communications in mathematical

Dﬁ no. 43, March 2001

and in computer chemistry

ISSN 0340-6253 MATCDY (43) 29-39 (2001)

HYPERENERGETIC LINE GRAPHS

Yaoping Hou" and Ivan Gutman®

“Depariment of Mathemalics, University of Scienee and Technology of China.
Hefei, Anlui 230026, China, e-mail: yphouQustc.edu.cn

"Faculty of Science, University of Kragujevae, P. 0. Box 60,
YU 34000 Rragujevae, Yugoslavia, e-mail: gutman@knez.uis.kg.ac.yu

(Received July 2000)

Abstract

- Ayadase s A, are the eigenvalues of a graph G on n vertices, then the energy
of this graphs is defined as £(G) = || 4 A2 + -+ [As]. A graph is said to be
hyperenergetic if E(() > 2n — 2. 1t is shown that if ¢ has more than 2n — 1 edges,
arily hyperenergetic. By this, a new method is acquired
for constructing hyperenergetic graphs with any number of vertices (nine or more)
and with relatively few edges,

then its line graph is nece

INTRODUCTION

The concept of the energy of a graph has been described in due detail in a preceding
paper [1] and elsewhere [2-4]. Thus if Aj, Aa...., A, are the eigenvalues [3. 3] of the

graph (¢, then the encrgy of this graph is defined as

™

EG) =Y A

i

1]

Details on the role of E((+) in chemistry can be found in Chapter 12 of the hook [3]

and in the review [6].
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Some time ago it was conjectured [2] that among all graphs on n vertices, the
complete graph A, has the greatest energy: F(A,) = 2n — 2. Not long after that.
it was recognized [7. 8] that the conjecture is false and that there exist graphs for
which E(G) > 2n — 2. Graphs on n vertices. the energy of which exceeds 21 — 2 are
referred to as hyperenergetic graphs.

Fifteen years ago a computer-aided search (8] revealed that hyperenergetic graphs
exist already for n = 8. hut not for n < 8. However, the first systematic and
general method for the construction of such graphs was put forward only recently
by Walikar, Ramane and Hampiholi [9]. They demonstrated that the line graph
LK) of the complete graph K, was hyperenergetic for p > 5. By this. an infinite
family of hyperenergetic graphs was obtained with n = p(p — 1)/2 , p = 5,6,7....
vertices. One of the present authors gave another general method for constructing
hyperenergetic graphs by deleting a few edges from K, [10, 11}. This construction
furnishes hyperenergetic graphs for all n > 9. Subsequent computer studies [12]
indicated that among graphs with large number of edges hyperenergetic species are
encountered quite frequently. Anyway, all hyperenergetic graphs designed so far [9-
13] have too many edges to he moleeular graphs of conjugated x-electron systems.
and should be viewed as graph representations of inorganic clusters, so called efuster
graphs [14. 15]. The applicability of graph eigenvalues in the theory of clusters is long
known [15].

In this paper we focus our attention to the energy of line graphs. Our main finding
is that if a p-vertex graph (¢ has more than 2p — 1 edges, then its line graph L(() is
necessarily hyperenergetic. Consequently, hyperenergetic graphs with relatively few

edges can be constructed for all n > 9.

A CHEMICAL RATIONALE FOR STUDYING HYPERENERGETIC
GRAPHS

The chemical applications of the total 7-electron energy were outlined in the
preceding paper [1]. In view of the importance of this quantity, it it not surprising

that the guestion



how L dopends on molecular siruclure?

was extensively studied. By possessing and answer to this question. at least a par-
tial one. we would know something about the structural factors responsible for the
stability of polycyelic conjugated molecules (which for a long time is known to be in
a non- trivial manner related Lo the size and mutual arrangement of the cyvcles. on
branching of the carbon atom skeleton, ete). What may be even more attractive to
experimentalists, we wonld be able to predict which polycyelic conjugated molecules
are “aromuatic” and which are “antiaromatic”, and to do this in an (at least rough)
quantitative manner, This could then lead to the design of conjugated systenis with
non-standard (but desired) properties

In spite of enormous efforts in the past half a century, we are still pretty far from
having a comprehensive and satisfactory answer to the above question. However, at
this moment our ignorance is not complete (see, for instance, the review [6]).

The most obvious question one may ask about the s

ructure—dependence of F is

certainly
how E depends on molccular size?

Needless 1o say that the knowledge of the size -dependence of E is a prerequisite for
any other study of the molecular structure-dependence of total melectron energy.

Here under “molecular size” we understand the number of carbon atems {n) and
the number of carbon-carbon honds (im). Recall that a conjugated hydrocarbon with
parameters 1 and m has the constitutional formula ¢, Ha,pr, . Consequently. all
isomers have the same » and m values,

One of the results known since the 1970s {16] is that the F-value of conjugated
molecules is (in the majority of cases, but not always) a monotonically increasing
function of the parameters n and m ., and that E is roughly proportional to /mmn .
This finding. however, conld never been proven in a rigorous manner and could only
be corroborated by statistical analysis.

Now. if £ ~ /mn would he applicable to all graphs, then, for a fixed value of
n. the graph with maximal number of edges (= the complete graph RK,,) would have

the maximal energy. This reasoning is. in fact. the origin of the (false) conjecture [2]



mentioned in the previous section. In other words. if £ ~ /mn would be applicable
to all graphs. then no hyperenergetic graphs would exist.

The existence of hyperenergetic graphs in a fully transparent manner demonstrates
that the Ansatz £ ~ \/mmn is not generally applicable.

In order to try to save the £ ~ \/mn approximation one may argue that (i)
hyperencrgetic graphs are just certain “pathological™ cases, exceptions from the gen-
eral rule and that their number is statistically insignificant. Farther, hyperenergetic
graphs might be “pathological” also in the sense that (i) they contain too many
edges to be chemically relevant. Alas, neither (i) nor (i) is true, as we prove in this
paper (cf. Theorem 1 helow),

The fact that the line graphs of the majority of graphs are hyperenergetic has
the following chemically important implication: In the general case, the actual size-
dependence of the energy of a graph (7. and therefore the actual molecular-size
dependence of the total m-electron energy of a conjugated molecule, is somewhat
more perplexed than suggested by the simple \/mn Ansatz.

It is believed that the study of hyperenergetic graphs sheds some more light on the
structural features that influence the E-value (and therefore influence the stahility
of a conjugated molecule). Although it seems that no hyperenergetic graph is a
genuine molecular graph (representing a chemically sound carbon-atom-based #-
eleciron network ). the conclusions obtained by the examination of the energies of such
specics could be directly applied in chemical considerations. Once we discover which
exactly are the conditions for a graph to have maximal or nearly maximal energy,
we will be able to pinpoint the details of molecular structure that may lead to the
design of (from a practitioner’s point of view) interesting and attractive conjugated
m-electron systems. At this moment such conditions are not known. We nevertheless

believe that the present research brings us a step closer to this ultimate goal.

LINE GRAPHS AND THEIR ENERGIES

We first fix our notation and terminology. A graph with p vertices and ¢ edges

will be referred to as a (p. ¢)-graph. Let i be a (p, ¢)-graph. Then the line graph [17]
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Fig. 1. A graph and its line graph

of 7. denoted by L{(7}. is the graph whose vertices are the edges of (7. Two vertices
of L((7) are adjacent if the corresponding edges of & are incident. The number of
vertices and edges of L((+] will be denoted by n and m , respectively.

If the degrees of the vertices of (7 are §;,85,..., 3, . then, as well known [17].
| e
o= E m.:;Zd!——q. (1)
=iz

The line graph of L{(7) is denoted by L2((7). The higher iterated lines graphs are
defined analogously: L*((7) = L(LY(G)). LY(G) = L{L}G)) . ete.

For further details on line graphs and iterated line graphs see [17]. A survey of
the chemical applications of line graphs with an exhaustive bibliography is found in
the introductory part of the paper [18]. An example is depicted in Fig. 1.

Let. A(G) and A(L((7)) be the adjacency matrices of the graphs G and L{(7).
respectively. The ¢ x p edge—vertex incidence matrix of the graph ', denoted by

R=|rill, is defined via

1 if the 3-th edge and the j-th vertex are incident
rip=
0 otherwise .

It is well known [5, 17] that the following relations are oheyed:
R R=DG)+ AlG) (2)

RR =21+ A(L(G)) (3)

where I is the unit matrix of order n, R' is the transpose of R. and D(G) =

diag(dl.c‘i: ..... (5‘;.)
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From Eq. (2) we have that D(G) + A(() is a nonnegative -definite matrix and,
consequently, its eigenvalues are all nonnegative. From Egs. (2) and (3}, and the fact

that the matrices £ R' and R R have the same non-zero eigenvalues [3], we obtain
S(L(G). A) = (A+2)"P det[(A +2) I — (D(G) + A(G))]

where ¢(L((7). A) is the characteristic polynomial of L((7). Therefore, if the eigen-
values of D(G) + A((F) are yiy; < prz < -+ < g, then
» »
D= 8i=2g (4)
i=1 =t

and the eigenvalues of L((7) are
-2 (g—ptimes) : i —2,i=12,..p.
Hence, the energy of L((7) satisfies the following relations:

r »
E(LGY) = 2¢—p)+ 2 |mi =212 2¢ = p)+ (Il = 2)
=1

=1

2 p
= 2(4“?’)"’2(.“:"2) =2q—p)+ > i—2p
=1 .

from which it follows
E(L(G) =2 4(g—-p) ie, E(LG)22qg—-1)+(2q-4p+2). (5)

From inequality (5) it is evident that if 2¢ —4p +2 > 0. 1. e, if ¢ > 2p. then
E(LIG)) > 2q - 1).
Note that ¢ < p(p — 1)/2. Therefore if ¢ > 2p then p > 5. We thus arrived at

the main result of this paper:

Theorem 1. Let p > 5 and let G be a (p.q)-graph. If ¢ 2 2p, then L(G) is

hyperenergetic.

The line graph of the (5,9)-graph, obtained by deleting one edge from K, is
hyperenergetic. On the other hand, there are no (5.8)-graphs whose line graphs are
hyperenergetic. There are uine (6, 11)-graphs, all having hyperenergetic line graphs.

Some examples of graphs having hyperenergetic line graphs are depicted in Fig.



1612} graph i1 2)- graph G (e 1)~ graph & 16.10)- graph &
112.29)-giaph LI67) 412, 78)-graph L(G) (11.34) graph Lii) (10. 24)—graph L(G)
RL{G) =260 PILGH =24 BIL{G) 22 58 E{LIG) =211

(6.91- graph ¢ [5.9)- graph & (8,9) graph 7

(9,18] gaaph L1V} 19.24i-graph LI3) (8,22 graph LIG)

E(L{GN = Lo E(L{F) | = 16,7446 E(L{G)) =69

Fig. 2. Some graphs whose line graphs are hyperenergetic; note that for the first
graph in the second row. F{L(()) = £(Ns) and thus the respective line graph is
not strictly hyperenergetic

For any integer n > 12, there exists an integer p > G, such that 2p < n <

plp = 1)/2. This implies:

Corollary 1.1. By mcans of Theorem 1 it is possible fo construct hyperenergetic

graphs with n vertices for cooryn = 9.

Let ¢ be a (p, g)-graph with ¢ > 2p. Then L((7) is a hyperenergetic (n, m)-graph.

with n,m conforming to Eqs. (1), Using the Cauchy-Schwarz inequality

choosing in it ¥ =p.a; =4, and b, = 1, and bearing in mind Eqs. (1) and (4). we



arrive at
1 ¢ 1 (2¢9)? 4o
m= 5;6?—(12 ij—qz,}q:m.
Since L((7) has more than 2i edges, Theorem 1 can be applied to it, resulting in:
Corollary 1.2. Let p > 5 and let G be a (p,q)-graph. If ¢ = 2p, then L*H(G) is
hyperenergetic.

Continuing the same reasoning we obtain:

Corollary 1.3. Let p > 5 and let G be a (p,q)-graph. If ¢ > 2p, then all iterated

line graphs L{(G)) . i = 2.3.... are hyperencrgetic.

A REFINEMENT FOR BIPARTITE GRAPHS

If (¢ is a bipartite graph, then Theorem I can slightly be improved.
Let (i be a bipartite (p,¢)-graph and let its vertex set be partitioned as V =
11 U V5, so that no two vertices from Vj and no two vertices from V, are adjacent.
Let W be the edge set of (7. Define a p-dimensional vector x = (x.23,....&,) as
1 if the i-th vertex belongs to V)
= { =1 if the i-th vertex belongs to V; .

Note that if v; € V) and v, € V;, then &; + 2; = 0. In particular, if xir; € W,
then .o, + 2; = 0. Therefore,

x'(DIGy+ A(G)x = x'R' Rx=(Rx) (Rx)
Z (J.','+1'J)2=0.

v, €W

Hence. if G is bipartite, then D(G) 4+ A(G) is a singular matrix, that is, at least one
eigenvalue of D(G) + A((7) is equal to zero. Hence, py = 0.
Bearing this fact in mind the inequality for the energy of L((7), deduced in the

previous section, can be somewhat improved:



» p
E(L{(7)) = Aq—p)+ Z i =2 =2(qg-p)+2+ z |4 = 2|
=1

=2

r P
Ag=p)+2+ 3 (sl —2) =g —p+ 1)+ Y (1 = 2)

=2 i=2

IV

i
Ag—p+ )+ pm—2p-1)

i=2

from which it follows
E(LI) =2 {g-p+1) i e, E(LIG) 22— 1)+ 2g—4p+6). (6)

From inequality (6) we see that if 2¢ —4p+6 > 0, 1. e..if ¢ > 2p — 2, then
E(L(G)) > 2(g — 1),

This time ¢ < p?/1and if ¢ > 2p — 2 then p > 7.

Theorem 2. Let p 2 T and let (7 be a bipartite (p.q)-graph. If ¢ > 2(p — 1), then
L(GY is hyperenergelic.

DISCUSSION

The hyperenergetic graphs constructed as line graphs of some suitably chosen
graphs usually possess fewer edges than the previously reported hyperenergetic graphs
[9-13]. For instance, if (7 is a A-vegular (p. 2p)-graph, then L((7) is a G-regnlar (2p. 6p)-
graph, that is, L{) is a hyperenergetic graph, and the number of its edges is only
three times the number of its vertices.

Using a recently reported inequality [19], applicable to any (p, ¢)-graph,

9
Thjf s e
p

we can easily show that if (7 is a (p, 2p)-graph, then F(() < 2p — 1. We conjecture
that there arce no hyperenergetic (p. 2p)-graphs.

Ainteresting problem would be to characterize all graphs with hyperenergetic line
graphs. This may not be easy because there exist (p.¢)-graphs with ¢ < 2p. such

that their line graphs ave hyperenergetic (cf. Fig. 2).
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A related problem is to find the least integer g(p) . such that the line graph of any

(p. q)-graph is hyperenergetic. For example, g(5) = 9 and ¢(6) = 10.

References

[1] I Gutman and Y. Hon, Commun. Math. Comput. Chem. (MATCH), preceding
paper.

[2] 1. Gutman. Ber. Math.-Siatist. Sekt. Forschungszentrum Gra:z 103 (1978) 1.

(3] I. Gutman and O. I.. Polansky, Mathematical Concepis in Organic Chenvistry.
Springer-Verlag, Berlin, 1986.

[4] I. Gutman. in: A. Betten, A. Kohnert, R. Laue and A. Wassermann (Eds.),
Algebraic Combinatorics and Applications, Springer -Verlag, Berlin. 2001. pp.
000-000 (in press).

{5] D. Cvetkovié, M. Doob and H. Sachs. Spectra of Graphs - Theory and Applica-
tion, Academic Press. New York, 1980.

[6] 1. Gutman, Topies Curr. Chem. 162 (1992) 29.
[7] €. D. Godsil, private communication (1983).
[8] D. Cvetkovi¢ and 1. Gutman. J. Comput. Chem. 7 (1986) 640.

[9] 1I. B. Walikar, H. S. Ramane and P. R. Hampiholi, in: R. Balakrishnan, 1. M.
Mulder and A. Vijayakumar (Eds.). Graph Connections, Allied Publishers. New
Delhi, 1999, pp. 120-123.

[10] L Gutman. J. Serb. Chem. Soc. 64 (1999) 199,

[11] L. Gutman and L. Pavlovi¢, Bull Acad. Serbe Sei. Arts (Cl. Math. Natur.) 118
(1999) 35.

[12] T. Gutman, T. Soldatovié¢ and D. Vidovié, Chem. Phys. Leti. 297 (1998) 128.

[13] J. H. Koolen. V. Moulton, I. Gutman and D. Vidovié, J. Serb. Chem. Soc. 65
(2000) 571.

[14] R. B. King, Application of Graph Theory and Topology in Inorganic, Cluster and
Coordination Chemistry, CRC Press, Boca Raton, 1993.

(13] R. B. King and D. H. Rouvray, J. Am. Chem. Soc. 99 (1977) 7834.



[16] B. J. McClelland, J. Chem. Phys. 54 (1971) 640.
[17] Y. Harary, Graph Throry, Addison-Wesley, Reading, 1969.

(18] 1. Gutman. L. Popovi¢, E. Estrada and S. H. Bertz. ACH Models Chem. 135
(1998) 147.

[19] J. H. Koolen. V. Moulton and 1. Gutman, Chem. Phys. Lett. 320 (2000) 213.



