communications in mathematical

B:O, no. 43, March 2001

and in computer chemistry

ISSN 0340-6253 MATCDY (43) 111-130 (2001)

Yet Another Generalization of Polya’s Theorem:
Enumerating Equivalence Classes of Objects with a

Prescribed Monoid of Endomorphisms

Vladimir Raphael Rosenfeld

Department of Chemistry, Technion—TIsrael Institute of Technology, Haifa, 32000, Israel

E-mail: chr09vr@techunix.technion.ac.il

Abstract

Let a monoid A of endomorphisms with the identity e act on a nonempty finite set X
(1X] = n). A submonoid S C A induces the set S\\X = {X;(S5), X2(S),..., Xi(8)}
(1 <1< n)oforbitson X; Ul X; = X and X; N X; = B ifi # j. Let further the
coloration function ¢(z) (z € X; ¢(z) € K = {1,2,...,k}) take on a constant (color)
on each orbit X; (1 <7 < 1): ¢(z) = d(y) Y,y (2,y € Xi). Two coloration functions,
or colorations, ¢ and ¢ are A-equivalent iff there exist elements a,b € A, such that
¢1(ax) = ¢go(bz) Yz (z € X); otherwise, they are A-nonequivalent.

The following problem is resolved: Given a submonoid § C A of endomorphisms of
X and the set K of colors, enumerate A-equivalence classes of S-invariant colorations ¢
of X by content.

The results obtained are new extensions of Pélya's counting theorem and presented in
terms of the generalized cycle indicators.

Some illustrative examples and open problems are also proposed.
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1 Preliminaries

Polya’s theorem (1, 2] and diverse refinements thereof [2—12] play an outstanding role
in combinatorics and its applications. In particular, counting objects with a prescribed auto-
morphism group is of paramount significance in chemistry and physics, where there exists the
necessity to enumerate the so-called substitutional isomers of molecules (see [7-13]) and large
unit cells of crystallographic lattices with color symmetry [7].

Herein, we shall expound for the first time some original results that allow us to count
equivalence classes of objects, by weight, with a prescribed monoid of endomorphisms. This
novel line of investigation is based on our normalizer approach [8] (see also [9, 10]) that was
initially applied to enumeration of objects with a prescribed automorphism group.

Let a monoid A of endomorphisms with the identity e act on 2 nonempty finite set X; |.X| =
n. A submonoid S ({e} € S C A) induces the set S\\X = {X,(5), X2(5),..., Xi(S)}
(1 < I < n) of its orbits on X (or S-orbits, for short). An orbit X; = Xi(S) (1 < i <)
is a minimal S-closed subset, of X, such that¥h € S, Vz € X; and Vy € X \ X, we have
hx € X, and hy € X \ X,. Consider the set &, of all mappings K* from X into the set
K = {1,2,...,k} of colors; |®x| = k™. Two coloration functions (or colorations, for short)
¢y and ¢y (P, 02 € Dy) are called A-equivalent iff there exist elements @ and b (a,b € 4)
such that ¢ (ax) = ¢,(bz) Vr (x € X); otherwise, they are A-nonequivalent. The colorations
¢ are called (nonstrictly-)S-invariant (S C A) if these also include (all) T-invariant (S ¢ T)
colorations and strictly-S-invariant if they exclude any T-invariant colorations.

Our major objective is to construct the generalized cycle indicators (see [7—11]) enumerating
both types of colorations by weight. Under this, the simplest problem of the two is counting the
nonstrictly-S-invariant mappings from ®; enumeration of the strictly-S-invariant colorations
is possible only through the exclusion/inclusion argument (see [8—11]). However, the last kind
of manipulation is quite a routine procedure [8—11] dealing with the so-called Mdbius function
(L) of the (sub-)lattice L of special (closed) subalgebras S of A (see below); therefore, we
shall chiefly focus our attention on solving the first problem.

Our approach is based on the previously obtained results for A being an automorphism
group G = AutX of X [7-9] and the key feature of this is employing remarkable combinatorial
properties of the normalizer Ng(H) of an automorphic subgroup A ({€} € A C ) in the

group G of automorphisms of X. A subgroup H above is synonymously called by Rota and
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Smith closed and periodic [5), or automorphic [8, 9], iff for any subgroup H' C G satisfying the
equality H'\\X = A\\X it follows that H' C f; thus, [H"\\X| < [I\\X| if # ¢ H" C G.
In other words, H is the maximum among all subgroups inducing one and the same set of orbits
(H\\X) and contains all these equiorbital subgroups, if there exist more than one. By this
reason, H is also termed the closure of all its equiorbital subgroups H with respect to their
common orbits A\\ X on X.

We shall rigorously prove (group- and semigroup-theoretically) that the normalizer Ne(H)
of a closed subgroup A ({e} = E C H C G) is the maximum subgroup, in G, that (either
fixes or) permutes intact H-orbits in H\\X = H\\X. This same result had been known long
before, as folkloristic or even empirical, in theoretical papers by crystallographers, where it
was used without any demonstration. Amazingly, the mentioned properties of the normalizer
NG(H ) of a closed subgroup H had been overlooked by the purely mathematical community.
However, namely, the great German mathematician Hermann Weyl was the first who began
studying the so-called "hidden symmetry™” (see [11], p. 50) which can be attributed to the action
of the factor group Ng(H)/H on the set H\\.X of intact H-orbits exhibiting the "obvious
symmetry”. Physicists even give the name Wey!'s Recipe for his recommendation to consider
both obvious and hidden symmetries of objects. The present author independently came to
studying the latter type of symmetry in [7], wherein that was profitably used in enumerating the
large unit cells of crystals.

As the next step, our exposition will be extended to the normalizer Ny (S) of a closed
submonoid § in the monoid M of endomorphisms of X (for more details, see §3). By analogy,
a submonoid § (E C S C M), of M, is called closed iff for any submonoid S’ satisfying
the equality S'\\\X = S\\X it follows that S € 5. Another necessary result immediately
follows from the theory of semigroups [14, 15): the factor monoid N/S by submonoid S,
where N = Ny (S) and S is (not necessarily) closed, is homomorphic to the maximum group
P that can be a homomorphic image of N.

In what follows, this group P plays a very important role because it may be displayed as
a group of permutations acting on a set $\\ X of intact orbits of a closed submonoid § C M.
It resembles the above when we dealt with Ng(H) (the action of the factor group No(H)/H
on I:I\\X will also be considered later on); however, what is now absolutely novel is that P

may thus also permute S-orbits that are not equipotent, as blocks within P-orbits on $\\X.
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Here, the reader may well take the set I = {1,2,...,[} (1 € { < n) of S-orbit indices
instead of S\\.X itself; this will not violate our approach. To enumerate nonstrictly-S-invariant
colorations, one can construct the generalized cycle indicator Q(S; S\\X; 21, 22, ..., 24) (in
notation) for a closed submonoid § operating on the set S\\X = S\\X of intact S-orbits on
X, which is, in fact, defined as the usual Polya’s cycle indicator Z(P; I; 21, 22, - - -, 2n) (see
[1-12]) for a group of permutations P acting on the set / of S-orbit indices.

We have drawn on the key features of our exposition below. The latter will also include
some illustrative examples and open problems that may stimulate the further development of

the subject.

2 When A is the group G = Aut X of automorphisms

2.1 Combinatorial properties of certain normalizers

Let X be a finite set on which a finite group G is acting from the left:
Gx X X:(g,2) gz,

such that

g(g'z) = (gg")randlz =z (Vz € X and¥g,¢' € G) .

If H is a subgroup of G, then it also induces an action on this set X, we simply need to

restrict attention to the subgroup. It forms orbits
H(z):={hx|he H},
and we denote the set of all these orbits by
H\\X := {H(z) |z € X}.

There may be other subgroups with this same set of orbits, and it is not difficult to check that

there is the maximum element in this set of subgroups; let us denote it by

H:={geG|glw)=w, Ywe H\\X}.
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Now we remark that for every g € G we obtain, for any orbit of H,
gH(z) = H%gx), if HY := gHg™'.

We shall apply this to the maximal subgroup H introduced above, which we shall call (following

Rota and Smith [5]) closed, or periodic (it was also called by us automorphic in [8, 9]).

Theorem 1. Let H be a subgroup of G. Then the normalizer N (H) is the maximum subgroup,

in G, the elements of which permute the intact orbits of H on X.

Proof. Clearly,¥g € G andVz € X gH(z) = HQ(gz), where the L.H.S. corresponds to the
action of g on an orbit A(z) while the R.H.S. does to a derivative orbit H 9(x') generated by
a subgroup H¢ C G from an element o' = gz € X, Note also that an element g~! uniquely
transfers the image orbit H%(z') back into its preimage H(z). Thus, the above action of an
element g simultaneously performed on all H-orbits, on X, induces a one-valued invertible
mapping from the set A\\X of all H-orbits into the set H7\\ X of A%orbits. Obviously,
under this mapping, A\\X = H?\\ X and we thus obtain a permutation, or automorphism, of
A\\X (when the action of g either fixes or permutes intact H-orbits). Since H is closed and
|H9| = |H| (i. e., H could not be any equiorbital subgroup of H), H\\X = H\\X iff /19 =
H, by definition. Clearly, the subset of all elements g, in G, for which H = gHg"‘ =H,is
Ng(H) and we at once arrive at the proof. =]
Theorem 1 can also be derived within the framework of the theory of semigroups [14, 15],
as a corollary for groups (see below). To the best of our knowledge, in the English-language
literature, this statement was employed for the first time in our paper [8] (which extended a text
in Russian [7]).
Fueled with Theorem 1, one can consider the combinatorial action of N (H) on H\\ X =

H\\X in the same methodological manner as the action of G on X.

2.2 The cycle indicators for a closed subgroup H

This subsection will chiefly cite the results of [8] or their improved versions proposed by
Kerber [10].
Let G = AutX be the automorphism (or permutation) group acting on a nonempty finite set

X of objects, as above. As was shown by Polya, G-equivalence classes of objects, or G-orbits,
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can be enumerated by weight, by means of the special polynomial Z(G; X 2y, 23, . . ., 2,) called
the eycle indicator (or index) (1, 2] (see also [3-12]). It may be written down as follows:
Z(G;X) = Z(G; X 21,2, ., 20) = ﬁ oL e, (1
9€G |G|
where |G| is the cardinality of a group G; z;’s are weight-indeterminates used for convenience
of notation; a;(< g >) is the number of orbits of length ¢ induced by the cyclic group < g >
generated by an element g € G; the sum runs over all elements of G and the product is taken
over all divisors ¢ of |G|.
We should mention that here we changed the standard notation «;(g) to a new, equivalent,
notation o, (< g >) not in vain but because we shall violate the old tradition to use for enumer-

ation purposes just cyclic (1-generator) subgroups, using subgroups < gH > generated by the

complete coset gH of Ng(H).
Let a weight-indeterminate w, (1 < £ < k) stand for the #-th color above. The following

statement is a version of Polya’s counting theorem [1-12], viz.:

Theorem 2. The number of G-equivalence classes of K-colorations of X with a given assort-

ment of K -colors equals the corresponding coefficient of the polynomial
Z(G; Xywiywa, ) = ZIGi X521, 2,0 2n) Loy e i e @

Here, we can turn from coloring individual elements of X to coloring intact H-orbits (i.e.,
elements of H\\X). The following statement is an elementary common corollary of Theorem

1 and Theorem 2:

Lemma 3. The number of G-equivalence classes of K-colorations of H\\ X with a given as-

sortment of K -colors equals the corresponding coefficient of the polynomial

Z(Ng(H); H\\X;wy,ws, .. ., wy) = o Z H zf"((g})

ING() yegiany aimain w=Sub Gla).
3)

Proof. The result follows by applying the cycle index definition to the set H\\ X and nor-
malizer Ne(H) considered as its automorphism group Aut(H\\X) in Theorem 1. Under this,
substituting N (H) and H\\ X, respectively, for G and X in Theorem 2 immediately gives the

proof. u]
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By virtue of Theorem 2, the maximum orbit length (cardinality) that may be realized in
the set Ng(H)\\(H\\X) is 5 = |NG(H)|/|H|. Also, we mention that H lies in the kernel
of the action of Ng(H) on H\\X; by this reason, we can replace Ng(H) with Ne(H)/H

and, therefore, restrict the summation over the complete normalizer Ng(H) to that over the left

cosets gH of H in Ng(H). As a result, we can obtain the following

Lemma 4. Let Z(Ng(H); H\\X) be the above cycle indicator. Then
Z(NG(H); H\\X; 21, 2 ) = 13 Z !HI\—\IXIZ&KM» e lznzu‘(q»
;(H); P22 ) = e i s L) & )

)

where J (|J| = s) is an arbitrary fixed transversal of the left cosets gH(1<j<s) ofH

in Ng(H) ({g_.,!;'}jzl = Ng(H)/H; No(H) = JH); < gH > is the subgroup generated by

all elements of a left coset gH (g € J); the first summation goes over all the left cosets of Hin

Ng(H); the first product is taken over all divisors of |H\\ X |; the second summation goes over

all the transversal J; and the last product is taken over all divisors of s.

Proof. By virtue of Theorem 1, < g;H > induces the same dissection of H\\X into orbits
as does any cyclic subgroup < g > (g € g_,-!;';g, € J;1 £ j < s). However, (4) uses every
elementof g; HH (1 < j < s) which is tantamount to | H|-fold using of each element g (g € J),
hence we have

I Ly Al ol
o 2= O gt B, b= 03 )

9ENG(H) gHENG(H)/H g€d

which completes the proof. o

It is worth noting that the transversal J above may be just a subset (or complex, in group-
theoretical terms) of Ng(H), with or without the unity e, not necessarily a subgroup; further-
more, in general, there may exist no subgroup H' & Ng(H)/H in Ng(H), at all.

Let us return to the base set X now. Reconsidered as the corresponding subset of X, each
orbit of the orbit set < gH > \\(H\\X) is the union of an integer number of complete orbits
from the orbit set H\\X. Also, in the case of the groups we consider, all orbits of the latter
set comprising one orbit of the former set have one and the same cardinality; however, the last
circumstance, which may be helpful here, nevertheless, is not essential to what follows below
for other algebras that may disregard such a condition. Somehow or other, one can derive from

the above statements the following
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Lemma 5. Let H (E C H C G) be a subgroup of G. The number of G-equivalence classes of
nonstrictly-H-invariant K -colorations ¢ € ®, of X, with a given assortment of colors equals

the corresponding coefficient of the generalized cycle indicator

QH; X;wy, way...,wy) = Q(H; X329, 20,...,2n)

w=yk o w  (1<i<n) o (5)
where

, 1 apal<ll
QUHE; X; 2,2, vz) = 23 [ o™ ©)

9EJ plsiql|H|
Proof. By virtue of Theorem 1, each orbit of cardinality r induced by Ng(H) on X is com-
posed of ¢ complete H-orbits of cardinality p, on X, (p- ¢ = r); therefore the second side of
(6), dealing with the base set .X, is nothing but specification of the third side of (4), dealing with
H\\.X. Indeed, substituting z, for z,, (p | s;¢ | |H|) on the R.H.S. of (5), conversely, yields
an expression equivalent to the third side of (4). u]

The following statement may be proposed as a generalization of Pélya’s theorem:

Theorem 6. The number of G-equivalence classes of H-invariant K-colorations of X with a

given assortment of K-colors equals the corresponding coefficient of the polynomial

o _ {1 a,(<gH>)
Q(H,A,wl,wz,...,wn)[sz IT = ™
a=g

&4 4l|Na (1) Liwl o (1sign)

where
%Z [ &) =0 Xsm.i%) ®
9€J ||Ne (H)|
Proof. Substituting 7 for every p - ¢ = i in (6) and doing a novel, universal condition p - ¢ |
|Ng(H)| for previous p | s and g | | H|, in (6), we at once arrive at the proof. O
Evidently, setting H = E (|E| = 1) in (7) gives the famous Pdlya’s counting theorem as
an immediate corollary of Theorem 6.
Obviously, for treating all possible K -colorations of X' we need to have all closed subgroups
H C G only. Besides, since all conjugated subgroups have the same cycle index (, as well as
Z, we may, undoubtedly, confine ourselves, in any specific case, by considering just a certain,

fixed transversal 7 of conjugacy classes of closed subgroups.
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The cycle indicators R(H;X')’s that correspond to the strictly-H-invariant K -colorations
can be calculated through all needed indicators Q(H; X)’s, using the exclusion/inclusion argu-
ment and combinatorial incidency functions (- and p-, or Mdbius, functions). Directly solving
the corresponding system of simultaneous linear equations for all R(H; X)’s, as its roots, is

possible as well (see a case in point below).

2.3 Anillustrative example

Let us consider colorations of the necklace B with six beads (or the so-called substitutional
isomers of a benzene molecule) with a given assortment of bead colors (resp. chemical sub-
stituents) [8, 9]. According to the crystallographic notation G = AutB = Dg, where D is a
dihedral group (|Ds| = 12). A transversal of closed (automorphic) subgroups of G = Ds
is T={C; = E, Cy,C}, C}, Dy, Dy, Dg} (see below). Neither Cy nor Cy is closed since
Cs\\B = D;\\B and Cs\\ B = Dg\\ B where the necklace B is displayed as the base set X
above and may simply be represented as the set {1,2, 3,4, 5, 6} of naturals, due to its six beads.

We may describe all necessary subgroups of G by means of the following permutations:

o= (1236, o _(n2sas6 ) (123456 ). _ (123456 ).
: 123456 ) ** 456123 | ** 165432 |1 1 321654 |’
o 1esase ). o _ (1236 ). _ (1246 ). . _ (123456 |
g 543216 ) %7\ 216543 [0 97T | 432165 |7 %7\ 654321 |°
_(zsase ). o (1osase ) (sase ). 123450
g 345612 | 9907\ 51234 )7 90 234561 ) ° 92 612345

Owing to such notation, for instance, the two nonautomorphic subgroups above can be
displayed as Cy = {g1, 95, 910} and Cs = {g1, 92, 99, 910, 911, 12}

Table 1 below contains all necessary information concerning closed subgroups H C G, their
normalizers Ng (H), a fixed transversal 7~ of these subgroups and the corresponding families
{<aH > <gpH>.  ,<gH >} of subgroups as well.

We shall represent incidency (- and p-functions [8-11] as two corresponding matrices (=
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Table 1:
A closed A normalizer A transversal A family
subgroup H Ng(H) of H J[Ng(H)/H) {<gH >},
Ci={a} 2 {9192, 912} = Ds {C1,C3,3C,,
3CY,2Cs, 2C5)
Cy = {g1, %} Dy {91,903, 94, {C5,3D,,2D5}
s, 99- 910} = Ds
Cy = {01, 93} D, {91, 0} = Cy {C3, Dy}
3 ={q, 97} D, {o1,95} = C} {C3, Do}
Dy = {1, 92, 95, 97} D, {n}=0C {D2}
D3 = {91,93, 94,95, 99, o} Ds {o1, 92} = Co 1D, Ds}
Ds = {91,92,---, 912} Ds {a1} = {Ds}
l1Gis117 =y and 2 = [lpss] ., where = ¢, viz.:
.1111111- -1 -1 -1 -1 2 0 0_
VI 1A O I 1 0 0 -1 0 0
10111 1 0 -1 -1 1
"C_“ = 1 101¢; s= 1 -1 0 0
101 1 0 -1
1 4 1 -1
I ] L e

Here, we recall thatan entry {;; (1 < 4,j < 7) of the matrix ¢ is equal to 1 iff (if and only if)
a subgroup H;, corresponding to the i-th row of this matrix, is a r;)t necessarily proper subgroup
of a subgroup Ii',, corresponding to the j-th matrix column, (£ C H,C Ii’_.,- C G = Dg). Toall
other automorphism groups G = Aut.X, one may adopt the same approach as we demonstrate,
in our example, for Dg = AutB (see [10, 11]).

In our case, the exclusion/inclusion argument, or inclusion and exclusion principle, affords
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the following matrix equality involving just all closed subgroups £ of Dg = AutB:

R(Cy) Q)
R(Cy) Q(Ca)
R(Cy) Q(Cy)
R(CY) | =g] Q&)
R(Dy) Q(D,)
R {Ds) Q(Dy)
R (Ds) Q (Ds)

Hence, we can write down all the cycle indicators R(H; B)'s (E C H C G) for strictly-
H-invariant K-colorations through the cycle indicators Q(H; B)’s for nonstrictly-H-invariant
colorations as follows:

R(C)) =Q(C) - Q) — R(C3) — Q(C3) +2Q (Dy);
R(Cp) =Q(C2) - Q(Dy);
R(C) =Q(C )—Q(Da)—Q(Ds)JrQ(De);
R(C3) =Q(C3) - Q(Da);
R (Dz) =Q (Dz) De)?
R(D3) = Q(Ds) - Q(Dy);
R(Dg) = Q(Ds) .
Using Theorem 6 and the last (fourth) column of Table 1, we can calculate all the

Q(H; B 2, 22,..., z)’s. Thus, we get

1
QY =— (zf + 32822 + 423 4+ 222 + 2z5) = Z(Dg; B);

Q(Cy) = é (28 + 32024 + 225) ;
QG = 3 (4 + 2z
QY = 5 (3 + m21);
Q(D2) = 22y

Q(Dy) = % (4 )3

Q(Ds) = z

Hence, we can find all the R(H 1 B; 21, 29,.. ., z5)’s, which completes the task, viz.:

R(C) == (z. 32023 — 42 + 62024 + 223 — 225) ;
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1

R(Cy) = g (28 — 82224 + 225) ;
1

R(CY) = ; (2322 = 2oza — 23 + 7)) ;
1

R(C)) = g (23 = 2224) 3

2.4 Further generalizations

One may ask the following question—If T} and T are two not necessarily closed subgroups
of an automorphism group G = Aut X of a nonempty finite set X, then whether or not 7;\\ X =
T,\\ X implies that any two T\ -invariant colorations, of X, are always T5-invariant colorations
or vice versa? Regrettably, the answer is negative; nevertheless, sometimes, it can be profitably
used in practice. To illustrate this, we shall examine below an example dealing with enumerating
enantiomorphic stereoisomers in chemistry [9-12]. However, at first, we have to approach that
from the general standpoint.

Lete C G = AutX, call N,(H) = £ N Ng(H) the "generalized normalizer of a subgroup
H with respect to a subgroup " since N.(H) can well be redefined as the maximum subset of

£such thatVg (g €¢) gH = Hyg.
Lemma 7 ([16, 17]). Let G’ be a group and let T C G', H A G'. Then

TH/H2T/TNH . 10)

Corollary 7.1. Let T = N.(H) and G' = NG(!:I) (see Lemma 7). Then
HN.(H)/H= N.(H)[enH . 10

Proof. By virtue of Lemma 7, HN.(H)/H = N,(H)/(s N Ng(H) N H). Since we have
N(;(I:I n H = H, the statement is immediate. m]
Evidently, Lemma 7 enables one to calculate all G-nonequivalent colorations. In order to

generalize it for enumerating all £-nonegivalent objects (¢ C G), we additionally introduce
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two generalized cycle indicators @, (H; X) and R.(H; X), accordingly. Then we can state the

following
Lemma 8. The cycle indicator Q. is

|H‘ a(<ghl>)
QuH; Xsz, 2, ) = == ] #" , (n
HENE 7 spiegany
where J' II‘ = ') is an arbitrary fixed transversal of the left cosets gH (1<j<s)ofH
in AIN.(H) = [N(H)H ({g;HY; = N(H)/H; J'H = [N(H)]H).

Proof. The statement is simply a generalization of Lemma 5 and (8), with Ng(f{ ) replaced by
HN.(H). This corresponds to substituting e-nonequivalent objects for G-nonequivalent ones.
QED. o

Corollary 8.1. The cycle indicator Q. is

QR b i) = Z T %9, (12)
961” i|lH Ne(H))|
where s' = |N¢(H)i/[5 N H| = |HN.(H)|/|H|; J" (|J"| = &) is an arbitrary fixed transver-
sal of the left cosets g;(H Ne) (1 < j < &) of HNein N(H) ({g;(H ne., =
NAH)/H Ne;N(H) = J"(HNe)).

Proof. Applying Corollary 7.1 to Lemma 8 at once gives the proof. a
We can specially extend Polya’s counting theorem to the case of e-nonequivalent col-
orations, which is also relevant to enumerating stercoisomers below, and state the following

generalization of Theorem 6:

Theorem 9. The number of c-equivalence (¢ C G) classes of K-colorations of X with a given

assortment of K-colors equals the corresponding coefficient of the polynomial

Q:(H; X;wr,wy, ... wnn[ > 11 ““‘”"”] GE)
=3¢ W

€I I HN(H)| Cowb (1<i<n)

2.5 Another example: enumerating enantiomeric molecules
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A pair of stereoisomeric objects (molecules etc.) corresponding to each other as the left
hand to the right hand is called a pair of enantiomers (see [12, 13]); under this, each of the two,
‘left’ or ‘right’, is characterized by the adjective “chiral”. An object that cannot correspond to
any other one as a ‘left’ or ‘right’ enantiomer is alternatively called “achiral”. Note, in passing,
that both of these definitions, ‘left’ and ‘right’, are also applicable to molecules for their ability
to turn the polarization plane of light either left or right, which enables one to use them in a
direct rather than conditional sense.

Let here G = AutX be a symmetry group of a skeleton (core) of a substitutional isomer
X [8-13] (i.e., changing the assortment of ligands of the latter, as well as rearranging them,
may give other substitutional isomers possessing the same skeleton). Let further ¢ C G be the
maximum subgroup, of G, all nontrivial elements of which correspond to proper rotations of the
core of X. Then it is known [8—13] that all chiral substitutional isomers are e-nonequivalent,
whether they belong to the same pair of left-right ones or not. Alternatively, if G contains at
least one element not being a strict proper rotation of a skeleton X (e.g., a mirror axis or an
inversion; if ¢ C G, then |G : ¢| = 2 and, therefore, GG contains strictly |¢| such elements), then
any two substitutional isomers comprising a pair of left-right enantiotwins are G-equivalent.

Thus, in the above terms, Q(H; X') enumerates every achiral object once and every pair of
enantiomeric stereoisomers, taken as a whole, once too (i.e., an automorphism group G does
not distinguish left and right stereotwins, at all, certainly, if G = AutX is not a group of proper
rotations only). On the other hand, Q. {H; X) just distinguishes left and right chiral isomers, if
they only exist (i.e., it takes into account every pair of stereoisomers already twice) and counts
as the former index, Q(H; X), every achiral object once. Hence, the difference U(H; X) :=
Q(H; X)—-Q(H; X) enumerates just enantiomeric pairs, which is of a considerable importance
to chemistry (to tell the truth, the calculation scheme itself is well-known from the literature (see
[8-13]) expounding it in other terms). Likewise, V(H; X) := R.(H; X) — R(H; X).

To sum up all that has been said about possible applications, one may conclude that the
six cycle indicators Q(H; X ), R(H; X), Q(H; X), R.(H; X),U(H; X) and V(H; X), intro-
duced above, cover by themselves most problems in chemistry that arise in connection with
enumerating various isomeric objects, taking into account their symmetry and assortment of

ligands.
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2.6 Differential properties of the cycle indicators

All the cycle indicators above, both classical and generalized, have some common differ-
ential properties. The following selected statements will be given herein without any demon-
stration; we propoese to the reader to derive his/her own proofs, as respective exercises to the

text.

Proposition 10. Let G, C G = AutX be the stabilizer of an element x in X. Let further
Z(G; X) be Polya’s cycle indicator. Then

8 1
g BH Xz} = ‘?Z G212(G; X5 21,22, .-, 20) (14)

IzeX

where the summation runs over all the set X.

The second statement symbolizes a converse transition from Pélya’s theorem to the Cauchy-

Frobenius lemma (see {10, 11]), which was just used for deriving this theorem, Viz.:
Proposition 11. Let Z(G; X) be Polya’s cycle indicator. Then

a
a—Z(G;X;Zl,Zz,-v-wzn)lz.:i (1gi<n) - (15)
21

[G\\X| =
In a similar vein, one can state
Proposition 12. Let Z(H; X) be any of the cycle indicators above; H C G. Then
I~ @
_Zz,—wZ(H; Xiz1,72,..320) = Z(H; X320, 20, . -1 20) (16)
= dz,
Also, we mention that differentiating classical cycle indicators was earlier used by de Bruijn

[3] for his famous generalization of Pélya’s theorem.

2.7 Some open problems

We start with some introductory background. Define the s-th normalizer N,(;)(H )
of a subgroup H (E € H C G) in G as follows: NO(H) = H, NO(H) =
Ng(H),..., NS(H) = Ng(NS™U(H)) (s > 0). Evidently, if G is a finite group, there
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exists the minimum value h of the index s, such that Ng””(H) = Ng“{H) (j > 0). More-
over, N}f ) (H)2 N((;“ +')(H ) (s > 0). With some restrictions, one can define the s-th centralizer
Cg)(H), namely: CgJ’(H) = H iff H is commutative (otherwise, it is not defined, at all) and
all the other members are defined as in the case of the respective generalized normalizers above.
Here, we also recall that Cz(H) < Ne:(H). Seemingly, it is worth additionally consulting [16—
18], where classical definitions of solvable and nilpotent groups are given; in some cases, the
latter are relevant to the notions considered herein.

Theorem | above describes remarkable combinatorial properties of the usual normalizer
Ng(H). In order to stimulate further development of the subject along the same lines, we want
to propose the following two questions:

Problem 1. Obtain possible generalizations of Theorem 1 to the case of the s-th normalizer
Néf)(f‘{) of a closed subgroup H (E C H C G) inG; s > 1. In other words, investigate
combinatorial properties of the generalized normalizer in question.

Problem 2. Investigate combinatorial properties of the s-th centralizer C(G’ )(H) ofa subgroup
H(ECHCG)inG;s>1.

Above all, posing these problems is targeted at the further generalization of Weyl’s ideas
concerning the "hidden symmetry” (see p. 50 in [11] or our short remark above). But a com-
plete gamut of mathematical tools for treating all possible symmetries should also involve more
general sorts of universal algebras than groups [19]; and, among all such algebras, semigroups

hold a central position.

3 When A is the monoid M = End X of endomorphisms

A semigroup & is an associative groupoid G, with a one-valued binary operation (x) defined
thereon [14—15]. If (%) is interpreted as multiplying of respective elements, this is equivalent
to necessarily obeying the associativity equality (ab)c = a(be) (a,b,¢ € §). A monoid M is
a semigroup S possessing 2 unity element e or 1 (see above); §' is also used to indicate the
monoid case (or the case when a unity element is additionally introduced into some semigroup
without it) and, sometimes, S to denote M \ e.

A subset N of a semigroup S is called a normal complex [14-15] if Va, b € N and Vz,y €
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8! zay € N implies wby € N. A normal complex N is some congruency classin S (resp. S');
besides, if NV contains any subsemigroup it is a subsemigroup of S as well (in particular, if N
contains any idempotent). A subsemigroup or normal complex N of a semigroup S (resp. S')
is called a normal subsemigroup (submonoid) if Ya € N andVz,y € S (ay € §) zy € N
implies zay € N and vice versa. A normal subsemigroup IV is the preimage of e under the
homomorphism of a monoid M or §* onto some monoid M.

Define the normalizer Ny () of a submonoid S (E C § C M) in M as the maximum sub-
monoid, in M, for which S is the normal submonoid (S < Ny (S)). The semigroup normalizer
is a direct generalization of the widely used group normalizer. The following known result lies

in the very fundamentals of the theory of semigroups [14—-15], viz.:

Lemma 13. Let S be a subsemigroup (submonoid) of a semigroup (monoid) M. The factor
semigroup (factor monoid) M /S is homomorphic to a group L iff S is a normal subsemigroup

(normal monoid) of M.

Now, we can derive from the last statement a result that has to be crucial for our inferences

below, viz.:

Theorem 14. Let S be a closed submonoid ofamonoid M (E C S C M). Then the normalizer
Nut(S) is the maximum submonoid, in M, whose elements (either fix or) permute intact S-
orbits in S\\ X, or, equivalently, Ny, (S )/ 8 homomorphically acts as the maximum permutation

group, induced by M, on the set I of indices of the S-orbits in S\\X; [I| = |S\\ X|.

Proof. First, we mention that the submonoid S (resp. S) simultaneously defines two congru-
ences that respectively generate two factor-sets Njy(5)/5 and S\\X = S\\.X = X/§. This
circumstance allows us to homomorphically represent the combinatorial action of N M(S‘ ) on
X by an induced action of Ny (5)/S (or even Ny (S) itself) on S\\X. Since a submonoid
$ is the kernel of the homomorphism from A onto a factor monoid Nyt(5)/8, elements ¢
of Nyi(S) can either fix (some) orbits in S\\X or map (some) intact S-orbits into other §-
orbits therein. But the mentioned factor monoid Ny ($)/8 is homomorphic to a group L and,
thereby, any such mapping from S\\ X into itself is reversible with respect to intact S-orbits.
Thus, Ny (S)/3 indeed acts as a group on I (and similarly acts on Ny (S) as well). The maxi-
mality of such action follows from the definition of the normalizer N;(S) which immediately

completes the proof. o
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Here, we remind the reader that the cardinalities of the S-orbits corresponding to mutually-
permutable indices, in /, are not necessary equal when M is not a group. The equality of their

cardinalities is also insufficient for mapping one intact orbit into another.

Corollary 14.1. Let S be a closed subgroup of a group M acting on a base set X. Then Ny (S5)
acts as the maximum permutation group, on S\\X, that (either fixes or) permutes intact S-

orbits in S\\X.

Proof. Evidently, the normal subsemigroups of a group are exactly its normal subgroups. By
virtue of Theorem 14, Ny (S)/S (either fixes or) permutes the respective indices in /. How-
ever, in the case of a group M, to mutually-permutable S-orbits there necessarily correspond
equipotent S-orbits; therefore, NG(S‘) / & must also similarly act on the set $\\ X. But, because
§ is the kernel of this action, the normalizer N¢(S) too (either fixes or) permutes intact S-orbits
in S\\ X which completes the proof. =]

Apparently, Corollary 14.1 is nothing but Theorem 1, proven above by other methods; here
we reproved it only in order to show that the proof may also be obtained from the more gen-
eral semigroup-theoretical standpoint, as it was promised in the very beginning. But what is
rather more essential is that the finite combinatorial actions of groups are in fact the core of
combinatorial actions of semigroups and hence all finite algebras as well.

In our opinion, the above results may find the first applications to enumerating various
graphs with a given monoid M of endomorphisms (and/or other functional properties) and
the functions ¢ of the k-valued logic, which are, in particular, applied in the theory of finite
automata. Chemical applications are possible as well (see [20]).

The author’s experience over a period of years enables him to declare that the normal-
izer method [8] (locally, call it so) demands rather less theoretical knowledge, time, and typed
space for dealing with the respective task than any of the well-accustomed methods like those
employing double cosets and table of marks. In particular, for the sake of chemical or physical
applications, to all subgroups of point crystallographic groups Oy, and Dy, as well as fullerenes’
groups possessing elements of noncrystallographic orders, the corresponding generalized cycle
indicators (discriminating enantiomers or not) [8] may readily be tabulated in a reference book.
Finally, we mention that the fundamental encyclopedic book [10] and, especially, its extended

version [11] may play an invaluable role in developing any combinatorial methed in context.
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