

Since the connected components of [ are complete graphs, the above inequalities vicld
that at least one of the vertices (V). (VI). and (VII), has degree > 2. Therefore all
non-zero components of the partition v = (v, 19,13, ...), except possibly one, are > 3.
The remaining compounent is > 2. Thus, vy > 3, 2 > 3. and vz > 2. which contradicts
the equality vy + 19 + 13+ ... = 7.

LEMMA 6.1.2. Let G < Sg be a transitive permutation group. Then the inequality
Ny = 3 implies

5000 = Gi4.21:6 = G216 = Gz = 0.



,827

PROOF: In accordance with [2, 5.3.2], the inequality (4,1%) < (4.2) with respect to
the dominance order (see (5, Ch. 6, 6.1]) implies n(y 12,6 > n(42),¢- In particular,
nazye > 3, which in turn vields: gy = 0, after (3, 3.1.2], and gy2.¢ = 0.
gaazyc =0, and g2 1y.c = 0. after [3, 3.1.3].

6.2. In the next lemma we establish the cycle type statistics of any transitive group
G < Sg with ngy 2,6 = 4.

LEMMA 6.2.1. Let G < S5 be a permutation group such that

Ny = 1, and ng g =4

Then one has:
(i) The order of G is 6 and g2y, = 3, gz = 25
(i) The group G is isomorphic to the dihedral group of order 6.

PROOT: (i) We write down the linear equations [3, 3.2.1] for A = (1), (5, 1).(4,2). Then
Lemmas 6.1.1 - 6.1.2, and (3, 3.1.1] yield

g212) + gene +dpn g - (|G -1) =0
29(22,12):6 - (|G|-6) =0 (6.2.2)
39212 + 390246 - (4/G] - 15)= 0.

Therefore, 3(g(z) + g96)) = 12 = |G, so, in particular, |G| < 12. The transitivity of
the group G < Ss implies that 6 divides |G|. Hence, |G| equals 6, or 12. If we suppose
that |G| = 12, then gi2) = g(s)) = 0, and unless the identity, the group G contains
only elements of cycle type (22,1%), and (2%). In particular, there can be no elements
of order 3, which contradicts Sylow’s theorems (see [1, Ch. 4, 4.2]). Thus, we have
|G| = 6. Then the system (6.2.2) yields g(2z,12) = 0, and g(3s) = 3.

On the other hand, if we assume that g > 1, then we would obtain g > 2. and
932y = 2. which would contradict the equality g2y + g) = 2. Therefore, gig) = 0, and
Y3z = 2.

(i1) We remind that each group of order 6 is either cyclic or dihedral, and since G does
not contain elemeunts of order 6, we are done.

7. THE GROUP OF CYCLOPROPANE

7.1. In this Subsection we present a proof of our main Theorem 5.1.1.

In compliance with Lemma 6.2.1 and after eventual conjugation in S, we can suppose
that (123)(456) € G. The cyclic group H = ((123)(456)) is a normal subgroup of G, so if
¢ is one of the three elements of cycle type (2%) in G, then G = H{t). Now, we shall find
the form of ¢. Let us denote By, = {1,2,3} and By = {4,5,6}. Since ¢(123)(456) € H,
we have 1By = B,. By virtue of (3, 4.1.1], we have : € 2, where

@ = {(14)(25)(36), (15)(26)(34), (16)(24)(35), (14)(26)(35), (15)(24)(36), (16)(25)(34)}.
The group H acts on the set £ by conjugation and dissects it into four H-orbits:

@, = {(14)(25)(36)}, 2> = {(15)(26)(34)}, Q3 = {(16)(24)(35)},



and

Qq = {(14)(26)(35). (15)(24)(36). (16)(25)(34)}.

IfQ C G, for some 1 < i < 3. then G would be Abelian which contradicts (6.2.1),
(ii). Thus, Q4 C G. so we can set « = (14)(26)(35). It remains to note that the
group G = ({ 123)(456). (14)(26)(35)) is isomorphic to the dihedral group of order 6,
and satisfies the equations (5.1.2).

7.2. Proof of Corollary 5.1.3.
Corollary 5.1.3 is a direct consequence of Theorem 5.1.1, if we take into acconnt that
the experimental data confirm the equalities 5.1.2, as well as the incqualities [3, 1.2.4].

7.3. Proof of Corollary 5.1.4

LeMMA 7.3.1. If a group G' < Sg of order 12 contains the group

G = {(123]{456). (14)({26)(35)),

then G' is conjugated to the group

((123)(456), (14)(26)(35), (14)(25)(36)), (

which is isomorphie to the dihedral group of order 12.

=,
]
2

Proor: The group H = ((123)(456)) is the only Sylow’s 3-subgroup of G, and since G
isnormal in G, then H is normal in G”. In particular, H is the only Sylow’s 3-subgroup
of G'. Let IV be a Sylow’s 2-subgroup of G'. If ¥ were a normal subgroup of G’, then
G’ would be the product group H x i which is Abelian, and this would contradict the
fact that G is the dihedral group. Thus, in accord with Sylow’s theorems, there are
three subgroups of G’ of order 4: Iy = K, IV, 3. Any pair from the three involutions
of G generate the group G, so we can suppose (14)(26)(35) € Iy, (15)(24)(36) € K,,
and (16)(23)(34) € K. The group K is the Klein four group because if K < Sg were
cyclic, then it would not contain elements of cycle type (2®). The group I\ acts on H by
conjugation, and since G' = KH is not Abelian, this action is not the trivial one. The
group H has only two automorphisms, so we can choose a € &', a # (1), and s € K,
with a(123)(456)a™" = (123)(456), and s(123)(456)s ! = (132)(465). In particular, the
element v = «(123)(456) € G’ has order 6. The relations v® = 1, s = 1, and svs = v,
yield that G' is isomorphic to the dihedral group of order 12.

In case there exists a pair of Sylow’s 2-subgroups I\; with trivial intersection we have
K NE; N Ky = {(1)}, and then besides the identity (1) the group G’ cousists of
two elements of order 3 and nine elements of order 2, which is a contradiction. Thus,
Ky N Ky = (by). Ko N Ky = (b)). and Ky N Ky = (by), where the involutious b; are not.
elements of G.

Since the group H acts transitively on the set {I{;, K5, K3} via conjugation, this action
permutes transitively the intersections Ky N Ky, Iy N Iy, and L'y N L) which form
an H-orbit O of subgroups of G'. Then their generators by, by, and bz constitute an
H-orhit in G'.

If O consists of three elements, then by, by, and by are pairwise different, and this yields

I\'] = {(1)71'1,’)2‘&;}. I\’g = {(1].J‘2,b§.b1}. [\’3 = {(1)..!'3«&].[’2}\



B

where x; = (14)(26)(35). x3 = (15)(24)(36), and x3 = (16)(25)(34). In this case the
remaining three elements must be all elements of order 6 in G', which is a contradiction.
Otherwise, by = by = by = b, and 5(123)(456)b = (123)(456), so the permutation b has
cycle type (2%), and bB; = B,. As a consequence of both [3, 4.1.1}, and the description
of the action of H on the set €2 (see 7.1), we obtain b = (14)(25)(36), b = (15)(26)(34).
or b= (16)(24)(35). Heunce

G’ = ((123)(456), (14)(26)(35), (14)(25)(36)),
G’ = ((123)(456), (14)(26)(35), (15)(26)(34)),

or,

G' = ((123)(456), (14)(26)(35), (16)(24)(35)).

The last three groups form a ((456))-orbit with respect to conjugation.

The experiment establishes the following numbers of stereoisomers of cyclopropane:

AT - Art =
‘\(5&':3 =1, “\H.Zl:ﬁ =3

The equality Nig2yx — N{; 4,5 = 1 yields that there is a chiral pair among the di-
substitution homogeneous derivatives of cyclopropane, and this also is confirmed expe-
rimentally. Hence the order of the group G' < Ss of stereoisomerism of ethane is 12,
and G' contains G. Now, Lemma 7.3.1 implies (7.3.2), and for this particular G' the
equalities

nayne =1, ngape =3

hold. A direct calculation of the numbers ny,e/, and the experimental data yield the
inequalities [3, 1.2.4] for any partition A of 6, so Corollary 5.1.4 is proved.
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