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Abstract

Topological complexity of molecules was recently quantified by means of the total number of
subgraphs, and the overall connectivity (the connectivity of a molecular graph and all of its
subgraphs), as well as by the vectors of these descriptors. Hierarchically ordered partial sets of
molecules are defined on this basis and their properties are studied in a number of propositions,
theorems, and corollaries. The components of molecular topology are thus hierarchically ordered in
the sequence: size < multiple bonds, cycles < heteroatoms < vertex degree majorization (branching,
cycle redistribution) < centricity, elongation, clustering. The hierarchical ordering of the sets of C7-
C10 alkanes and the cyclopentane isomers is compared with their global ordering induced by the
numerical values of topological complexity indices. Some conclusions are drawn on the nature of

branching and cyclicity of molecules



1. Introduction.

Partial orderings of sets (posets) in chemistry have a long and distinguished history beginning with
Mendeleev's Periodic Table of chemical elements. The review of Klein and Babi¢ [1] is a good
introduction to the area, Mention should be made to the pioneering works of Ruch [2,3] and those
of Randi¢ [4,5]. Attention may be directed to the idea of constructing representative posets by the
superposition of several such sets based on essential graph invariants [6,7]

Posets reflect the inherent similarity in the set elements, however, they may also be regarded as
resulting from insufficiently discriminating criteria. The question whether every partial ordering can
be converted into a complete ordering has been solved and widely discussed in the mathematical
literature [8]. Isotonic functions (or “Schur convex™) from the poset to the totally ordered real
numbers exist at least for all denumerable posets

Due to the isomerism, chemistry commonly deals with sets of molecular structures which are only
partially ordered. Strategies for transforming less ordered sets of chemical structures into more
ordered and, possibly, completely ordered sets characterized by quantitative structural descriptors
are of certain interest for classification and coding of chemical compounds, as well as in the area of
structure-property and structure-activity relationships. An effective approach to the problem is the
introduction of hierarchical relationships between the elements of the set. Different types of hierarchy
may be used with that purpose. In this paper we deal with hierarchical partial orderings based on
topological complexity.

Topological complexity of a chemical compound is a very important component of the general
molecular complexity; other contributions emerging from the 3D-geometry, elemental compositien,
types of chemical bonds, etc.[9-12] The representation of topological complexity has evolved through
the years from measures based on the automorphism group of the molecular graph [13-18], through
some topological indices sensitive toward branching and cyclicity patterns [19-24], to the recent
extensive use of all substructures and their weightings [25-30]. Throughout this paper our analysis
of partially ordered sets is based on the concept of topological complexity as overall connectivity, and

on the underlying count of substructures of varying size [27,30]



2. Topological Complexity of a Molecule as Presented by the Number of Subgraphs and the
Overall Connectivity of Molecular Graph

Let G be a hydrogen-depleted molecular graph with N vertices, E edges, and a total of K(G)
subgraphs including G itself . Let also a, (G) and a,(G) be the degree of vertex i in G and in its
subgraph G, respectively. The set of connected subgraphs may be represented by an ordered set
K 1G) of terms °K each one being the count of e-edge connected subgraphs, and the sum K(G) of

these terms may be regarded as an overall measure for the topological complexity of G-

E
K1G) =KrK'KK,... K} KG) =X K (1)
e=0

The zero-order complexity in (1) is simply the number of graph vertices, and the first-order term
'K counts the number of bonds. The second-order complexity K is equal to the number of 2-edge
subgraphs (“propane” fragments in the language of organic chemistry) widely used in the past as a
structural index by Platt [31], as well as Gordon and Scantlebury [32], and as a complexity measure
by Bertz [9,15,16]. The third-order term K , the number of three-edge subgraphs, includes graphs
standardly denoted as K; and K,,,, and termed path graphs and stars, respectively The number of
K, graphs has been used in structure-property studues by Wiener [33] under the name “polarity
number”, as a second structural index along with his widely known "Wiener" number.

When every vertex in each of the subgraphs is weighted by its degree a, (), the weighted sum of
all subgraphs 7C(() is defined as a more sensitive measure of topological complexity than K(G).
Being a generalization of the molecular connectivity indices of Randi¢, Kier and Hall [34-37), 7C(G)
has the meaning of overall conmectivity of (5. It can also be decomposed into topological complexities
oforder e, *TC(G) terms. In ascending order these include °7C as the zero-order complexity (vertex
connectivity), ‘7C as the first-order complexity (edge connectivity), “7C as the second-order
complexity (two-edge subgraph connectivity), etc. As an ordered set they form the vector of

topological complexity (overall connectivity) 7C 1G).
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E E K n
TC(G) =X°TC[G)= ¥ L X a(G) @
e=0 e=0 t=1 i=}
TC1G) = TC £1C, ITC, 4G, ETCH (3)

The summing in eq. (2) runs first over all », vertices of subgraph G, , then over all °K subgraphs
G, having e edges, and finally over all E classes of subgraphs having a fixed number of ¢ edges. When
the vertex degrees a, (G, are those from the individual subgraphs ‘G, having e edges, the second

version TCI(G) of the topological complexity index is defined:

E E ‘K n

TCHG) =Z°ICIHG) = XY X L afG) (2a)
e=0 e=0 =] i=]

TC11G) = TCI £TC1, 'TC1, *TCI,...*TC1} (3a)

The vectors of K (G), TC {G), and TC! (G). which are hierarchically ordered sets of graph
invariants characterizing the topological complexity of the individual molecule, provide a natural basis
for a hierarchical ordering of a set of molecules. Here, hierarchical is regarded in contrast to global
ordering of molecules, according to their total values of K(G) and T7C(G). Our idea of hierarchically
ordered overall connectivities (HOOC) may be regarded as an extension of the concept of

hierarchically ordered extended connectivities (HOC) by Balaban et al [38,39].

3. Definitions for Hierarchical Partial Orderings Based on Topological Complexities

Let G be a molecular graph, Denote the scalar complexity vectors K {G) or IC {G), as defined
by eqs. (1-3), by § 7G); denote also the complexity indices K(G) and TC(G) by S(G).

Definition 1: The intramolecular hierarchical order of topological complexities is defined as
Fls<isx,, <88 “



Let graphs G, and G, represent molecules 1 and 2, respectively. Let also the complexity vectors
$1G,) and 8 () be specified as

S1G,) =5 °S(G,), 'S(G)), *S(G))....FS(G )} (5a)

S1G,) =S {£8(G,), 'S(G,), °S(G.),... FS(G,)} (5b)
Then,
S1G,) <S1G,) if
a)  °8(G))<°S(G))or
b) if°S(G,) ="°S(G,), and 'S(G)) <'S(G,) or
¢) if°S(G,)) =°S(G.), 'S(G,) = '8(G,), and *S(G,) <°S(G,), etc. (6)

The comparison between the two sequences (5a) and (5b) continues until the first different pair of
corresponding terms is found. If the two sets (5a) and (5b) are identical, there is no seniority relation
between the two molecules. The satisfaction of the hierarchical condition (6) may be denoted as

G, <5 G, (6a)
where the relation <. is a partial ordering on S’ sequences

Definition 3: Graphs G, and G, are ordered by a complete ordering relation <. defined such that
G, <5 G, iff  S(G) < 8(G)) @)

4, Theorems for Complexity Factors Influencing the Hierarchical Partial Orderings of Sets
of Molecules

4.1. The Size.

We start our analysis with °X(G), the number of non-hydrogen atoms in the molecule (the number
of vertices in the molecular graph). Taken as the first criterion in our hierarchical ordering scheme, it

classifies the molecules in any set into classes according to their H-depleted size. From Definitions
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1 and 2 (egs. 4-6) we can formulate

Proposition 1: The molecules having a larger number of atoms are more complex than the ones with
a lesser number of atoms,

Wy & e ®

The importance of molecular size as complexity factor was analyzed in the studies of Bertz
proceeding from his "size term", based on two-edge subgraphs [15], and in his branching Theorem
1[20).

The classification of larger molecules as more complex than the smaller one seems natural, but
perhaps the connectedness is more essential for complexity than size. Shouldn't we regard a smaller
molecule with a complicated structure as more complex than a larger molecule with a simple
architecture? We point out that both size and connectivity have their importance for structural
complexity. The orderings produced relying more heavily on connectivity, like those resulting from
the overall indices K(G) and TC(G), classify in many cases the smaller molecules with a higher degree
of branching or/and cyclicity as more complex than the larger molecules with a limited atom-atom
connectedness

The ranges of values of the two overall indices in alkanes illustrate the point. They are shown in
TABLE 1 along with the ranges of a number of physicochemical properties of these compounds. The
comparison shows that both types of ordering, the hierarchical which favors the size, and the overall
one which gives preference to connectivity, have their analogs in alkane properties. Thus, for molar
volume, molecular refraction, and heat of atomization, the ranges corresponding to different nuribers
of atoms are narrow and clearly separated, it is the number of atoms that matters rather than their
connectedness. Conversely, for the heat of vaporization, critical pressure, critical temperature, surface
tension, and boiling point (beginning with C9), the span and the overlap of ranges shows that the

structural complexity of the highly branched molecules is frequently more important than their size.



TABLE 1. Ranges of values of some physicochemical properties of alkanes and those of the
complexity indices K and 7C.

Indices and Properties Co Cc7 Ccs8 c9

K(G) 21-30 28-49 36-86 45-124
TC(G) 100-181 154-369 224-798 312-1303
Boiling point®, °C 57-69 81-98 99-126 122-151
Heat of vaporization®, kJ/mol 277-316 320-36.6 35.1-41.5 38.1-46.4
Critica] Temperature®, °C 216-235 247-268 271-305 297-330
Critical pressure’, atm 29.9-31.0 27.1-30.0 245-29.0 22.7-27.0
Surface tension®, dyn/cm 16.3-18.4 18.0-22.0 188-220 204-238
Molar volume?, cm*/mol 130-133 144-149 157-165 169-181

Molecular refraction’, cm¥mol ~ 29.8-29 9 343-346 38.7-39.3 43.0-439
Heat of atomization®, kJ/mol 1797-1801 2078-2082  2358-2362

*Data taken from [40]; "Data from [36].

The ranges of values of the two overall indices in alkanes illustrate the point. They are
shown in TABLE 1 along with the ranges of a number of physicochemical properties of these
compounds. The comparison shows that both types of ordering, the hierarchical which favors the size,
and the overall one which gives preference to connectivity, have their analogs in alkane properties
Thus, for molar volume, molecular refraction, and heat of atomization, the ranges corresponding to
different numbers of atoms are narrow and clearly separated, it is the number of atoms that matters
rather than their connectedness. Conversely, for the heat of vaporization, critical pressure, critical
temperature, surface tension, and boiling point (beginning with C9), the span and the overlap of
ranges shows that the structural complexity of the highly branched molecules is frequently more

important than their size
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4.2. Adjacency

Within each class of molecules with V atoms we continue the hierarchical classification by the first
level of molecular connectivity which is measured either by the number of graph edges £ = ‘K, the
first-order K-index, or by the graph adjacency 4 = 2E = °TC, which by definition is the zero-order
overall connectivity. Adding one edge to a graph with a fixed number of vertices means a formation
of either a cycle, or a multiple bond. Therefore, although this factor does not add to the complexity
of acyclic molecules with single bonds, it hierarchically distinguishes them from the large classes of
molecules with multiple bonds and those of cyclic molecules. Actually, from a graph-theoretical point
of view, the multiple bonds are cycles of two vertices, a fact correctly recognized by the hierarchical

ordering based on 'K and °7C. Our Definitions 1 and 2 thus provide

Proposition 2, 'K, (simple acyclic graphs) < ‘K (multigraphs; cyclic graphs) (%a)
°TC, (simple acyclic graphs) < °TC,(multigraphs; cyclic graphs) (9b)

Proposition 2 confirms the similar conclusions of Bertz [15, 29] about the larger complexity of
multigraphs and cyclic graphs relative to that of acyclic graphs.

The presence of cycle(s) or multiple bond(s) in a molecule increases the number of subgraphs of any
number of edges considerably stronger than the presence of a branch. As a result, the hierarchical
precedence order induced by the size of the molecule is more frequently reversed by the overall
ordering imposed by the K(G) and 7C(G) indices. We prove below this assertion for the case of chain

molecules with N atoms, as compared to monocyclic molecules with (N-1) atoms.

Theorem la: The number of subgraphs in a path graph with ¥ vertices, P, is always smaller than that

of the monocyclic graph with (N-1) vertices C,., .

Proof: From the formulas for the index K, previously derived [30],

K(@P)=NN+1)2 , K({Cp))=N+1 (10a,10b)



_93 =

one obtains
K(Cyo)-K(PY=(N-3N+42>0 (1)

Theorem 1b: The overall connectivity 7C of a path graph with N vertices, P,., is always smaller than

that of the monocyclic graph with (N-1) vertices Cy,,

Proof. From the formulas for the 7C index , previously derived [30],

IC (Py) = N(N-D(N+413 ; TC(Cy)=NN + N ~2) (12)
one obtains

TC(Cy) - TC (Py) = 2N-D(2N* - AN + 6):3 > 0 a3)

The competition between the size and adjacency factors in molecules with cycles or multiple bonds
may be illustrated with several properties of cyclohexane and 1-hexyne molecules [41]. Thus, for the
boiling point, a property for which the value ranges of different sets of isomers are well separated up
to C9 alkanes, the hexyne with a triple bond and a boiling point of 71.3 °C lies outside the 57- 69 °C
range of the C6 alkanes, whereas the value of 83°C for cyclohexane overlaps with the 81-98°C range
of C7 alkanes. Even more impressive is the example with molecular volume, a property which depends
strongly on the number of atoms. The values 108.7 cm*mol and 115.7 cm*/mol for cyclohexane and
I-hexyne, respectively, go below the range of 116-123 cm*mol of the three acyclic pentanes.

The competing complexity factors of branching and cyclicity of the molecular skeleton will be
briefly analyzed by a comparison of monocyclic graphs and star graphs the ordering of which is shown
below to depend on the total number of graph vertices. More specifically, we show that monocycles

are more complex than the respective stars.

Theorem 2: The number of subgraphs in 3-arm stars and 4-arm stars is smaller than that of the
corresponding monocycles having four and five vertices, the 5-arm star and the hexagonal cycle have
the same number of subgraphs; monocyclic graphs having more than six vertices have less subgraphs

than the stars with the same number of vertices.



Proof: From (10b), and the previously derived formula (14)

K@y =2"~N-1 (14)
one obtains
K(Cy)-K(Sy)=N-N-2-2% (15)

wherefrom Theorem 2 immediately follows

4.3, Heteroatoms

The presence of heteroatoms does not change the total number of subgraphs in a molecular graph,
therefore the K index cannot be used as an additional criterion for ordering of heteroatomic molecules
having the same number of atoms, cycles, and multiple bonds. However, one may use the overall
connectivity indices as recently modified by replacing the vertex degrees &, in formula (2) by the

valence connectivities §; of Kier and Hall [42]:

E E K »n
TG) =2 ‘TCG) E &(G) 2 (16)

e=0 e=0 t=] i=]
TG) = TP, '1C, ’1C, .., ETCY) (16a)

For main group elements, §, is equal to the number of valence electrons diminished by the number
of adjacent H atoms. Thus, for the nitrogen atom in -NH,, ¢* = 3, in -NH- and =NH it is 4, in =N- it
is 5. For the oxygen atom in -OH, ¢" = 5, whereas in =0 and in -O- itis 6, etc.

We may extend our graph theoretical analysis by representing the molecules with heteroatoms by

vertex-weighted graphs, considering valence connectivity §, as a weight of vertex /.

Definition 4: In sets of graphs having the same number of vertices, multiple edges and cycles, as well

as having their vertices weighted by the valence connectivity weights §,, graph G, has a precedence
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over (is less complex than) graph G,,

TC(G,) < TCY(G,) if
a) TG < TC(Gy orif
b)  CTC(G,) = TC(Gs), and 'TCYG,) < ' TCYG) or if
Q) TC(G) = °TC(GY), 'TC(G) = 'TC(G,), and *TCY(G,) < “TC(G), ete 7

Proposition 3: The overall valence connectivity of a graph, TC*((G) is not smaller than its overall
connectivity 7C(G):
1C(G) s TC(G) (18)

Since d,> a, , the inequality takes place if at least for one of the G, vertices i the inequality d, > a,
holds. The condition for partial ordering is thus met

Notably, the presence of heteroatoms in a molecule affects the zero-order overall valence
connectivity “7C'(G), so that it appears as a complexity factor of importance comparable to that of
the multiple bonds and cycles, which affect the zero-order overall connectivity °7C((G). We may
summarize the first part of our analysis of complexity factors that hierarchically order molecular graphs

into the precedence relationship

size < multiple bonds, cycles < heteroatoms

We shall turn now to complexity factors on the next hierarchical level determined by the first order

overall connectivities ' 7C or/and the second order complexities K.
4.4. Branching
The number of branches is the next important complexity factor which imposes additional ordering

inthe subclasses of graphs with a fixed number of vertices, multiple edges, cycles, and heteroatoms.

The creation of a branch at the cost of the shortening of the longest chain changes the degrees of the



two vertices to which the transferred terminal vertex is attached.

1 2 2 i 3 4
0——0—0—8—0> ; >
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Creating a vertex / of a higher degree increases the number of two-edge subgraphs ‘K. We may

summarize several branching patterns, related to changes in the vertex degrees, into
Theorem 3: Any change in the structure of a graph that preserves the number of vertices and edges,
and the vertex degrees of all but two vertices v and v, increases the graph complexity by changing
a) the number of two-edge subgraphs by
ANK=a, -a, +1 (19)
b) the first-order overall connectivity index by

ATC=2(a, -a, +1)=20K (20)

Proof: a) Denoting the initial and final vertex degree of v and v by the subscripts in and f,

respectively, we have
AK =K+ K- K- Ko (20

The number of two-edge subgraphs °K, which include vertex i is calculated according

to the formula [20]
‘K.=a,(a-1)2 (22)

The only option for « and v to change their degrees is the increase in a, to be exactly
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compensated by the decrease in @, . For simplicity, we assume that the vertex degrees change by one,
because the larger changes can be presented as a total change in two or more consecutive steps of

structure modification:
. q,, t1 5 a,.a,-1 (23)

Substituting (23) and (22) into (21 ) one arrives at eq. (19).
b) The first-order overall connectivity is the sum of vertex degrees over all edges in the
graph:
TC= Yoty (@ + @) (24

Since only the vertex degrees of « and v alter, we have
NTC=a,’-a,’ +a}-a,’ @)
Substituting (23) into (25) one obtains eq. {20).

Coroflary 1: When in a graph, a branch is formed at the expense of the shortening of the longest
chain or at the expense of the shortening of a cycle: a) the number of two-edge subgraphs increases
by one, and the first-order overall connectivity increases by two, when the new branch is attached at
a vertex of degree two, b) the increase in these two quantities is twice as much when the new branch
is formed at a vertex of degree three.

For acyclic graphs cases (a) and (b) are exemplified by graphs 1, 2, and by graphs 3, 4, respectively.
For cyclic graphs, this corollary is illustrated by graphs 5 - 6 - 7,and 6 ~ 8, respectively.

5 6 7 8

- oQ»—o —»o—&)—o - o?&
K5 6 g g
1Tc 20 22 24 26



Corollary 2: When in a graph having a fixed number of branches a branch is displaced to a vertex of
a higher degree, the number of two-edge subgraphs increases by one, and the first-order overall
connectivity increases by two.

This corollary can be traced down from the direct comparison of the cyclic graphs 7 — 8 and the
acyclic2 - 4 ones. We may denote this type of branching pattern as 3,3 ~ 4,2, in contrast to the 2,2
~ 3,10r3,2 - 4,1 vertex degree redistributions, the presence of "1" in which indicates the formation
of'a new branch. The new branching pattern3,3 - 4,2 may be called after Klein & Babi¢ {1] a "vertex-
degree majorization". This pattern of increasing graph complexity appears also in cyclic graphs
without any relation to branching; in these graphs it is a pattern of cyclic complexity that may be

termed cycle redistribiition.

Corollary 3: When in a cyclic graph a vertex-degree majorization occurs between two vertices without
forming a branch, the graph complexity increases (the number of two-edge subgraphs increases by one,
and the first-order overall connectivity increases by two).

We illustrate this pattern of partial orderings in cyclic graphs by graphs 9-10.

33> 42
>

TC =30 K=10, 'TC =32

Our analysis of the factors that affect the next hierarchical level of topological complexity is thus
completed. We may summarize our findings by expanding the hierarchical complexity relationship

established in the previous subsection to

size < multiple bonds, cycles < heteroatoms < branching, cycle redistribution

It should be emphasized that Theorem 3 seems to summarize or generalize a number of previously

specified branching patterns, such as branching rules 1-4 and 8 of Bonchev and Trinajstic [19], the
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branching extent theorem of Ruch and Gutman [43], some of the branching theorems and analyses of
Bertz [20], the generalized branching rules G1-G4 of Bonchev [21], and it is close to the branching
extent definition of Ktein and Babic [1]. On the other hand, Theorem 3 treats in a similar manner
complexity in acyclic and cyclic systems thus creating bridges between the traditional separate
treatment of acyclic and cyclic complexity termed branching and cyclicity.

We shall now turn to the more subtle complexity factors discriminated by the next hierarchical levels

of the overall connectivities ‘7C and complexities ‘K

4.5.Subtle Branch Patterns: Centricity, Elongation, and Clustering

To avoid the mixed influence of several factors we consider singly-branched graphs.

Theorem 4. The shifting of a branch from a position J to the neighboring more central position j

along the longest chain increases. a) the jth order complexity index K by one; b) the (f-1)th order

overall connectivity 7C by two:

(@) AK =+1; (b) A'TC=+2 (26)
j: 11 g 12 813 g H
> : -
K=4 K=5 K= 6 K= 17
TC=29 71C =31 3TC =56 ITC=58

The proof of (26a) follows directly from the fact that the only change in the jth order complexity index
K upon thel transformation described by Theorem 4 is the emergence of one more subgraph with j
edges, namely, the subgraph connecting the terminal vertex of the branch to the closer terminus of the
longest chain
In proving (26b) we first derive by induction the formula for 'K in singly-branched acyclic graphs
having 2j vertices:
K, (singly-branched) = + 2 a 27
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Next, we prove that j of these (f + 2) subgraphs preserve their (j-/)th order overall connectivity,”
TC, because the latter is a sum of the same summands in which only the order of summing is changed
Each of the remaining two subgraphs increases its*/7C by one: the first one, due to the inclusion of
a vertex of degree two instead of the terminal vertex of degree one, and the second one, due to the
inclusion of the branched vertex of degree three in one more (j-/)th order subgraph - that one starting

with vertices j, j+1. A'TC = +2 is thus proved.

Coroliary 4: The elongation of a branch up to half the length of the longest chain in an acyclic graph
increases : a) the jth order complexity index ‘K by one; b) the ith order overall connectivity '7C by
two:

(@) AK=+1, (b) ATC=+2 (28)

Relations (28a) follow directly from Theorem 4 when presenting the longest chain of the graph to
pass through the branch. This shows that the branch elongation is equivalent to a branch shift to a

more central position.

gls N %1"; %17 . §18

Theorem 5. Clustering of vertices of an acyclic graph (shifting them closer to each other), without
changing their position with respect to the center of the longest chain, increases : a) the third order

complexity index 'K by one, b) the second order overall connectivity *7C by two:
(a) AK =+1; (b) A’TC=+2 (29)
Proof: The number of subgraphs with three edges increases by one, namely by the new three-edge

subgraph that includes the two branches. The overall connectivity of two-edge subgraphs remains the

same except for the two species incorporating one of the branches and the root vertex of the second
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branch, each of the species increasing one vertex degree from two to three,

19, 0 21 22

0—3—0—3—0“0} ;0—0—8—0—3—0—0—0 +O—O—g—-g—0—0—0—0
K= 3 IK=09 K =11 K=12
1IC=50 71C = 52 TC - 64 TC =66

Theorem 5 with its three corollaries confirms the previously specified branching rules 5-7 of Bonchev
and Trinajstic [ 19], based on the Wiener number, and the generalized rule G5 of Bonchev [21], based
on the number of self-returning walks. Similar results have been obtained by Bertz [20] by applying
the methodology of line graphs of higher order.

This concludes the analysis of the branching patterns that impose additional precedence order within
the subclasses of graphs having the same number of vertices, edges, and two-edge subgraphs. More
examples and subtle patterns will be analyzed in the next section. All the hierarchically ordered criteria
of partial ordering of a set of chemical compounds, according to the topological complexity of the

respective molecular graphs, may be summarized as follows:

size < multiple bonds, cycles < heteroatoms < vertex degree majorization (branching,

cycle redistribution) < centricity, elongation, clustering (29)

The larger variety of finer patterns of cyclic complexity will be not be specified here. In Section 6, we

will discuss some of them proceeding from the ordering of the cyclic graphs with five vertices.
5, Hierarchical Versus Global Ordering of C7-C10 Alkanes Based on Topological Complexity

Theorems 1-5 derived in the previous section enable the transformation of the partial alkane
orderings, based on a limited set of criteria, into a complete ordering. Our analysis of the C7-C8
alkanes is based on recent data for the complexity indices ‘K and overall connectivities ‘7C [27]. The
topological complexities of the C9 alkanes are given in TABLE 2. We shall also use the data for C10
alkanes, which will be published elsewhere [44]
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An illustration is presented with the set of nine C7 alkane isomers (FIGURE 1).

0—0—0—0—0—0—0
3K=5,*TC=35 IK=6,2TC=41 *K=8,?TC=52
225 g g 28 %30
3K=6,2TC=37 IK=8,2TC=46 °*K=10,?TC=56

in

3K=7,2TC=39

1K=5, "TC=22 K=6, 1TC=24 IK=7,ITC=26 K=8,!TC=28 IK=9,'TC=30

FIGURE 1. Hierarchical ordering of the nine C7 isomers according to the values of topological

complexity indices ‘X (second and third order) and *7C (first and second order).

As seen from FIGURE 1, due to the fact that for acyclic isomers the number of atoms (°K) and the
number of bonds (‘K) is constant, it is the number of the two-edge subgraphs (the propane fragments
count) ’K, that imposes the isomer hierarchical grouping into five subsets. The hierarchical ordering
continues within the subsets with cardinality larger than one, according to the count of the three-edge
subgraphs ’K. Exactly the same ordering is obtained, according to the
values of the first and second order overall connectivities ‘7C ‘and *7C. Thus, the use of two
consecutive orders of the complexity indices °K, *K or 'TC, “TC suffice to transform the partial
ordering of the C7 isomers into a complete one. The same complete ordering is provided by the overall
indices K and TC:

K(C7): 28<32<34<36<37<40<41<44<49
TC(C7)y 154 <194 <213 <234<245<276<286<314 <369

It will be shown in this section that in higher alkanes the hierarchical ordering and the ordering
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produced by the overall indices deviate, and the number of reorderings increases with the number of
carbon atoms. It will also be shown that beginning with C10 the X {G) vector becomes degenerate and

the hierarchical partial ordering of the isomers can be converted into a complete one only with the
1C 1G) vector.

TABLE 2. Topological Complexity and Overall Connectivity of C9 Alkanes

# Structure °S s s S b3S ’S s S 'S Total
1 n-nonane K 9 8 7 6 5 4 3 2 1 45
TC 16 30 40 46 48 46 40 30 16 312

2 2M ¢ 8 3 7 6 5 4 3 1 sl
16 32 47 55 59 59 55 45 16 384

3 3M 9 8 8 8 7 6 5 3 1 55
16 32 49 64 70 72 68 45 16 432

4 4-M 9 8 8 8 8 7 5 3 1 57
16 32 49 66 81 83 68 45 16 456
5 2,6-MM 9 8 9 8 7 6 6 4 1 58
16 34 54 64 70 74 84 60 16 472

6 3-E 9 8 8 9 9 8 6 3 1 61
16 32 51 75 92 96 81 45 16 504

7 4-E 9 8 8 9 10 9 [ 3 1 63
16 32 51 77 103 107 81 45 16 528

8§ 2,5-MM 9 8 9 9 8 8 7 4 1 63
16 34 56 73 83 99 97 60 16 534
9 2,2-MM 9 8 10 10 9 8 7 4 1 66
16 36 64 83 93 99 97 60 16 564

10 2,4-MM 9 8 9 9 10 9 7 4 1 66
16 34 56 717 104 110 97 60 16 570

112,3-MM 9 8 9 10 10 9 7 4 1 67
16 34 58 85 104 110 97 60 16 580

123,5-MM. 9 8 9 10 10 10 8 4 1 69
16 34 58 84 106 124 110 60 16 608

132-M, 4-E 9 8 9 10 11 11 8 4 1 71

16 34 58 86 117 135 110 60 16 632

14 3,4-MM 9 8 9 11 12 11 8 4 1 73
16 34 60 926 127 135 110 60 16 654

15 3,3-MM 9 8 10 12 12 11 8 4 1 75
16 36 68 104 127 135 110 60 16 672

162-M, 3-E 9 8 9 11 13 12 8 4 1 75

16 34 60 98 138 146 110 60 16 678
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TABLE 2 (Contd.)
# Structure °S 'S g 35 s s S S 'S Total
16 2-M, 3-E 9 8 9 11 13 12 8 4 1 75
16 34 60 98 138 146 110 60 16 678
17 2,2,5-MMM 9 8 11 11 10 11 10 5 1 76
16 38 71 92 108 141 140 75 16 697
18 4,4-MM 9 8 10 12 14 12 8 4 1 78
16 36 68 108 148 146 110 60 16 708
19 2,3,5-MMM 9 8 10 11 12 12 10 5 1 78
16 36 65 96 129 152 140 75 167 725
203-M, 4-E 9 8 9 12 14 13 9 4 1 79
16 34 62 107 150 160 123 60 16 728
21 2,2,4-MMM 9 8 11 12 13 14 11 S 1 84
16 38 73 105 144 178 153 75 16 798
223-M,3-E 9 8 10 14 16 14 9 4 1 85
16 36 72 127 171 171 123 60 16 792
23 2,3, 4-MMM 9 8 10 13 15 15 11 5 1 87
16 36 69 117 165 189 153 75 16 836
24 2,4,4-MMM 9 8 11 13 15 15 11 5 1 88
16 38 75 117 165 189 153 75 16 844
252,2,3-MMM 9 8 11 14 16 15 11 S 1 9
16 38 77 128 175 189 153 75 16 867
26 2,4-MM, 3-E 9 8 10 13 17 16 11 5 1 90
16 36 69 121 186 200 153 75 16 872
27 3,3-EE 9 8 10 16 19 16 10 4 1 93
16 36 76 148 204 196 136 60 16 888
28 2,3,3-MMM 9 8 11 15 18 16 11 5 1 9%
16 38 79 140 196 200 153 75 16 913
292,2-MM, 3-E 9 8 11 15 19 18 12 5 1 98
16 38 79 141 211 226 166 75 16 968
30 3,3,4-MMM 9 8 11 16 19 18 12 S 1 99
16 38 81 149 211 226 166 75 16 978
312,3-MM, 3-E 9 8 11 17 21 19 12 5 1 103
16 38 83 161 232 237 166 75 16 1024
322.2,44-MMMM 9 8 13 14 17 20 15 6 1103
16 42 88 128 198 260 210 90 16 1048
332234-MMMM 9 8 12 16 20 21 15 6 1 108
16 40 86 151 229 271 210 90 16 1109
342334-MMMM 9 8 12 18 23 22 15 6 1 114
16 40 20 174 260 282 210 90 16 1178
352,233-MMMM 9 8 13 20 26 25 16 6 1 124
16 42 100 197 299 320 223 90 16 1303




One can see from TABLE 2 that the overall connectivity 7C provides a complete ordenng of the 35
(9 isomers. The total number of subgraphs K, however, is degenerate and generates only a partial
ordering. Five pairs of isomers were found with the same K values (2,2MM/2, 4MM, 3,3MM/2M3E,
44MM/2,3,5MMM, 2,2, 3MM/2,3MM,3E; and 2,3MM/2,2,4,AMMMM). For the set of 75 C10
isomers the K index is much more degenerate with 57 different values, whereas the 7C index again
provides a complete ordering of the set.

In TABLE 3 we present the hierarchical ordering of the C7-C9 alkanes according to the set of
topological criteria specified in the previous section. The number of atoms (graph vertices) is the first
criterion which separates the C7, C8, and C9 sets of isomers. Subsets are formed in columns within
each set according to the second-order complexity K. Within each column, the ordering from top to
bottom is imposed by the third-order complexity K. This suffices to order all C7 isomers, as already
shown in FIGURE 1. In the set of eighteen C8 alkanes two pairs of isomers (3,4MM/2ZM3E;
3,3MM/2,3,4MMM) have the same *K values, and the fourth-order complexities ‘K are used to
complete the hierarchical ordering. In the set of thirty five C9 alkanes there are already seven pairs
and a triplet of isomers with the same °K values. The fourth-order terms “K order all seven pairs but
the complete discrimination of the triplet of isomers required the fifth-order complexities to be used.
The same hierarchical ordering of the C7-C9 alkanes is produced by the first-, second-, and third-order
overall complexities *7C, the values of '7C being shown in parentheses in the headings of TABLE 3
The only case in which °K and “/7C fail to produce the same ordering deals with the pair of isomers
3 3-dimethylhexane/ 2,3 ,4-trimethylpentane. The number of branches B is also shown for each column
to facilitate the branching pattern analysis.

In TABLE 4 we order in the same hierarchical manner the set of seventy five C10 isomers. They
are grouped in eight subsets according to the values of their second-order complexities ’K which range
from 8 to 15, as well as by their first-order overall connectivities ranging from 34 to 48. The high
cardinality of the subsets produced nine pairs, four triplets, and even five quintets of isomers, the
complete hierarchical ordering of which required not only ’X and “K but in ten cases also the fifth-
order complexities ’K. Moreover, the pair ofisomeric 4,5-dimethyloctane and 2-methyl,3-ethylheptane
was identified to be the first one for which the entire K'vectors 94(10, 9, 10, 12, 14, 14, 12, 8,4, 1)

are the same. However, these isomers are discriminated by the more sensitive fourth-order
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Table 3. The ordering of C7- C9 alkane isomers as produced by the hierarchical (*K,'7C; K, *7C, etc))
and the overall topological complexities (7C; the consecutive numbering), compared in parentheses
with the ordering by the Randi¢ M, index [24]

KETO)  5(22) 6(24) 7(26) 8(28) 9(30)
B* 0 1 ) 2 3
1 nC7 2 M 5 24MM 7 22MM 9 223MMM
3 3M 6 23MM 8 33MM
4 3E
K(CTO)  6(26)  7(28) 8(30) 9(32) 10(34) 12(38)
B 0 1 2 2,3 3 4
1 nC8 2 2M 5 25MM  8(9)22MM 13 224MMM 18 2233MMMM
3 3M 7 24MM 12 33MM 16 223MMM
4 4M 9(8) 23MM 14 234MMM 17 233MMM
6 3E 10 34MM 15 3M3E
11 2M3E
2K(TC) 7(30) 8(32)  9(34) 10(36) 11(38) 12(40) 13(42)
B 0 1 2 23 3 4 4

1nC922M S 26MM 9(10)22MM 17 22SMMM 33 2234MMMM 32 2244MMMM
33M 8 25MM 19 235MMM 21 224MMM 34 2334MMMM 35 2233MMMM
4 4M 10(9)24MM 15(16)33MM  24(26)244MMM
63E 1123MM 18 44MM 25 223MMM
74E 12 35MM 23 234MMM 28(27)233MMM
13 2M4E 26(24)2M3E4M 29 22MM3E
14 34MM 22 3M3E 30 334MMM
16(15)2M3E 27(28) 33EE 31 23MM3E
20 3M4E

*B stands for the number of branches
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fourth-order overall connectivity ‘7C. The agreement in the ordering imposed by the two kinds of
topological complexities is not as complete as it was for C4-C9; in eight cases the °X and *7C criteria
produce a reversed isomer ordering (2,3MM/2MS5E; 3, 4MM/3MSE; 2,4,6MMM/2,3,6MMM,
3,3MM/2,3,5MMM; 4M4E/2,3MM4E; 2,2, 3MMM/3,3,5MMM, 2,2MM3E/2,4MM3-iP,
2,3MM3E/3,3MMA4E).

The hierarchical ordering determined by Theorems 1-5 and the global ordering produced by the
overall connectivity 7C (the complexity index K is not used in the comparison because of its
degeneracy at higher numbers of carbon atoms) are the same for alkanes having 4-7 carbons, In C38
alkanes three pairs of isomers are reordered which is 1/3 of the eighteen molecules. In C9 only elever
out of thirty five isomers (31%) are ordered in the same manner, whereas in C10 this number is
thirteen out of seventy five (only 17%). The complexity patterns that produce similar hierarchical and
global ordering are the number of branches, their length and centricity. Thus, relations that are

followed by both orderings are, for example

n-C, <2M-C,, <2,3MM-C,, <..
3M-C,,, <3E-C,,
2M-C,, <3M-C,, < 4aM-C_, <..or

2,2MM-C,, <33MM-C,, <4,4MM-C,, < .., etc.

Randic suggested several relationships of this type as "cases of no dispute”. However, his idea to
extend such relationships to orderings influenced by more than one factor is disputable. We will show
in the following that the orderings 2,5MM < 2,4MM < 2,3MM < 2,2MM vary with the size of the
molecule.

The major difference between the global and the hierarchical ordering is that the latter restricts
strongly the competition between the different complexity features. In most cases, the classes of
hierarchically ordered isomers are classes that differ by the total number of branches. When in two
classes the number of branches is the same, they differ by the number of vertices with the highest
degree four (O and 1 for the dibranched heptanes, | and 2 for the four-branched nonanes and decanes).

Only a few classes allow competition between the number of branches and the multiple vertex
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branching, favoring the latter as more complex; these are the classes having both two and three
branches in C8-C10, and the class in C10 having both three and four branches. The central location
of vertices, termed vertex centricity {45], is regarded as a complexity factor inferior relative to the
number of branches and the presence of multiple vertex branching (see relationship 29).

The global ordering provided by the overall connectivity 7C allows considerably higher competition
of the complexity factors and the relative importance of these branching patterns varies with the
increased size of the molecule. The presence of multiple vertex branching (vertices of degree four) and,
particularly, branch centricity are of considerably higher importance and compete even with the
number of branches in larger alkane molecules.

The last two trends may be illustrated by comparing the ordering of the monobranched species with
the central branch position to that of the 2-n-1-dibranched species and, correspondingly, by
comparing dibranched isomers having a vertex of degree four to tribranched ones with branches

attached to different vertices:

C8: 4M<25MM ; 33MM  <2,34MMM
€O 4M<2,6MM . 2,3,5MMM < 3,3MM
C10:2,7MM < 5M ; 2,4,6MMM < 2,3,6MMM < 3,3MM

Interestingly, the leading eigenvalue M, of the path matrix, introduced by Randi¢ as a very sensitive
branching measure [23], does not exhibit these trends. However, the higher complexity of the
3,3MMC7 isomer relative to that of the tribranched 2,3,5-isomer is well reflected by three other
topological indices examined by Randi¢, the Wiener index, the hyper-Wiener index and the largest

cigenvaue of the adjacency matrix.

Compare now the relative importance of vertex centrality and multiple vertex branching (vertex
degree majorization). Typical examples are the 2,2-dimethylalkanes, the presence of the vertex degree
four of the next-to-terminal atom two in which outweighs the branch centricity only in C6 and C7
alkanes. In C8-C 10, the increased distance to the graph center displaces the 2,2MM isomer to the area

of less complex isomers
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Cé: 2,3MM <22MM

C7: 2,4MM < 2,3MM < 2,2MM

C8: 2,5MM < 2,4MM < 2,2MM < 2,3MM

C9: 2,6MM < 2,5MM < 2,2MM < 2,4MM < 2,3MM

C10: 2,7MM < 2,6MM < 2,2MM < 2,5MM < 2,3MM < 2,4AMM

This trend of increasing superiority of the vertex centricity factor, as compared to the vertex degree
four factor, is mirrored also by the Randi¢ A}, index, although to a lesser extent. It appears first in C9
alkanes, and the 2,2MM isomer is shifted one place to the right relative to our C9 and C10 sequences

The C10 alkanes offer also a rare example in which clustering appears as a complexity factor superior
over the branch centricity (normally branch centricity is a considerably stronger factor). The 7C index
of the dimethyl octanes orders them in the sequence shown above to end with the ratio 2,5MM <
2,3MM < 2 4MM . The reason for the reversed order of the 2,4-MM and 2,3-MM isomers is that the
more centric position of the branch in position 4 is outweighed by the gain in complexity from having

the two branches in the neighboring positions 2 and 3.

6. Hierarchical Versus Global Orderings of Cyclic Graphs Based on Topological
Complexity

Traditionally, studies on ordered sets of molecules discuss in detail acyclic molecules while leaving
cyclic molecules with less attention. This is partially due to the much higher complexity of cyclic
compounds, as well as to the lack of clear criteria for a more detailed graph theoretical analysis. We
will approach the problem by applying both the hierarchical and the global ordering of the set of all
simple cyclic graphs having five vertices and vertex degrees not exceeding four (FIGURE 2 and
TABLE 5. The complete tables containing the complexity index °K and the overall connectivity ‘7C

for all orders of e = 0 to E of these graphs are published elsewhere [30].
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40 41
42 44 45
46 I [ 48 f 49
TABLE 5. The ordering of the cyclic graphs 32-49, as produced by the hierarchical ('K,°7C; *K, 'TC,
etc.) and the overall topological complexities (7C, K the consecutive numbering)

K*1C 5,10 6; 12 7,14 8,16 9,18 10(20)

Number of cycles 1 2 3 4 5 6

Graph K 'TC 32 5,20 39 9,30 42 13;40 46 18;52 48 24;66 49 30,80
K TC 26,160 56,504 111,1278 230,3216 477,7806 973 18180
34 6,22 37 9,30 43 14;42 47 19,54
29,190 54,482 114;1316 235,3290
33 6,22 40 1032 45 1544
27,172 57,522 119;1396
35 7,24 38 1032 44 1544
31,212 55,492 120;1394
36,8,26 41 1134
33,230 61,566
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As seen in TABLE 5, the nondegenerate overall connectivity 7C and complexity index K provide
a complete ordering of the set of 18 graphs, as expressed by the consecutive numbers of the graphs.
The hierarchical ordering of this set starts with the ‘K and °7C indices which form six subsets of
increasing complexity, each of which has a fixed number of cycles. The vertical ordering within each
subset follows the values of the “K and '7C complexities. The ordering of several pairs of graphs,
namely 33, 34; 37, 39, 38, 40, and 44, 45, require higher-order complexities to be used. The second-
order 7C suffices to order them, however, the other complexity criterion *X produces a reverse
ordering of the first three pairs, and so does ‘K for the pair 42, 43 for which °K it is still degenerate.
Thus, in sets of cyclic graphs we also can convert the partial hierarchical ordering into a complete one
by making use of higher-order complexity terms. The difference relative to the sets of acyclic graphs
is in the larger divergence of the hierarchical orderings produced by ‘K and */TC. Generally, cyclic
graphs contain more vertices of degree higher than two, and this makes the weight of subgraph
connectivity to increase as compared to that of the number of subgraphs. Also, we find in TABLE §
that the ordering generated by the overall connectivity 7C (the consecutive numbering) in six out of
the eighteen cases examined deviates from the *7C-based hierarchical ordering (the ordering controled
by the ‘K deviates only once). In acyclic graphs, the global and the hierarchical orderings coincide up
to seven-vertex graphs; we see that in cyclic graphs the divergence between the two orderings starts
much earlier. The reason for this different behavior is that cyclic graphs have more edges and,
therefore, many more larger subgraphs than the acyclic graphs with the same number of vertices. The
global ordering by the X and 7C complexities is then determined to a larger extent by the larger
subgraphs, not by the smallest ones used as criteria in the hierarchical ordering.

In the hierarchy of topological complexity features, the number of cycles is followed by brariching
which provides a further discrimination within the sets of constant number of cycles. The first subset
of graphs 32-36 illustrates the trend of increasing complexity in cyclic structures with increasing
number of branches: 7C(35, 36) > TC(33, 34) > 7((32), and a similar relation is valid for K. The other
examples of branched cyclic graphs 40, 41, 45 reinforce this observation.

As seen in TABLE 5, the differentiation in complexity caused by the number of branches appears
in an order later than that caused by cyclicity, namely, at the first-order 7C, and at the second order

K. However, as indicated by the unbranched graphs 37-39, 42-44, and 46, 47, there is another
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complexity factor that affects exactly the same order complexites. In identifying this complexity
pattern, compare the vertex degree sequences of 42-44: 33332, 43322, and 44222, as well as those
of 46 and 47, 43333 and 44332, respectively. We find again, as in Section 4.4 and Corollary 6, a
pattern of vertex degree redistribution with a seniority relationship 3, 3 < 4,2 thatincreases topological
complexity. This pattern, called after Klein and Babic [1] vertex degree majorization, is also
responsible for the variation in complexity in the pairs of graphs 40, 41 and 35, 36. It provides an
explanation why graphs 44 and 45 have almost the same 7C value. The comparison of the vertex
degree sequences of these two graphs, 44222 and 43331, respectively, reveals two vertex degree
redistributions to occur at a time: 2,2 < 3,/ which increases complexity, and 4,2 > 3,3 which acts in
the opposite direction, and almost entirely compensate the first one

Importantly, similar patterns of vertex redistribution are associated with the most essential cases of
branching, as already discussed for acyclic molecules in Section 4.4. The creation of any new branch
at a constant number of graph vertices means just the increase in the degree of one vertex at the
expense of the decrease in the degree of another vertex. Therefore, one might consider a possible
generalization of the notion of branching. The branching of a molecular skeleton which creates
terminal vertices (vertices of degree one) may be regarded as an external branching, while the cases
of vertex redistribution in cyclic graphs with a constant or null number of external branches may be
qualified as internal branching, meaning branching of inner vertices. Thus, the cases of distinct first-
order 7C's within the sets of graphs with the same number of vertices and cycles might be treated as
different manifestations of this generalized concept of branching. Such ideas agree with Bertz's view
of cycles as a kind of branching. Seemingly paradoxical, because cycles are generally believed to have
a considerably larger contribution to complexity than branching, such views look acceptable when
presenting the branching of a molecule as a result of branching of each of the graph vertices [20]

Another topological feature that influences complexity of cyclic structures, is the manner in which
apair of cycles is connected. We term this feature cycle conmectivity. As shown in our study on kinetic
networks [46-48], complexity of kinetic graphs (measured by the number of spanning trees in the
kinetic graph and all of its cyclic subgraphs) tends to increase when going from a pair of cycles
attached by a bridge, to those connected by a common vertex, to those sharing a common edge, then

two common edges, etc. This topological pattern, if mirrored in a similar manner by our 7C-index,
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would show an increase in complexity in the series 38 ~ 37 + 39. The inversion of 37 and 38 may be
interpreted as an evidence of the inferiority of cycle pair connectivity relative to the pattern of the
vertex degree majorization occurring in these two graphs: 3,3 (37) < 4,2 (38). However, this example
may also indicate a potential trend of divergence in the complexity estimates based on the connectivity

and on the spanning trees of the cyclic graphs and all of their subgraphs.

7. Concluding Remarks

This study was centered on partial and complete orderings of molecules which result from a set of
hierarchical criteria, the hierarchy of the intermolecular order being derived from the intramolecular
hierarchical order of topological complexity. Hierarchically ordered sets are less studied than the
orderings which result from the numerical values of topological indices and may be termed “global”.
We have found that the agreement between the two types of ordering weakens with increasing size
of the molecutes, the divergence in the ordering of acyclic molecules beginning in octane isomers,
whereas in cyclic moieties it starts in cyclopentane isomers. The comparative study of the global versus
hierarchical orderings sheds some light on the different weight of the contributions coming from small
and from large subgraphs. The hierarchical orderings are controlled entirely by the small molecular
fragments, therefore these orderings may be considered as “local”, in contrast to the large fragments
which play a significant role in the global orderings. Related to this, more comparative studies of the
global and hierarchical orderings are needed, including a systematic search for all global ordering
criteria for which a hierarchical counterpart can be built.

Another problem of importance needs further attention. Inventing more and more sophisticated
topological indices we gradually transform partial orderings of sets of compounds into much more
discriminated orderings and, for molecules of reasonably small size, into complete orderings. However,
molecular properties, with few exceptions for very small molecules, do not follow closely the
structural patterns imposed by such ordering criteria. Therefore, one should not dream about finding
"the ultimate™ ordering criterion which would have no degeneracy, i. e., which would provide a
complete ordering only. Molecular descriptors with extremely high ordering potential, if ever found,

would be of value only for coding of chemical compounds but not for identifying the pattems in
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molecular properties. In contrast, descriptors with a moderate discriminating potential, like the Wiener
number, which is highly degenerate in nonanes and decanes, are considerably better in identifying
property trends. They are degenerate mainly for isomers which are ordered differently by the different
more sophisticated indices. A possible better approach for identifying property trends and for a better
property prediction could be the idea of representative ordering, obtained by the superimposing of
several molecular descriptors constructed from essential graph invariants [6,7], an idea undeservedly

forgotten.
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