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Abstract

If Ay, Aaeenes A, are the eigenvalues of a graph G, then the energy of this graphs
is defined as E(G) = |\ |+ [Az] + -+ +|A.]. For n > 7. let P? be the graph obtained
by joining a pendant vertex of the path P,_g with a vertex of the circuit C's. Let
Uy(n) be the set of all bipartite unicyclic graphs on n vertices. We show that for all
valnes of n . n > 7.0l (7 € Up(r) \ {C} then E(G) < E(Pf). In addition to this.
we claim that for all n > 12, the energy of P? exceeds also the energy of (', , but we
can support this inequality only by numerical calculations. Hence, PS is the unicyclic
bipartite graph with greatest energy.

INTRODUCTION. PART 1

An important quantum-chemical characteristic of a conjugated molecule is its
total m-electron energy. Within the Hiickel molecular-orbital (HMO) theory this
quantity is computed as

E.=an, + ;‘]Zm i

=1



where a and 3 are the standacd HMO paraineters. n, is the number of 7-electrons.

¢; is the occupation number of the i-th molecular orbital. whereas A; . 7

are the eigenvalues of the respective molecular graph: for details see [1-3]. For non-
charged conjugated systems in their ground electronic state the non-trivial part of

the above expression is of the form

52
23X if n is even
=i
E= 1
tn=1)f2 o ()
2 2 At A if nis odd
=

where it is assumed that A, > A; > --- > A, . For the vast majority of conjugated

molecules Eq. (1) can be transformed into

E:E(@):im. (2)
=1

A CHEMICAL INTERLUDE

The total m-electron energy is one of the chemically most useful quantities that
can be obtained from the HMO theory. In the absence of large steric strain in the
carbon-atom skeleton (e. g., absence of three-membered rings), by means of E,
one can calculate remarkably accurate values for the thermodynamic functions of
conjugated hydrocarbons. This especially applies to enthalpies (heats of atomization.
heats of formation, heats of combustion, heats of hydrogenation). The success of
E. in reproducing the thermochemical constants of conjugated molecules is based
on the noteworthy fact. first demonstrated by Schaad and Hess [4]. that not only
the 7, but also the o-electron energy of the carbon—carbon bonds is proportional to
L. In particular, the heat of atomization of a polycyclic (non-strained) conjugated
hydrocarbon with nep carbon-hydrogen and nge carbon-carbon bonds is calenlated
by means of

AH, = —[ney Ecn + nee Ege + 3 E)

with Eey = 41109 4] /mol | B¢ = —325.18kJ/mol and 3 = —137.00 &J[mol .

For more details see pp. 151-154 in the book [3] and the references cited therein,
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In the case of henzenoid hydrocarbons, the enthalpies calculated by using HMO
total x-clectron energy turned out to be significantly closer to the experimental valnes
than the results of the highly parameterized semiempirical molecular-mechanics and
molecular-orbital (MNDO) models; for details see [6].

At this point it is worth noting that the HMO total -electron energy was shown
to be related to the total SCF energy [7], in particular to the kinetic energy in the
Hartree -Fock MO approach [8].

Numerous “resonance ¢nergies™ and other related quantities, aimed at measuring
the aromaticity of polyeyvclic conjugated molecules, are based on the total 7-electron
energy, especially on the MO total m-electron energy. Eq. (1). These are always
obtained by subtracting from E a term E™/ | interpreted as the total m-electron
encrgy of some “reference structure™; 7/ is often chosen to be an additive function
of carbon-carbon bond contributions. Conjugated systems for which £ — E™/ > 0
are classified as “aromatic”. those for which E — E7/ < 0 as “antiaromatic”, whereas
those for which £ — "/ x~ 0 as “non-aromatic™. The most important (i. e., the
most frequently applied) resonance energies are those of Hiickel (often referred to as
“elassical™) [9]. Dewar [10. 11], Hess and Schaad [12], Jiang, Tang and Hoffmann
[13]. as well as the “topological” resonance energy of Aihara [14] and Gutman et al.
[15. 16]. Scores of papers exist in the chemical literature on various applications of
resonance cnergies; for details and further references see pp. 151-154 of the book [5];

for most recent works along these lines see [17].

INTRODUCTION. PART 2

The right-hand side of Eq. (2) is used as the definition of the so-called energy of
the graph (i. Needless to say that it can be applied to all graphs, irrespective whether
they represent conjugated molecules or not. For details on the graph-energy concept
and a survey of its mathematical theory see [5. 18, 19].

In what follows we nse usual graph-theoretic notation and terminology. The degree
of a vertex is the number of its first neighbors. A vertex of degree one is said to he

pendani. A vertex of degree zero is said to be isolated. The path P, is the n-vertex



tree (= connected and acyclic graph) possessing exactly two pendant vertices, The
cireuit (7, is the connected n-vertex graph in which all vertices are of degree two. The
graph obtained by joining a pendant vertex of P,_¢ with a vertex of (s is denoted by
PE.

A graph is bipartite if it does not contain, as subgraph. odd-membered circuits.
A graph is unicyclic if it contains, as subgraph, exactly one circuit,

Bipartite unicyclic graphs are thus graphs containing exactly one cireuit, which
must be of even size. Such graphs need not be connected. The set of all n-vertex
unicyclic graphs is denoted by Uy(n). This set is non-empty for any n > 4. Recall
that ¢, € Uy(n) if, and only if, 7 is even (and, of course, if » > 4). Obviously.

P8 e Up(n) for every n = 7.

* ok ok % =

The fact that P, has the greatest energy among all n-vertex trees was established
long time ago [20]. The analogous problem for unicyclic graphs was recently con-
sidered by Caporossi et al. [21], who used a computer—aided search method. They

formulated the following:

Conjecture [21]. Among unicyclic graphs on n vertices, C', has maximal energy if
n <7 and n=910,11,13 and 15. For all other valucs of n, the unieyclic graph

PTIrE v . 36
with maximal energy 1s 77 .

In this paper we provide a partial proof of Caporossi’s conjecture. We namely

demonstrate the validity of:

Theorem 1a. For all values of n . n > 7, among bipartite unicyclic graphs on n

vertices, different from the cirenit C, , the graph with mazimal energy is P°.
Another, more formal but equivalent, way of stating the same result is:

Theorem 1b. For all values of n , n 2 7, if G € Un)\ {C,}, then E(G) <
E(P}).
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In order to prove Theorem | we need some preparations.

AN APPLICATION OF THE COULSON INTEGRAL FORMULA

One of the oldest theoretical results on HMO total m-electron energy (and, mutatis
mutandis, on the energy of a graph) is the Coulson integral formula [22] (see also in

[5. 18, 19]):

+re - ;
i 1 _ rd'(GLir)| .
E(G) = Tﬁ[_‘ [n —-———é((;.”) dx (3)

where o((J. A} stands [or the characteristic polynomial of the (molecular) graph

andl i = /1. If we write the characteristic polynomial as

B(GN) = 37 au(G) (1)

k=0

then Eq. (3) can be rewritten as (18, 20]

+x 2 2
Fd. —
E(G) = )L j %ln z:(—l)'F ap(Gre® | + Z(~])k agp41(G) 2% H .
o g >0 k>0
(5)
Bipartite graphs have the properties ase () = 0 and (—1)F ag(G) > 0, and
these relations hold for all values of & , & = 0.1,2,... [5, 23]. Therefore, if (¢ is a
bipartite graph. then instead of Eq. (1) we have
[n/2]
SGA) = 3 (1) b(GL k) A (6)
k=0
whereas Eq. (5) is simplified as:
0
_— 1 dr Bk -
BG == [ S (kzmb(c,,m ) (7)
where, for convenicnce. (—1)* @ (G) is denoted by b€, k). Recall that all the para-
meters b( (7, k) are either positive-valued or are equal to zero. In particular, b((/,0) =
1 and b((, 1) is the number of edges of G. If (7 is acyclic, then B(G. k) = m(G, k)
where m(€, k) is the number of k-matchings of 7'; for details see [5, 23].

Our starting point is the observation [20]. immediately seen from formula (7).

that in the case of hipartite graphs E((7) is a monotonically increasing function of
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the parameters B(G k) . bk =1.2,.... [n/2]. Consequently, if Gy and (7, are bipartite
graphs for which

by k) < b(Ga k) (3)
holds for all ¥ > 0, then

E(G)) < E(G,) . (9)
Equality in (9) is attained only if relation (8) is an equality for all & > 0.

If relations (8) hold for all k, then we write (&} < Gy If relation (8) holds for

some k., but not for all &, then we write (; £ (2. Using this notation. we re-state

the above conclusion as:

Lemma 1. Let Gy and Gy be bipartite graphs (not necessurily with equal number of
vertices). Then Gy < Gy implies E(Gh) < E(G,) .

PROOF OF THEOREM 1

Instead of Theorem 1 we prove a somewhat stronger statement, namely:
Theorem 2. For all values of n . n 27, if Gely(n)\{C,}. then G < PS.

By means of Lemma 1. Theorem 1 is an immediate consequence of Theorem 2.
In our proof we use the following well known [5, 23] or previously proven [20, 24, 23]

resnlts:

Lemma 2. Let (+ be a graph possessing a pendant verter v. Let u be the (unique)
first neighbor of v. Then ¢(GLA) = AG — v, A) = (G —u—v, ). IfG is bipartite,
then in view of Eq. (6).

BG. E) =BG —v, k) +bG—u—v, k—1). (10)

Lemma 3. Let (i be a graph possessing an isolated vertexr v. Then ¢(GLA) =
Ao(G = e N). If G is bipartite, then in view of Eq. (6),

(G, k) = b(G —v. k). (11)
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Lemma 4. For any subgraph 11 of a graph ¢ and for all k > 1,

m(H. k) <m(Gk) . (12)

Lemma 5 [20]. If (i 1s an n-veriex acyelic graph {either connected or disconnected).
then
m{G k) <m(P,, k). (13)

Lemma 6. [24, 25]. [f (i € Uy(n) and if the (unigue) civeuil Z of (i is of the size
2 . then

WG k) =m(G k) = (=1 2m(G— Z k=) . (14)

Proof of Theorem 2. We use induction on the number n of vertices, starting with
S

First, the validity of the statement

GEH&(R)\{(',,}ﬁG%Pf (15)

5

needs to be checked for # = 7 and n = 8. This is done directly, by computing the
characteristic polynomials of all members of Uy(7) and U, (8) . except of (s, and by
checking that the relations

bG k) S WP k) (16)
are always obeved.

UAy(7) has 20 elements, 10 connected and 10 disconnected. Uy(8) has 5841 ele-
ments, 32+1 connected and 26 disconnected. The respective b((7. k)-values are easily
obtained by means of a suitable computation technique [26, 27].

Suppose now that » > 9 and that the statement (15) holds for n = r — 2 and
n =17 — 1. We have to demonstrate that then (15) holds also for n = r.

For 1 > 9, application of (10) to the (unique) pendent vertex of P% yields

BPP. ky=bPP, k) +b(P*, . k—1). (17)



For any r > 8, all elements of 2s(r)\ {C',} contain either a pendant or an isolated

vertex.

Case 1: G € Uy(r) \ {C'.} contains a pendant vertex.
Let this pendant vertex v be adjacent to the vertex . Then Eq. (10) is satisfied.

Because ¢ — v € Uy(r — 1)\ {C.}, by the induction hypothesis,
G —v, k) SHPE,, k) (18)

holds for all values of k.
The subgraph (- — u — v has r — 2 vertices. It is either unicyelic or acyelic. If

(; — u — v is unicyclie then by the induction hypothesis,
b —u—v, k=1) <bP, k—1) (19)

holds for all values of k. Bearing in mind the inequalities (18) and (19). from Eqs.
(10) and (19) follows that the relations (16) are satisfied for n = r and for all &, 1. e..
that G < P%.

If ¢ — u = v is acyclic. then

BG—u—v, k—1) = m(G-u—v,k=1) (20)
< m(Fez, k=1) (21)
< m(Pf,, k=1) (22)
< BP, k—1). (23)

Relation (20) holds because G — u ~ v is acyclic; inequality (21) holds because of Eq.
(13); inequality (22) is a special case of Eq. (12), since P,_5 is a subgraph of Pf_,;
inequality (23) holds because of Eq. (14), where £ = 3. In summary, the inequality
(19) holds for all values of &, and therefore (¢ < P?, also if G — u — v is acyclic.

This completes the proof of Theorem 2 in the Case 1.

Case 2: (G € Up(r) \ {C'.} contains an isolated vertex.
If this vertex is v, then Eq. (11) is applicable. By the induction hypothesis,
WG — e k) < B(PS, . k). which, in view of Eq. (17), immediately implies (16) for

n = 1. Therefore G < P,



Because ("ases | and 2 cover all elements of Ui (r) . except (if » is even) the cirenit

(', . the prool of Theorem 2 is completed.

Corollary 1.1. {fn is odd. then for n > 7 the elemenl of Uy(n) with mazimal energy

Pt
is ).

Corollary 1.2. Ifn is coen, then forn > 8 the element of Uy (1) with marimal encrgy

is €ither PS or O, .

BEYOND THEOREM 1

For n > 8. €, £ P% and therefore £(P%) and E((',) cannol be compared by

means of Lemima 1. To sec this note that the identity
S(Ca:A) = 6(P) 3 A) + 8(Cone i A) + (N = A) $(Pacr s X) (24)

lLolds for n > 9. Because expressions for the coefficients of the characteristic polvno-
mials of circuits and paths are well known [5, 23], from (24) we directly obtain that
for even n:

by(Ca . 2) = by (PE,2) +1

implying 6(C, . 2) > b(P2. 2). and
{Cn.nf2—1)=bP . nf2-1)— ;(u —-6)(n —8)

implying (C . 2f2 = 1) < b(PE, nf2 —1) for n > 10.

Thus €', A P9 for n = 10,12,14,... . To sce that the same holds for n = 8 note
that (s, 2) = 20 . b(PF, 2) = 19 whereas b(Cis, 4) = 0 . b(PS, 4) =4,

Numerical calculations clearly indicate that for even n ., n > 12 the energy of

P8 is greater than the cnergy of €. This is inferred by the following data, where
A, = E{P8) - E(C,).



n A, n N

8 | 0.7671 10 | —0.0122
12 0.3308 14| 0.0177
16| 0.4225 18| 0.0375
20 [ 0.3597 22| 0.0510
24 ( 0.3184 26| 0.0607
28| 0.2892 30| 0.0630
32 [ 0.2675 34| 0.0736
36 | 0.2506 381 0.0781
40| 0.2372 42| 0.0818

We see that the numbers Ay . & = 2,3,4,... monotonically decrease, whereas

Az - B =12,3,4,... monotonically increase. It is plausible to expect that
Jim S = Jim Aue

which would then imply A, > 0 for all even n , n > 12. A rigorous mathematical
proof of this assertion remains a task for the future,
Anyway, we deem that the above numerical evidence is sufficiently convincing to

allow the formulation of the following improvement of Corollary 1.2:

Assertion 1.3. If n is cven, then for n > 12 the element of Uy(n) with marimal

energy is PE.

For non-bipartite unicyclic graphs the entire consideration of this paper is not
applicable. For such graphs some odd coefficients, az¢41, of the characteristic poly-
nomial, Eq. (4), are non-zero. Therefore, the characteristic polynomial cannot he
written in the form (G) and formula (5) cannot be reduced to (7). Consequently,
Lemuna 1 is not usable.

The quest for the maximal-energy non-bipartite unicyclic (as well as polycyclic)
graphs would require some novel mathematical methods. These, however, still await

to be discovered.



e DT =

References

[1] A. Graovac, L Gutman and N. Trinajstic, Topological Approach to the Chemistry
of Conjugaled Moleeules, Springer Verlag, Berlin, 1977,

[2] €. A, Coulson, B. O'Leary and R. B. Mallion. Hickel Theory for Organic

Chemists. Academic Press, London, 1978,

[3] J. R. Dias. Molecular Orbital Calewlations Using Chemical Graph Theory,
Springer-Verlag, Berlin, 1993.

[1] L. J. Schaad and B. A. Hess, J. Am. Chem. Soc. 94 (1972) 3063.

[5] 1. Guiman and O. E. Polansky, Mathematical Concepts in Organic Chemistry.

Springer-Verlag, Berlin, 1986,
[6] L. Gutinan. Topics Carr. Chem. 162 (1992) 29,
[7] L. J. Schaad, B. H. Robinson and B. A. Hess, J. Chem. Phys. 67 (1977) 4616.
[8] H. Ichikawa and Y. Ebisava. J. Am. Chem. Soe. 107 (1985) 1161.

[9] E.Miickel, Grundziige der Theorie ungesitiigler und aromatischer Verbindungen.,
Verlag Chemie, Berlin, 1940.

[10] M. 1. S. Dewar and (. de Llano, J. Am. Chem. Soc. 91 (1969) 789.
[11] M. Milun. Z. Sobotka and N. Trinajstié, J. Org. Chem. 87 (1972) 139.
[12] B. A. Hess and L. J. Schaad. J. Am. Chem. Soc. 93 (1971) 305.

[13] Y. Jiang, A. Tang and R. Hoffmann, Theor. Chim. Acta 65 (1984) 255.
[14] J. Aihara, J. Am. Chem. Soc. 98 (1976) 2750.

[15] 1. Gutman, M. Milun and N. Trinajsti¢, Commun. Math. Chem. (MATCH) 1
(1975) 171.

[16] T. Gutman, M. Milun and N. Trinajstic, J. Am. Chem. Soc. 99 (1977) 1692.

[17] M. U. Frederiksen, R. F. Langler, k. J. Watson, A. Penwell and K. V. Darvesh,
Austral. J. Chem. 53 (2000) 143.

[18] 1. Gutman, Ber. Math.-Statist. Sekl. Forschungszenirum Graz 103 (1978) 1.



|- -

[19] . Gutman. in: A. Betten, A. Kohnert, R. Lauve and A. Wassermann (Eds.),
Algebraic Combmatorics and Applications, Springer—Verlag, Berlin, 2001. pp.
000-000 (in press).

[20] L Gutman. Theor. Chim. Acta 45 (1977) 79.

[21] G. Caporossi, D. C'vetkovi¢, I. Gutman and P. Hansen, .J. Chem. Inf. Comput.
Sci. 39 (1999) 984,

[22] €. A. Coulson. Proc. Clambridge Phil. Soc. 36 (1940) 201.

[23] D. Cvetkovié, M. Doob and H. Sachs, Spectra of Graphs — Theory and Applica-
tion, Academic Press, New York, 1980.

[24] H. Hosoya. Theor. Chim. Acta 25 (1972) 215.
[25] 1. Gutman and Q. E. Polansky, Theor. Chim. Acta 60 (1981) 203.
[26] K. Balasubramanian. Theor. Chim. Acta 65 (1984) 49.

[27] T. P. Zivkovié, J. Comput. Chem. 11 (1990) 217.



