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ABSTRACT

In their fundamental paper from 1929, Lunn and Senior show that the groups of substi-
tution isomerism and stereoisomerism of ethane can be reconstructed up to conjugation
if one knows the numbers of its mono-substitution, di-substitution, and tri-substitution
homogeneous derivatives. The proof is an exhaustive quest through the list of orbit
numbers for all subgroups of the symmetric group of degree 6. Here we present more
conceptual proofs of these statements.

1. INTRODUCTION

1.1. In the pioneering paper [6], A. C. Lunn and J. K. Senior stated explicitly that,
in general, there is no agreement between the symmetry group of a given molecule’s
skeleton & with d free valences, thought of as a rigid space configuration, and the
family (Na.o)x of the numbers of experimentally known isomers obtained by distributing
upivalent substituents among the free valences of ¥ by virtue of the partitions A of d. If
the idea of representing isomers as orbits of a finite group is correct, then one has to look
for a group which is generally different from the 3-dimensional symmetry group. Lunn
and Senior define their symmetry groups as those permutation groups on the univalent
substituents, which are in accordance with the above-mentioned experimental data.

In [6, IV], via an exhaustive search, is proved that the Lunn-Senior’s symmetry group
responsible for the substitution isomerism of ethane is a permutation group G' < S4 of
order 18, defined up to conjugacy. In compliance with the classification of the point
groups of finite order, there is no rigid space configuration whose symmetry group is
isomorphic to G. In these cases the euphemism “non-rigid space configuration” was
introduced in order for similar “pathological” situations to continue to be in keeping
with the traditional (rigid) concept of configuration.

Lunn and Senior assert ([6, III]) that “such a group has much the same relation to
a space configuration as the mathematical law of inverse squares has to the physical
laws of gravitation (Newtonian form), the Coulomb law of electrostatic attractions and
repulsions, the law of the attractions and repulsions of magnetic poles, ete.” and that “a



space configuration (rigid or non-rigid) is likely to be available for use as an illustration
of the permutation group in question; ... and the continued adherence to a particular
mode of representation, instead of clarifying the situation, is apt to result in confusion
between the properties of the phenomena observed and the properties of the particular
method of representation adopted”.

The inverse problem of isomer enumeration consists of finding the Lunn-Senior’s sym-
metry group G provided that enough numbers Ny;s are experimentally known. Besides
Lunn and Senior, this problem was also addressed by J. H. Redfield in his lecture given
at the University of Pennsylvania in 1937 (see [8]). In his significant paper [2], W. Has-
selbarth presents a conceptual treatment of the inverse problem for the classical case of
benzene.

1.2. Let ¥ be a molecule’s skeleton with d univalent substituents. Each permutation
group W < §; acts naturally on the set [1,d] = {1,...,d} of the free valences of the
skeleton I, thus producing an action on the set T of all tabloids of shape A where
A= (A1, \z,...) is a partition of d (see 2.1). Any tabloid A = (A1, A2,...) € Tx can be
identified with a distribution of ligands among the unsatisfied valences of ¥ via the rule:
Attach Ay identical ligands of type z; to the valences from A}, attach A; identical ligants
of type z2 to the valences from A, and so on. In other words, the tabloids A € Ty
represent the structural formulae of the derivatives of the parent substance £ Hg, whose
univalent substituents have empirical formula 3232 .... In general however, several
tabloids (structural formulae) represent one and the same chemical compound. In [6],
Lunn and Senior assert that there exists a permutation group G < Sy such that the
set of all tabloids (structural formulae) which represent the same compound, coincides
with a G-orbit in Ty, and the action of the group G is induced by the action

€A = ({(A1), ((A2),- .., {(Ad))- (1.2.1)
of the symumetric group S; on Th.

REMARK 1.2.2. There is another, well known representation of the structural formu-
lae of the isomers with a given skeleton ¥, and with d univalent substituents whose
empirical formula is 7' 737 ... — the representation via double cosets (see [5, Ch. 3,
3.4]. In fact, these two mathematical models are isomorphic. Indeed, let G < Sy be
the symmetry group corresponding to the skeleton L. The set Ty contains the tabloid
I with components Iy = [1, 0], 1 = [A{ + 1, A1 + Ag],.. ., and its stabilizer with respect
to the action (1.2.1) of S4 is the Young subgroup Sy = Sy, x --- x §y, < S4. Thus

Sa/Sx =~ Ty, (1.2.3)

vSy vl

is an isomorphism of S4-sets. Now, consider the action of the permutation group G < Sy
on Ty, which is induced by the action (1.2.1). The isomorphism (1.2.3) of Sy-sets can also
be considered as an isomorphism of G-sets, and moreover, it factors out to a bijection

G\Sa/S» ~ G\T.

GuSy v+ vl,



between the set of double cosets of Sg modulo (G, Sy), and the set of G-orbits in T).

Let na.c be the number of all G-orbits in Tx, and let Nys be the number of all experi-
mentally known substitution isomers with empirical formula P .té\z ... of their univalent
substituents. As a consequence of Lunn-Senior’s thesis (see [6, IV], (3, 1.5.1]) we obtain
for any partition A of d the inequality

Nz <nxe- (1.2.4)

The differences ny.; — Na,x give an account of the theoretically possible isomers which
have not been synthesized yet. However, for mono-substitution and di-substitution
derivatives, and sometimes for tri-substitution homogeneous derivatives (that is, for
A=(d—1.1), (d = 2,2), (d - 2,1%), and sometimes for A = (d — 3,3)) it may safely be
said that

Nyx =nag- (1.2.5)
In the ideal situation, when the equality (1.2.5) holds for all partitions A of d, the
permutation group G < Sy is defined up to Literal conformality (see [6, IV], [7, Ch. 1,
Sec. 25, [3, Theorem 5.2.5]). We remind that each permutation group G < Sy is a
disjoint union of its subsets Gy, where G consists of all elements of G of cycle type A,
and thus G produces a sequence (gx.)x of non-negative integers, where gy = |Gal.
Two groups G, G’ < Sy are said to be literally conformal if their sequences (gx,c) and
(gag')a coincide. This is an equivalence relation which is weaker than the conjugacy
in S4. The group G is uniquely determined (up to literal conformality) by its sequence
(nx6)a becanse the two sequences (nx.g)a and (ga:g)a are related via the equalities

IGlnxe = Y, Maugua, A€ Ps, (1.2.6)

rEPs

where (M), ) is an invertible matrix with integer entries (see (2, II}).

1.3. The considerations in Subsection 1.2 show that, in general, the situation is not
consolatory because the chemists feel practically certain that all derivatives of a given
chemical compound are synthesized only in the mono-substitution, di-substitution, and
sometimes — in tri-substitution homogeneous case. Fortunately, for small d this in-
formation, as a rule, is sufficient for the group G to be recovered even up to conjuga-
tion. In this case the equalities (1.2.5) for A = (d — 1,1), (d — 2,2), (d — 2,1?), and
A = (d — 3,3) impose enough restrictions upon the structure of (the subgroups of) G,
so that |G| = g, = 0 for sufficiently many partitions . The latter commeonly allows
us to find the group G. This is the case with the group of ethane.

1.4. Let us consider the two carbon atoms of ethane CyHg, which are united by a
single bond, as a skeleton ¥ with 6 univalent substituents. The following numbers of
substitution isomers of ethane are experimentally known:

Nisaye = 1 (mono-substitution derivatives),
N(4,2)x = 2 (di-substitution homogeneous derivatives),
Nia,12);8 = 3 (di-substitution heterogeneous derivatives),
Nz2y, = 2 (tri-substitution homogeneous derivatives).

The aim of this paper is to present the proofs of the next theorem, and its two corollaries:
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THEOREM 1.4.1. Let G < Sg be a permutation group. The equalities
neaye = 1 nuae =2, nuazye = 3,and ngaye = 2, (1.4.2)
hold if and only if G is conjugated in Sg to the group
{(123), (456), (14)(25)(36))

of order 18.

COROLLARY 1.4.3. The group G < S of substitution isomerism of ethane coincides up
to conjugacy with the group

((123), (456), (14)(25)(36))

of order 18.

COROLLARY 1.4.4. The group G' < Sg of stereoisomerism of ethane coincides up to
conjugacy with the group

((123),(456),(14)(25)(36),(12)(45))

of order 36.

The above statements are proved in [6] by brute force, that is, the list of all subgroups
G of S, and their sequences (nx.c)ae p,, was used. We have employed [2] as an example
to follow, but our methods are different.

1.5. In Section 2 we introduce the terminology and notation which are used further.
Section 3 is the body of the paper. We prove there a series of lemmas which state that
certain g,; are zeroes, so the linear system (1.2.6) for the ny,¢’s on hand can be solved
with respect to remaining g,.,c, and with respect to |G|. The latter is done in Lemma
3.2.3. Section 4 contains proofs of Theorem 1.4.1, and of Corollaries 1.4.3, and 1.4.4.
The technique of the proofs is mainly based on Sylow’s theorems as well as on system-
atical use of a graph I'(G, H, A) which models the orbit spaces G\T and H\T), where
H is a subgroup of G. The graph I'(G, H, A) for an appropriate H which contains an
element of G of cycle type p, is an efficient tool for proving the equality g,;6 = 0.

2. PRELIMINARIES

2.1. Given a positive integer d, by a partition of d we mean a sequence A = (A, Aq,...)
of non-negative integers with Ay > Ay > -++ and Ay + Ay + -+ = d. Length |A\| of a
partition A is the number of its non-zero terms. Sometimes we denote a partition A
also by (1™,2™2,...), where my is the number of &’s in the sequence A = (A, Aa,...),
k=1,2...,d

Let A be a partition of d. Tabloid of shape A is a sequence A = (A, As,...) of disjoint
subsets of the integer-valued interval [1,d] with |A;| = Ay, |A2] = Ag,... (cf. [4, Ch. 2,
2.2]). Let Ty be the set of all tabloids of shape A. Any subgroup G of the symmetric
group Sg acts on T via the rule (1.2.1). We denote by ny.¢ the number of the G-orbits
in Ty.
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Given a partition A of d, we use notation Gy for the subset of the permutation group
G < Sg, consisting of all elements of cycle type A. We set gx.¢ = |Ga|. In particular, if
A= (1™ ,2™m=2 ), then the conjugate class (Sq)a of the symmetric group Sy4 contains

gnsy = dlfzy (2.1.1}

permutations, where zy = 1" m 122 my!

2.2. For any triple consisting of a permutation group G < Sg, its subgroup H, and a
partition A of d, we define a graph I' = I'(G, H, A) in the following way: The set of
vertices of T is the set of H-orbits in Ty; two different vertices e and b are joined by
an edge if and only if there exist A € a, B € b, and ¢ € G, such that ¢(A) = B. The
H-orbits that are contained in a particular G-orbit in Ty form a complete graph which is
connected component of I'. Therefore, I' is a disjoint union of ny,¢ complete graphs I';.
Ta,.... If v; is the number of the vertices of Ty, then Y, v; = na,u, and after eventual
renumbering of T';, we can suppose that v = (1,1,...) is a partition of ny,z. Thus,
each triple G, H, A produces a partition v = (G, H, A) of nyp with length |v| = ny.q.
Moreover, the degree of each vertex of the connected component T'; is equal to v; — 1.

3. THE CYCLE TYPE STATISTICS OF THE GROUP OF ETHANE

3.1. Since we can identify the set Tj; ;) of all tabloids 4 = (A;, As) of shape (5,1) with
the integer-valued interval [1,6] via the rule 4, = {7}, 1 < i <6, the number n(s 5y of
G-orbits in Ti5 5y is equal to the number of sets of trausitivity of G. Therefore, the next
lemma follows.

LeMMA 3.1.1. Let G < S¢. One has ngs 3y, = 1 if and only if G is transitive.
Throughout the paper, we represent the elements of the set Tj, 12), that is, the tabloids
A = (A1, Az, Ay) of shape (4,1%), as ordered pairs (1,j), 1 < i # j < 6, via the rule:
Ay = {i}. Ay = {j}.

LemMmA 3.1.2. Let G < S; be a transitive permutation group. Then the inequality
n2ye = 2 implies g5 1y, = 0.

PROOF: Let us suppose that g(s ), > 1. Then the group G contains a 5-cycle. Up to
conjugation in S¢ we can suppose that (12345) € G. We set H = ((12345)). There are
6 H-orbits in Tiy y2;:

() {n i (qvy (vy (vl
(1,2) (1) (1,3) (3.1) (1,6) (6.1)
(2,3) (3.2) (2 4 (4,2) (2,6) (6,2)
(3.4) (4.3) (3.5) (5.3) (3,6) (6,3)
(4,5) (5,4) (4 1) (L4) (4,6) (6,4)
(5,1) (1,5) (5,2) (2.5) (5,6) (6,5)

The group G is a transitive, so there exists o € G with (1) = 6. Let us consider the
graph T' = I'(G, H, (5, 1)) with vertices (I),..., (VI) (see 2.2). Since a(1,2) = (6,0(2)),
and o(l 3 = (6,0(3)), the vertices (I), (11I), and (V1) form a triangle in I". Since
a(2,1) = (a(2),6), and o(3,1) = (5(3),8), the vertices (IT), (IV), and (V) form another
tnangle in I'. The equality r}(l .)) (6,0(2)) connects the vertices (II) and (VI), so I
is the complete graph with vertices (I),..., (V). In particular, n(4 12y = 1, which is
a contradiction.
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LEMMA 3.1.3. Let G < S5 be a transitive permutation group. If one has ny 12),q 2 3.
then g(1,2),6 = 9(412),6 = 93256 = 0-

PROOF: Let gi42).¢ > 1. Then, after eventual conjugation in Sg, we can suppose that
the group G contains the cyclic group H = ((1234)(56)).

We have 8 H-orbits in T(4 12):

() (I (In (IV)y (V) (VI) (VII) (VIID)
(1,2) (2,1) (1.3) (1,5) (51) (1,6) (6,1) (5,6)
(2,3) (3,2) (2,4) (2,6) (6,2) (2,5) (52) (6,5)
(3,4) (4.3) (3,1) (3,3) (53) (3,6 (63)
(41) (1,4) (42) (4.6) (6,4) (4,5) (5.4)

The transitivity of the group G yields the existence of a ¢ € G, such that o(1) = 6. We
consider the graph I' = I‘(G H (4,12)) with vertices ( ) (VI

The equalities o(1,2) = (6,0(2)), and 0(4.1) = (0(4),6 xmply that the degrees deg(I)
and deg(IT) are at least 2.

In case ¢(3) = 5 we have: o(1,3) = (6,5), and ¢(3,1) = (5,6), so deg(ITT) > 1, and
deg(VIII) > 1; 6(1,5) = (6,0(3)), ¢(3,5) = (5,0(5)), and ¢(2,6) = (2(2),(6)), where
a(2),0(5),0(8) € {1,2,3,4}, so deg(IV) > 3, and deg(V') > 3; & 176) = (6,a(6)),
(3,6) = (5,0(6)), and ¢(2,5) = (0(2),a(5)), where 0(2),0(5),0(6) € {1,2,3,4}, so
deg(VI) > 3, and deg(VII) > 3.

Now, suppose that ¢(3) € {1,2,3,4}. We have: o(1,3) (6,0-(3 a(3,1) = (0(3).6),
so deg(III) > 2; 07" (5,6) = ( —1(5),1), “1(6 = (1,071(5)), where o=1(5) # 3.
therefore deg(VIII) > 2; o(1,3) = (6,0(5)), 0(3,5) = (0(3),0(5)), hence deg(IV) > 2,
and deg(V) > 2; ¢(1,6) = (6,0(6)), 0(3,6) = ( 3 a(6)), hence deg(VI) > 2, and
deg(VII) > 2.

Since ngy 2y > 3, the graph T' has at least 3 connected components, that is, the
corresponding partition ¥ = #(G, H,A) of 8 has length > 3. In case 6(3) = 5, degree’s
sequence of [ yields that there exists a connected component with at least 4 vertices,
there are no isolated vertices, and at most one component has exactly 2 vertices. Now,
it is obvious that there is no partition v = (v, vz, v3,...) of 8 with 1y > 4, 1, > 3, and
vy > 2. When o(3) € {1,2,3,4} all degrees of the vertices of I are > 2, so v, > 3,
vy > 3, and vy > 3, which is a contradiction.

Let ¢(4.12).¢ = 1. Then, up to conjugation in Sg, we can assume that the group G
contains the cyclic group H = ((1234)).

We have 9 H-orbits in Tj4 12):

Iy Iy (I (IV) (V) (VI) (VII) (VIII) (IX)
(1,2) (2,1) (1,3) (L5) (5,1) (1,6) (6,1) (5,6) (6,5)
2,3) (3,2) (2,4 (25 (52 (26) (6,2)
(3.4) (4,3) (3,1) (3,5) (5,3) (3,6) (6,3)
(4,1) (L4) (4.2 (45 (54 (4,6) (6.4)

Since the group G is transitive, there exist o, 7, 5 € G such that ¢(1) = 6, 7(1) =
and 7(5) = 6.

Let us consider the graph I' = I'(G, H, (4, 1%)) with vertices (I),...,(IX).

The equalities ¢(1,2) = (6,0(2)), ¢(4,1) = (¢(4),6), 7(1,2) = (5,7(2)), and 7(4,1) =
(r(4),5), yield that the degrees deg(I) and deg(II) of the vertices (I) and (I]) are at
least 3.



The equalities (1,3) = (6,0(3)), and o(3.1) = (¢(3),6), imply that deg(II]) >

Further, we have o(1,5) = (6,0(5)), and 7(1,3 ) (5,7(5)). We can choose 2 S
such that 7(i) ¢ {5,6}. Then 7(i,5) = (r(i), 1'(5) yields that deg(IV) > 3,
deg(V') > 3. Similarly, we obtain deg(VI) > 3, and deg(VII) > 3.

The equalities 1(5,6) = (6,7(6)), and 7(6,5) = (n(6),6), imply deg(VIII) > 1, and
deg(IX) > 1

In particular, deg(I) + -+ + deg(IX) > 22, hence the graph I' has at least 11 edges.
According to the above inequalities, there are neither isolated vertices nor more than one
component with exactly two vertices in I'. Therefore. if v # 0, then v > 2, and there
is at most one k with vx = 2. Since the corresponding partition v = v(G, H,(4,1%))
of 9 has length > 3, this yields only two possibilities: v = (4,3,2), or v = (3,3,3). In
the first case I' has 10 edges and in the second — 9 edges, which in both cases is a
contradiction.

gl
and

Now, suppose that g(3 2.1y, > 1. Then, after eventual conjugation in Ss, we can assume
(123)(45) € G, and let H = ((123)(45)).
We have 9 H-orbits in Tiy 2y

(I (n (I (IV) (V) (VI) (V) (VIII) (IX)
(1,2) (1,3) (1.4) (4,1) (1,6) (6.1) (4,6} (6,4) (4,5)
(2,3) (2,1) (2,8) ( 2) (2,6) (6,2) (5.6) (6,5) (5,4)
(3.1) (3.2) (3,4) (4.3) (3,6) (6.3)

(1,5) (5 1)

(2.4) (42)

(3.5) (5,3)

Since the group G is a transitive, there exist o € G such that ¢(1) = 6, and 7 € G

with 7(5) = 6. We consider the graph I' = ['(G, H,(4,1?)) with vertices (I),...,(JX).
The equalities o(1,2) = (6,0(2)), and 0(3,1) = (¢(3),6), yield deg(f) > 2. Simi-
larly, since o(1,3) = (6,2(3)), and o(2,1) = (a(2),6), we obtain deg(II) > 2; since
7(1,6) = (6,0(6)), and &(2.6) = (0(2),4(6)), we obtain deg(V) > 2 and deg(VI) > 2;
since ¢71(4,6) = (o _1(4) 1), and T_](E) 6) = (r7'(5),5), we get deg(VII) =12
and deg(VIII) > 2; since o(4,5) = (a(4),0(5)), and a(5,4) = (6(5),0(4)), we ob-
tain deg(IX) > 2. For the vertices (I1]) a.nd (IV) we have a(l, 4) = (6,0(4)),
7(1,3) = (7(1),6), and o(2,5) = (¢(2),0(5)), so deg(III) > 3, and deg(IV) > 3.
The degree’s sequence of I' implies vy > 3 for all ¥ = 1,2,3,.... Moreover, I has at
least 3 connected components. The only possible partition v of 9, which satisfies these
restrictions 1s » = (3,3,3). Therefore I' consists of three disjoint triangles, and this
contradicts the inequality deg(ITI) > 3. The proof of Lemma 3.1.3 is finished.

3.2. According to [2] or [9], and taking into account (2.1.1), we rewrite (1.2.6) in the
form i
"G = T E) [(S\)u|2ugucr N € Ps. (3.2.1)
s

LEMMA 3.2.2. Let G < Ss be a transitive permutation group. If nyy 12,6 > 3, and
n@a2yc < 2, then one has:

(i) gaaone 2 2;
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(i) 92,1456 = g2 026 = 0-
PROOF: (i) Obviously, we have gue;g = 1. According to Lemmas 3.1.2 - 3.1.3,

95156 = 0. 9u26 = 0, guaze = 0, and g3 2136 = 0. We write down (3.2.1)
for A = (5.1).(3%), and taking into account Lemma 3.1.1, we get

49¢2,14.6 + 2022126+ 39316 - (1G] —6) =0

892146 + 492176+ 200106 + 20606 — (Rae|Gl—-20) = 0.
This system yields 4g(3 13).6 — 2¢(32),6 = (2—7n(32),6)|G| +8 , and our statement follows.
(ii) Let us suppose that the group G contains a transposition. After eventual conjugation
in S5 we can assume (12) € G. Since G is transitive, it also contains transpositions of the
type (ki) for i = 3,4,5,6. If the sequence (k;) is identically equal to some k € [1,6], then
k is either 1 or 2, and in both cases G = Sg, which is a contradiction. Otherwise, among
(12) and (kit), ¢ = 3,4,5,6, we can find two transpositions with disjoint supports. We
can suppose (12) € G and (34) € G. In particular, (12)(34) € G, and hence gz j4y,¢ > 1
irnplies 9422 12,6 2 15
Now, let us assume the opposite of (ii), that is, (12)(34) € G. Part (i} yields that the
group G contains a 3-cycle. We consider the subgroup H < G with generators (12)(34)
and this 3-cycle. There are four substantially different cases:

H = ((12)(34).(125)), ((12)(34).(123)), ((12)(34),(135)), or ((12)(34), (156)).
We have n(y 2,6 > 3, so the graph T' = T(G, H,(4,1%)) has at least 3 connected
gg:?ﬂ}l;ti ((12)(34),(125)). We have

H ={(1),(12)(34), (125),(152), (25)(34), (15)(34) }.

There are 8 H-orbits in Ty 52):

() (I (I (Iv) (V) (VI) (VII) (VIII)
(1L,2) (1,3) (3,1) (1,6) (6,1) (3,4) (3.6) (5,3)
(2,1) (2,3) (3,2) (26) (6,2) (4,3) (4,6) (64)
(5,2) (5,4) (45) (56) (6,5)

(2,5) (2,4) (4,2)

(1,5) (1,4) (4,1)

(5,1) (5,3) (3,8)

Since the group G is a transitive, there exist o, 7 € G such that ¢(1) = 6, and 7(3) = 6.
Let us consider the graph I' = I'(G, H, (4,1?)) with vertices (),...,(VIII). The equal-
ities ¢(1,2) = (6,0(2)), and o(2,1) = (0(2),6) show that deg(f) > 2. The two
pairs of equalities 0(1,3) = (6,0(3)), 0(2,3) = (0(2),0(3)), and a(1,6) = (6,2(6)).
a(2,6) = (a(2),0(6)), imply deg(II) > 2, deg(I1I) > 2, and deg(IV) > 2, deg(V) > 2,
respectively.

Moreover, 7(3,4) = (6,7(4)), 7(4,3) = (r(4),6), and 7(3,6) = (6,7(6)), 7(4,6) =
(7(4),7(6)), yield deg(VI) > 2, and deg(VII) > 2, deg(VIII) > 2, respectively.

The above inequalities imply that each connected component of T' contains at least 3
vertices. Now, it 1s obvious that there is no partition v = (v1,15,v3,...) of 8 with
vy >3, v, >3, and v3 > 3.
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Case 2. H = ((12)(34),(123)). We have (12)(34)(213)(12)(34) = (124), so H =
((123),(124)) = Aq.
There are 7 H-orbits in Ty j2):

Iy (N (1) (qv) (V) (VD) (VII)
(1,2) (L5) (5.1) (L.6) (6,1) (5,6) (6,5)
(L3) (2,5) (5.2) (2,6) (6,2)

(1,4) (3.5) (5.3) (3,6) (6,3)

(2.1) (4.5) (5,4) (4,5) (6.4)

(3.1)

(4.1)

(2,3)

(2,4)

(3.2)

(4,2)

(3.4)

(4,3)

Since the group G is a transitive, there exists o € G such that o(1) = 6.

We consider the graph T' = I'(G, H, (4,1%)) with vertices (1),...,(VII). The equalities
0(1,2) = (6,5(2)), and o(2,1) = (#(2),6) show that deg(]) > 2. Further, for k = 5,6
we have o(1,k) = (6,0(k)), and o(2,k) = (a(2),a(k)), so deg(II) > 2, deg(1II) > 2,
deg(IV) > 2, and deg(V) > 2. Moreover, 0'(5,6) = (¢71(5),1), implies deg(VI) > 1,
and deg(VI/[) > 1.

The above inequalities yield that each connected component of T, except possibly one,
contains at least 3 vertices. The possible exception contains at least two vertices. Now,
it is obvious that there is no partition v = (v1,vs,v3,...) of T with 1y > 3, 1y > 3, and
v3 > 2.

Case 3. H = ((12)(34),(133)). We have (12)(34)(135) = (14352), so H contains an
element of cycle type (5,1), and this contradicts Lemma 3.1.2.

Case 4. H = ((12)(34),(156)). Since (12)(34)(156) = (1562)(34), the group H contains
an element of cycle type (4,2). The latter contradicts Lemma 3.1.3.

LEMMA 3.2.3. If G < Sg is a permutation group such that
N6 = 1 a6 = 2, nuazye = 3,and ngeye = 2,

then the order of G is 18 and g(3 10,6 = 4. g32),6 = 4, and gasyc = 3.

ProoF: We write down (3.2.1) for A = (5,1),(4,2),(4,1?),(3%), and taking into account

Lemmas 3.1.2 — 3.1.3, and Lemma 3.2.2, (ii), we obtain
39,196 - (IG]-6) =0
39(23y.6 + 393,196 - (2|G| - 15)= 0
693 19);G — (36| - 30)= 0
gaae +9a2e — (|Gl -10)=0.

Therefore, |G| = 18 and g(3,19).¢ = 4, g3z, = 4, and gzsy.6 = 3.



4. THE GROUP OF ETHANE

4.1. We have collected enough information in order to prove our main Theorem 1.4.1,
stated in the Introduction. We shall start with the formulation of the following obvious

LEMMA 4.1.1. Let By = {1,2,3} and By = {4,5,6}, and suppose that the permutation
o € Sg of cycle type (2°) maps By onto By. Then o € Q, where

Q = {(14)(25)(36), (15)(26)(34), (16)(24)(35), (14)(26)(35), (15)(24)(36), (16)(25)(34)}.

Let H < G be a Sylow’s 3-subgroup of G. According to Sylow’s theorems (see [1, Ch.
4, 4.2]) the number of Sylow’s 3-subgroups of G is a divisor of 18 of the type 3k + 1, so
H is a normal subgroup of G. Since |H| = 3%, [1, Ch. 4, 4.4] yields that the group H
is elementary Abelian of type (3,3). After eventual conjugation in Sg, we can suppose
H = ((123),(456)). By virtue of Lemma 3.2.3, there are three elements of cycle type
(2%) in G. If ¢ is one of them, then G = H{(t}, so it remains to find their form. Lemma
3.2.3 yields that the elements of cycle type (3,1%) in G are (123), (132), (456), and
(465), so ¢{(123))¢ = {(456)). In particular, :By = B, and Lemma 4.1.1 implies ¢ € .
The cyclic group C = {(123)) acts on the set by conjugation, and dissects it into two
C-orbits:
@ = {(14)(25)(36), (15)(26)(34), (16)(24)(35)},

and
Q2 = {(14)(26)(35), (15)(24)(36), (16)(25)(34) }.

We have either ; C G, or 2 C G, hence we can set ¢« = (14)(25)(36), or ¢ =
(14)(26)(35). Thus, G = H({(14)(25)(36)), or G = H{((14)(26)(35)). Since the last
two groups are conjugated in Sg via the transposition (56), we are done.

In the end, we note that the group G = ((123), (456), (14)(25)(36)) satisfies the equations
(1.4.2).

4.2. Proof of Corollary 1.4.3.

Theorem 1.4.1 yields immediately the form of the group G of substitution isomerism of
ethane, as well as the equalities (1.4.2) for this G. The numbers ny,¢ for the remaining
A can be calculated directly, and a comparison with the experimental data show that
the inequalities (1.2.4) hold for any partition A of 6.

4.3. Proof of Corollary 1.4.4.

LEMMA 4.3.1. If a group G' < Sg of order 36 contains the group

G = {(123), (456), (14)(25)(36)),

then

G' = ((123),(456), (14)(25)(36), (12)(45)). (4.2.2)
PRrOOF: The dihedral group Dy = {(1425)(36),(14)(25)(36)) of order 8 normalizes the
group H = {(123),(456)} in Ss. Therefore the normalizer Ng,(H) contains the group
N = D4H of order 72. In particular, the index ng of Ng,(H) in Sg divides 10. Since H
is a Sylow 3-subgroup of S, according to Sylow’s theorems (see [1, Ch. 4, 4.2]) ns is the



- .

number of all Sylow’s 3-subgroups of Sg, ns > 1. and n3 = 1{med 3). Hence ny = 10, or,
equivalently, Ng,(H) = N. This yields G < Ns,(G) < N. Since (12)(45)G(12)(45) =
G, the normalizer Ng,(G) contains the group G((12)(45)) of order 36. On the other
hand, (45) € Dy, and (45)(14)(25)(36)(45) ¢ G, so (45) ¢ N5, (G). Thercfore N, (G) =
G{(12)(45)). If a group G' < S of order 36 contains G, then it normalizes G, so
¢ = ((123), (436), (14)(25)(36), (12)(45)).

The following numbers of sterecisomers of ethane are experimentally established:
- AT/ i AT - At P
Nisape =1 Name =2 Name =2 Ngpg =2

Both the experiment and the equality Ny j2y5 — N(’-m?);}: = 1 yield that there is a
chiral pair among the di-substitution heterogeneous derivatives of ethane. Therefore
the order of the group G’ < Sg of stereoisomerism of ethane is 36, and G’ contains G.
Now, Lemma 4.3.1 implies (4.2.2), and for this particular G’ the equalities

neaye = 1 Raee =2 npane = 2 nene =2,

hold. Finally, a straightforward calculation of the numbers ny.qr, and the experimental
data yield the inequalities (1.2.4) for any partition A of 6, so Corollary 1.4.4 is proved.
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