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Abstract

To uniformly deal with data of environmental pollution, we represent objects (in this case re-
gions) of an ecological examination as elements of a partially ordered set. The results are vi-
sualized by Hasse diagrams. To reduce the complexity of our posets, methods of cluster analy-
sis are used. There is also a question of statistical significance of the ordinal relations. In par-
ticular we present an algorithm that first calculates an unsharp partition (using a method of
fuzzy clustering) of an object set. Next the unsharp partition is transformed to a sharp one

with the aim to define a new order. By splitting the quality function it can be shown that ob-
jects which cannot be assigned to clusters forming ensembles of more than one element con-
tribute to the method's error. A strategy minimizing that error is proposed.

Keywords: environmental poliution, chemicals, evaluation, posets, Hasse diagrams, fuzzy,

cluster analysis

1 Introduction
Often one is faced with the evaluation of objects: What is the price of an article, what
are the costs of some engineering constructions? In environmental sciences typically the eval-
uation has to be performed regarding several criteria [1]. For example, objects of such an en-
vironmental evaluation may be chemicals (as shown in [1]), or geographical areas. In any
case, in order to evaluate objects, a tuple of data is needed. Those data are considered as help-

ful to describe the objects with respect to the criteria by which they are to be evaluated. The
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evaluation requires a comparison of objects, therefore often a ranking index is introduced.
However the use of a ranking index implies that the combination of criteria can be quantita-
tively described. Typically in environmental sciences there is no consensus on how to do this
(2-4]. Therefore the concept of a partial order appears to be extremely helpful, to perform at
least a comparative evaluation. That means that the objects are partially ordered corresponding
to the componentwise order of their tuples of data. Some details are discussed in Briiggemann
and Bartel [5]. The properties useful for evaluation are called "(evaluative) attributes” and it is
convenient to introduce a set, namely the information basis of evaluation, IB. The objects
form the object set O. The partially ordered set (poset) (O,<) is then to be examined.

Several applications can be found in the literature. Here only some recent publications
will be mentioned [6-17]. The main idea of such a data driven evaluation (i.e. without any
subjectivism in finding a correct combination for the criteria of interest) is the generation of a
set of order relations. This set may be represented as an acyclic directed graph (from now on:
whenever we say "graph" we mean a directed graph). Orientation and a transitive reduction
leads to the well known visualization of the poset by a Hasse diagram. See for details the
prolegomenon of D.J. Klein, this issue.

If the number of objects to be evaluated is large, then often the Hasse diagrams are
messy systems of lines, from where no information can be drawn directly. An evaluation pro-
ject performed for an environmental protection agency (LfU Baden-Wiirttemberg) [18] had to
deal with such a complicated system of lines. The task was to evaluate 59 regions according 10
the content of lead, cadmium, zinc and sulfur in different matrices. The matrices were: herb
layer, the leaf layer (leaves of trees), moss and earth worms. Each of these matrices were
considered to be indicators for different kinds of pollution patterns. Here the leaf layer will

serve as an example.

2 Defining the Problem
As outlined in the introduction, one drawback of applying Hasse diagrams in environ-
mental evaluation (called the Hasse diagram technique, abbr.: HDT) is that large sets of ob-
jects lead to complex diagrams. The problem is not that only the appearance of the graphic,
but also (and more important) that slight differences in data (we refer to them as "original”
data) are ordinally interpreted. For example chains or antichains may lead to conclusions with

respect to objects, important for decision makers, which are not based on significant numeri-
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cal differences. An interesting approach based on the concept of probabilities and confidence
levels was recently published by Serensen et al. [13, 14]. As an alternative to the approach of
Serensen et al. one may classify each attribute and instead of investigating the original data,
indices of classes are used [5]. This procedure can be generalized to methods of multivariate
statistics, especially to different clustering methods [19,20]. Here the method of fuzzy
clustering [20,21] will be further examined, with the aim to combine this method with the
HDT. The strategy is to find a partitioning of the object set, and to order the clusters (or better:
a representative of a cluster) instead of the objects themselves. This leads to a question
concerning the relevance of such a "distortion" of the data concerning the evaluative aim. That
means, the assessment of error due to the transition to suitable representatives of a
cluster or feasibility of a given partition is to be examined more closely. Thus in this paper
two different mathematical tools are of interest:
1. The order theory as a basis for every comparative evaluation.
2. The theory of cluster analysis to perform a robustification with respect to slight
differences in data.

We will discuss a dataset (the loadings of the pollutants Pb, Cd, Zn, and S on leaves of
trees (mg/kg dry weight)) which was evaluated within the scope of the project mentioned
above [9]. In short we arrive at the following agreements:

1. 0={1,..,59} is the set of objects to be classified (we simply label the regions).

2. IB={ Pb, Cd, Zn, S } denotes the attribute set or information basis.

@
i . .
X K here W is the (esti-
g

w

. The concentration data are transformed according to z°

mated) mean and o is the (estimated) standard derivation. This so-called z-transformation
is order preserving and gears the values to a standard normal (0/1)-distribution on the inter-

val (-e0,+c0) = IR.

=

. We will denote the family of sets with potential possible values A={ IR, IR, IR, IR } (not
quite correctly but unmistakably) sometimes as IR?, too.

As clustering method, a fuzzy approach is used. By this, not only a quantity describing
the partitioning (in some cluster methods, the ultrametric [19]) is available as a steering
quantity, but also the membership function. In fact, the actual partitioning into clusters will be
described by:
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FCL: the number of fuzzy clusters which are offered,
TMF: a threshold for the membership function.

Applying these two parameters, instead of one partially ordered set (O,<) the family
F = { (Of=rcLmry <) | FCLeINand TMFe (05, 1]} of possible "clusterings” is to be

investigated'. Thus a method is to be introduced to select an optimal (O/=gcL v, <) out of

the elements of F.

3 Comparing Assessment — Partially Ordered Sets as Base and Cluster
Methods as “Simplification Tool"

3.1 Partially Ordered Sets

Figure 1: Diagram HD( O, IB, IR* ) using original data

We introduce a mapping D: O— IR", which assigns to each object o€ O of an object
set some n-tuple x:=D(0) of real numbers (in our case a quadruple x:= (X,X2,X3,X4) Of trans-

formed concentrations).

We define:abe O asb:ox®<x® J

! The equivalence relation =gcp mmr) may be called "belonging to the same cluster” and results
from specific values of the steering-parameters FCL and TMF.
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Thus, a dataset X:=D(0) C IR" is introduced (written as: X={x",...x™} c R" withO =
{0'",....,0™} ). The dataset X is partially ordered by the product order <":= < x:--x < where

n times
"<" denotes the usual order relation of the real numbers. By that convention we can consider
(0,<) with data from the leaf layer (that means to take a specific mapping Diear: O— IR") and
the resulting partial order can be visualized by a Hasse diagram, which we denote as HD(O,
IB, IR*) according to the object set O, the attribute set IB and the data representation IR* (figure
1).

The HD( O, IB, R ) shown in figure 1 clearly illustrates that the HDT reaches the
limits of graphical representation (and interpretation), although the technique is quite
suggestive. As already mentioned, the problem is that on the one hand the number of objects
not longer allows a clear graphical representation and on the other hand slight numerical
differences imply insignificant comparabilities and incomparabilities. Probably the number of
attributes does not cause the bad "representability”. That means: We do not want to change the
underlying information basis (attribute set) IB={ Pb, Cd, Zn, S }; instead, a new object set O
is to be established, for which |O'|<<|O| holds. This will be done by gathering similar objects,
combining them to "clusters", which can be treated as new objects — in simple words: using

cluster methods as "simplification and robustification tool".

3.2 Cluster Methods
In order to start in a formal correct way, we want to introduce some basic notions:

3.2.1 (Sharp) Partitions.
(Sharp) Partition. Let O be a finite set (of objects), and Aj,...,An € O with

o (Vije (I,...m}) AiNnAj=C and
Then we call (Ay,...,Awn) a (sharp) partition of the object set O (of FCL clusters).

Singleton. Let (Ay,...,Am) be a (sharp) partition of the object set O and A;={0] a cluster with

only one object. Then we call o a singleton object and A, a singleton cluster.
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3.2.2 Unsharp Partitions.
Unsharp Partition. Let O={o(”,...,o(m} be a finite set (of objects), and Ue [O,I]FCD‘N a
(membership-) matrix, i.e.

FCL
o (Vke{l,..ND Y ui=l.

=l
Then we call U an unsharp partition of the object set O. (Each object is assigned to all
clusters, "with different memberships uig".)

Remark: In these terms a (sharp) partition (Ay,...,ArcL) can be considered as unique unsharp

partition Ue [0,117Y™ with the additional property Ue Z"Y™ (Z is the set of whole numbers
. ) 1 if o®eA,; )
— the entries u;; of U are then 0/1-valued and they are given by uy= 0 ifo® gA ). In this
i i

sense the concept of an unsharp partition is a generalization of the concept of a (sharp) parti-
tion — we can talk about the matrix A even if A is a sharp partition.
Purity. Let U [0,1]7"™ be an unsharp partition (of a finite object set O={o",....0™}),

o™e0. Then we call pur(¢®) := max{uik [ ie{l,.., m}} the purity of the assignment of o,

Hybrids. Let Ue [0,117Y be an unsharp partition {of a finite object set O={0"",....06™)).
Then we call o a relative hybrid iff pur(o™)e(0.5 , 1) —we call it an absolute hybrid iff

(k)

pur(o™) € (0 R 0.5]. In general we call o a TMF-hybrid or a hybrid with corresponding

treshhold TMF (TMFe (0 , 1] )iff pur(o™) < TMF. (We do not forbid the term 1-hybrid

for sharp assigned objects.) On the other hand: Iff o™

is no TMF-hybrid we consequently call
o™ TME-pure . Iff pur(o®)e (0.5 ; 1] o™ is relative pure. After all pur(o™)=1 implies that
o™ is sharp assigned or pure at all. To sum all this up we make a small decision tree (figure

2).
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object o

no yes

o™ is an absolute hybrid o™ is relative pure

(independent of any treshhold) (independent of any treshhold)

no yes

o® is a (relative) TMF-hybrid I ‘ o™ is (relative) TMF-pure

no yes
oMisaf( relative) TMF-hybrid oW is pure
and not sharp assigned (i.e. sharp assigned)

Figure 2: How to characterize objects in terms of their purity

Itis easy to illustrate these terms geometrically. Assume that we want to get an un-
sharp partition for a set O with at most three clusters. The feasible set of possible "member-
ship vectors" is then given by the 2-dimensicnal simplex (embedded in the IR?) whose corners
represent the three possible sharp assignments (figure 3) - the usual geometric representation
of points on the 2-dimensional simplex is done by ternary diagrams (figure 4). We use this
form of visualization because it shows our terms very well: The small triangle inside of the
simplex forms the set of absolute hybrids — any object that is assigned to a point our of this
region is only a relative hybrid because it can be considered to be a member of a unique

cluster (corner) "according to its maximal membershi ur(o(k))".
g P P!
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Figure 3: A link to polyhedron theory
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Figure 4: Good and bad regions on the "simplex of memberships"

3.3 Algorithm "SHARP"
In mathematical terms we have the following task:

Let O=(0", ..., o™} again be a finite object set which is described by some measurements to

the finite dataset X={x""....x™} c IR". Furthermore let FCL be the number of clusters, in
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which the object set O is dispersed and TMF a threshold between 0.5 and 1, which describes
when an unsharp classified object can nearly be assigned sharply to one unique cluster®.

Then consider the procedure

SHARP(O,D,FCL,TMF) (FCLeNand TMFe (05 , 1])
1. Generate an optimal® unsharp partition U:= UNSHARP(O,FCL) of the object set O by
means of D(O)=X={x",...x™}.
2.Fork=l.Ndo: If  (3ie {1...FCL}) ux > TMF (e pur(e™) > TMF )
Then Assign o to cluster A, .
Else  Assign o™ to the set of TMF-hybrids (called Hyb(TMF))
3. Return A:={A,; | A; # @ } and Hyb(TMF).

This is our heuristic approach aiming to combine cluster analysis with order theory —
as could be read in the last footnote, the meaning of the procedure UNSHARP which
calculates the matrix elements u; of an unsharp partition U will briefly be explained later
(section 4), up to now we only have to know that UNSHARP delivers an unsharp partition.

At this point the output of SHARP(O,D,FCL,TMF) may be seen as a partition of the
whole set O: We may formally assign each he Hyb(TMF) to a cluster which contains only one
clement considering the partition B:=A U ( (h} | he Hyb(TMF) }

Even the case |Aj|=1 is possible, however there is a great difference between the
clusters A; with the property |Aj|=1 and the clusters {h} with he Hyb(TMF), even if we can
call all of them singleton clusters. An ae O with Aj=(a} is nearly optimal for the unsharp par-
tition — the assignment to a singleton cluster is not arbitrary. But our dealing with TMF-
hybrids is arbitrary — it is just an emergency measure because we do not get enough informa-
tion about a suitable assignment from the algorithm.

The sharp partition A drops out all TMF-hybrids — they are collected in Hyb(TMF).
However, the evaluation by the HDT must include all singletons even those of set Hyb(TMF),
because their x-tuples may reveal a strange pattern of pollution which may has an influence on
suitable remediation procedures. Consequently partition B is the starting point to find a new

order. As an example we plot the diagram of figure 5 that is a planar® graph. (The conclusion

2 See Bock [21] for details of unsharp clustering.
* We will describe below, what "optimal" means.
* A planar graph can be drawn in the plane without intersections (of edges).
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that therefore the dimension of the poset is 2, and that therefore an embedding into IR? must

be possible, will be suppressed here.)

HD( SHARP(O,D,6,0.6), IB, IR* )
Eleven 0.6-hybrids: {4, 19,29, 34, 38, 43, 45, 52, 55, 58, 59}
nontrivial equivalent classes: (6,15,28,40,42,37,26,36,54,25,11,44};
(6 clusters, 49 assigned objects) (8,17,18,23,14,57,10,31,32};
{7,30,5,41,27,47,48,51,50,60,1,20,56 };
{9,13,35,33,12,21}; {16,3,2}; {22,39,49,46,53,24)

Figure 5: Hasse diagram of clusters, instead of objects. The labeling corresponds to a

representative of the equivalence relation =(6, 0.6). (Nontrivial equivalence classes are

indicated in the diagram.)

If we consider this HD as "suitable” for a description of our regions/objects, it offers
much more information about the relationships between the objects, than the first one:

* Isolated objects: An isolated object (vertex) of a graph is an object which is not connected
with any other. In the HD on figure 5 we have three isolated objects (=clusters): {19}, {34}
and {22,39,49,46,53,24}. If we can consider our clusters as "well seperated”, we have to
regard this clusters as indicators for specific patterns of loading.

« Articulation points: An articulation point (vertex) of a graph is an object which removing
would split the graph. For example {9,13,35,33,12,21}, {43}, {52} and {55} are the articu-
lation points on figure 5. Such points give information about the data structures, too.

* Chains: A chain of a graph is a directed sequence of connected objects (vertices), i.e. in

figure § "9—29—59" is a chain but "9—52—45" is not. In our case a chain describes a si-




— 129 —

multaneous increasing {decreasing) of different loadings, so a chain gives rise to determi-
nistic reasoning (see Briiggemann [24]).
¢ Antichains: An antichain of a graph is a subset of objects (vertices) which are mutually not
connected by an edge. An antichain of a poset is a subset of mutually incomparable objects.
In our example antichains correspond to the diversity of pollution patterns. For each pair of
incomparable objects at least one attribute value increases at the cost of another one ("an-
tagonisms" of attributes). There are two special antichains of a partial order that are always
of special interest: The set of maximal and the set of minimal elements.
Of course we can search for chains or isolated objects in the first HD, too. But in the first
diagram an isolated object may be the result of slightly antagonistic fluctuations which do not
allow conclusions for the data structure and if we look at (anti-)chains or articulation points
the situation is similar - one of the few things the first HD shows "pure" are the extreme ele-
ments (maximal and minimal elements).
However, we still need a measure for the quality of our clusterings, i.e. the main ob-
Jective can now be defined: It is to assess the clustering, depending on our methodological
(steering) parameters FCL and TMF.

In order to reach this goal, a quality-function is needed that assess our clustering.

4 Quality-Functions, Splitting of the Unsharp Partition ("good/bad"), the Sharp,
the Unsharp and the Mixed Partition
As mentioned above, the basis for evaluation by partial orders and its visualization by
Hasse diagrams is the partitioning B. After assigning objects to clusters corresponding to their
uj-values and their relation to TMF the fuzzy clustering gets a "hard" one, i.e. a sharp parti-
tion B is generated. Therefore conventional quality functions (like the sum of the quadratic

distances of the vectors x™® to their cluster centers z*) may be appropriate:
N 2
o e ®) _ =l
gshlrp(FCL‘TMF)‘ngsh“p(B)-_ ;I”x =z “

An example of performing the algorithm SHARP with multiple FCL and TMF and
ganarp(®) as quality function is shown in section 5. The function geap(®) seems not to be appro-
priate, because the effects of the TMF-hybrids are not visible - their error is "ignored” (it is

zero because every TMF-hybrid is its own center), but these objects are important. However,
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quality functions, which explicitly take the membership values uy; into account, may be more
appropriate. Reference [21] gives us 2 measure for the quality of the unsharp partitions:

FCL N
guushurp (FCL) = g unshurp (U ) e E 2 u ir“ 2 "x‘k) = Zm"- »

=1 k=1
withr > 1 as a robustness parameter (we sometimes write briefly "g" instead of " gunsharp”)-
Note that gumsharp(U) only depends on FCL and guasharp(U) = gsharp(U) holds for all sharp parti-

tions U® ( we then have: uj=1 = z%= 2¥).

Remark 1: The hypothetical procedure UNSHARP solves the optimization problem:

"min g(U), subject to: Ue [0,1]7“™ is an unsharp partition”. That is the meaning of the
formulation "optimal unsharp partition" in our description of algorithm SHARP. Although
this optimization problem cannot be solved in an explicit form there is a way to approximate a
local minimum by an iterative algorithm (Bock, [21]). The draft of Bock inspired our theorem
1 about mixed partitions in dependence of the steering parameter TMF (see below).

Remark 2: The "robustness parameter” r could be chosen to 1, but for r=1 an optimal unsharp
partition refer to gunsharp Would be a sharp partition (as proved in [21]), so this choice makes

no sense. The exponent r shall reduce the influence of small uj in contrast to the big ones.

Varying both steering parameters, different A- (and B-) partitions arise. In the case of
the B-partitions not only FCL but FCL+Hyb(TMF)| formal clusters are to be examined. The
quantity [Hyb(TMF)| depends on FCL and TMF.

To understand the behaviour of our partitions as functions of FCL and TMF, we offer
Iwo propositions:

1. We are splitting the measure gusharp(U) into two parts:

FCL
200d,.,.., (U TMF}= ¥, ¥ ui|

i=l kg0

2
x""—z"’” ,  referring to partition A

(with © := {k efl,...,n}| o® & Hyb(TMF) }); and

3 Note the two different terms for the centers: Z* stands for the center of the cluster to which
x™® is assigned (makes only sense for sharp partitions) and belongs only on those objects,
which belong to the cluster. z” generally describes the center of cluster i (i€ {1,....FCL}) and
depends on the contribution of all objects — this has to be done for unsharp partitions. Later
we will use the notation zZ* for the unique center of cluster i with u;, > 0.5 too — such a

cluster exists for pure objects.
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FCL =
baduswp (U, TMF) = 2 Z Uik “x"" - z“’”y 5 referring® to Hyb(TMF).

i=] ke®
Therefore the contribution of the TMF-hybrids to the variance in guustarp(U) can be
quantified: gusharp(*) = g00dunsharp(®, TMF) + baduasharp(®, TMF).

As far as approximately unsharp(®) = 800dunsharp(®, TMF) is valid, the use of the quality

function gy of hard clustering may be justified.

[

. We are introducing a "mixed partition” Upy:=Ugix(U,TMF), with TMFe (0.5 N l], ie.
we define:

Unmix := (pi) for fixed i€ { 1,...,FCL} and ke {1,...,.N} formally as

L if ux > TMF;
p=1 0, if (3je{l...FCL}\(i}) uy>TMF;
ue, if  Vj€{l,...,FCL)  up<TMF;

What happens here is a "rounding" of the membership matrix, but only in some columns
(each object corresponds to one column). If the value of the membership-function uy of an

object o®

exceeds the treshhold TMF, we increase it to 1 (sharp assignment) and have
consequently to drop down all other uj (j#i) to 0. (See figure 4: all TMF-hybrids are
"moved" to their (unique) corner of the simplex. See also: figure 6.) Therefore we get
something like a sharp partition, but in contrast to the sharp partition we still include the
TMF-hybrids as unsharp assigned objects (formally the mixed partition is considered as an
unsharp partition).

Clearly the quality function gunsharp(®) of Unix differs significantly (in some cases) from

the assessment of A, because Uy is a rounded optimal solution, where A would not even

have the same format as U’

% Note that [|[x®-z” # 0 (i.e. x™ % 2 ) holds for all hybrids x*'e Hyb(TMF) and all centers
(e {1,...,FCL}).

? More formal by: U € [0,117"*™ is a FCL x N-matrix (like Upy). If the sharp partition A is
formulated as Matrix, we get A€ {0,1}( FELHMTMPINN o6 A i 4 ( FCL+[HYB(TMF)| )xN-
matrix, it has another format than U,
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Set pi:=1

@je {1,...FCL\ D
lljk>TW &

no yes

Set pix:=nig I Set pix:=0

Figure 6: How to calculate the mixed partition

For the mixed partition Uy, the following theorem holds:
Theorem: Let U=(u;) be an optimal unsharp partition for O = {o'",..., o™} with X = {x"",..,
x™} ¢ IR". Furthermore let 0.5 < tmf < TMF < 1, let p be the mixed partition corresponding
to tmf and let P be the mixed partition corresponding to TMF (and U). Then g(P) < g(p).
Proof: We prove the equivalent relation g(p)-g(P) = 0. In order to do this, define a subset I of
the set {1,....N} of all indices as follows:
I={ke{1,..,N} | 3 j&(1,..,FCL}) e (tmf , TMF]}

(k)

For each relative pure object o™ we call its center Z¥ (the unique z% with vy, > 0.5) (we will

need no special notation for the absolute hybrids). We further introduce:

(ke {l,.N)) a¥im g

E”xm - z(j)“-zu-n

=l
We then have:

FcL !

N FCL
ep-e®= 2 X (ph - PRk - 2 =Y X (ph - PR [lx® - 20
k=1 i=1

i=1 k=1

FCL
=3 3 (pL-PL)- f|x - z“’”l because for all kg1 one gets pu=Pi=ui especially

kel i=1

according to theorem 2 of reference [21]. Further:
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FCL : ; reL
PIDCHES SO LR (DY [I!x‘“— - Y uh k- ~'||]
kel =1 ket i=
= E (”x“‘] " ?(k)!’ig [(d (k)) lx @ - z"’“ 27 l)] ”x _ z("“ J

kel

[“x z(k:”2 _ (dck))' " FCL”x(k) _ Zm”_%—-nj
kel i=1

(chk) . Z(k)llz - (d(k))HJ

i

By definition of I:

ke

B
e [tmf . "x‘k’—‘z“"lr{m , TMF. “x“"—i(“]ll}f"n}, i.e. every part of the sum above is in

the interval [ (1- TMF"')-”:;d‘"—i("’”2 , (1- tmf"l).”xt")_i“’"z) and therefore not

negative. Q.e.d.

So we can restrict our consideration to a strip out of the region of absolute hybrids (see figure
7.

Remark: This theorem shows that choosing a higher TMF leads to a better mixed partition.
On the other hand, if we increase FCL, we know what happens to the (optimal) unsharp parti-
tion — it can at most be improved. (Note, that this is not necessary true for sharp partitions.)

FCLxN

This follows from the fact that every unsharp partition Ue [0,1] can be written as an

unsharp partition Ue [0,1]F AFCLN with AFCL more clusters — call it a relaxation®,
[ustration:
LR L wmN
i (WY ”
relaxation UrcLl “t MFCLN
o - 0
UpcLy) ' UFCLN, 7 g ) .
: AFCL — times
0 0

¥ A relaxation describes the transition to a greater set of feasible solutions in a problem of
optimization, i.e.:
min/max g(x)  relaxation min / max g(x)

For ACB we have
s.L.XEA s.t.xeB
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corner of 2" cluster

region of absolute
hybrids

0 05 imi TMF 1

corner of 3“ cluster U, corner of 1" cluster

Figure 7: Tllustration of the position of relevant objects (for three clusters)

Concluding:

With respect to the mixed partition we can justify the heuristic recommendation to choose

both parameters as high as possible, if one wants a "good" mixed partition. As we have two

perspectives to interpret the sharp partition, we further recommend two strategies:

1. If the singletons are not considered as important, choose an FCL where gqarp(*) has a
(maybe local) minimum. Select TMF as high as possible.

2. The more important the singletons, the more one should select values "nearer” to a mini-
mum of badysharp(*). The importance of singletons may be derived from their position in a
Hasse diagram. If some singletons are (for example) extremal elements they are regarded as
more important than others.

Figures 8 and 9 visualize the results of both strategies and show that a good choice with

respect to the quality function does not imply a clear and readable diagram. Figure 9 is better

readable than figure 8, whereas the HD shown in figure 8 which is similar to that of the origi-
nal one (figure 1). The strong difference between these two HDs results from the fact, that the

first strategy tries to minimize gnarp (different from but similar to goodunsharp) while the second
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strategy tries to minimize badynsparp (antagonistic 10 g0odunsnarp). It is clear that a higher TMF
leads to more objects in the HD (more hybrids) and a higher value for badyssnarp. Therefore so
in the second strategy we did not choose TMF "as high as possible" but "as low as possible” —
this makes the second diagram more "readable” than the first but there is no "guarantee for
readability". This is not surprising, because our quality function expresses the feasibility of
our clustering, On the other hand TMF is a demand for the separation of the clusters (we will
give no formal discussion about a quantitative description of separation or the entropy/fuzzy
measure for they are explained for example in [21}- an intuitive idea of separation is still

sufficient), so we have still said nothing about the resulting HDs themselves.

S
¥

5%

Figure 8: 1 Strategy — HD( SHARP(O,D,8,0.9, IB, R*)

For TMF=0.9 this diagram has the minimal value of g (and of goodupsharp). There are 37
0.9-hybrids. The nontrivial equivalent classes are:
{17,23,57}; (9,13,35,33,12,21 }; (16,3}; {22,49,24}; {5,60,56}; {27,50,20}; {36,11}, {42}

(8 clusters, 23 assigned objects)l’

’ There occurs a singleton object (42) which is no hybrid. The reason: In the unsharp partition
some membership values of the other objects to this cluster were different from 0 so the
cluster-center of 42 is not equal to the dataset of 42. After the rounding process ail other
objects were assigned to other clusters (or became singletons), so we got a one-element
cluster.
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What then is our intuitive idea about a HD's “"readability"? Graph theory gives some
attempts to answer this question. We have mentioned that the "readable” graph on figure 5 is
planar and indeed the number of crossings may be seen as first measure for complexity.
However, up to now there are only heuristic algorithms known, to calculate the crossings of a
directed graph (see Sugiyama [24] and Deffland [25]), and even then there is no advice when

a readable diagram would be obtained.

Therefore we introduced an own heuristic measure for readability of Hasse diagrams:

0 0<s<f
=
T.(s):= ﬁ B<s<a 5
——l_s <s =
l-a

number of incomparabilities : ; T
§:= : - 0 =03 S  a=08 1
number of objects - (number of objects - 1)

The quantity s is the ratio between the number of incomparabilities of the partial order
and the number of edges of the corresponding complete directed graph (there is no "N" in the
denominator of s, because in the partial order every cluster is considered as one object, i.e.
"number of objects” < N) — ot and [ are again steering parameters. The function T is
motivated by the observation that chains (T (s)=s=0) and antichains (s=1, T,(s)=0) are
extremely "readable”, therefore complex HDs will probably appear for se [§,1). Empirically
we have set =0.8 and $=0.3 and then defined the product ("number of objects" * T(x)) to be
the complexity of our partial order.

In figure 8 our "unreadability measure" delivers 45*0.87=39.09 which is much higher
than (23*0.98 = 22.56), the value for figure 9. Both values are distinct lower than the value for
the "original" HD on figure 1 (60*0.97=57.97) but higher than the value for the planar graph
on figure 5 (17*0,63=10.63) as was to be expected.

Obviously both strategies lead to a considerable reduction of the HD's complexity
compared to the complexity of the original HD. Our two optimization strategies however did
not lead to the HD of figure 5. An improvement is to be expected if the optimization is
performed under the constraints of a complexity measure (which may not necessarily identical

with our heuristical one).
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Figure 9: 2™ Strategy — HD({ SHARP(0,D,9,0.6, IB, IR* )
For FCL=9 and TMF=0.6 this diagram has the minimal value of badsharp. There are 14 0.6~

hybrids. The nontrivial equivalent classes are:
{6,15,28,42,37,26,36,11,44), {7,5,41,51,60,1}, {17,23,57,31,32}, {9,13,35,33,12,21}, {16.3},
{22,39,49,53,24}, (18,27,47,50,20}, {40,4,46,43}, {29,38,59,10}

(9 clusters, 46 assigned objects)

Finally we want to state clearly that it is not enough to compare two HDs if the (dis-)
similarity of the underlying posets is the focus of interest. Two posets may be very similar but
have very dissimilar HDs. A detailed discussion of this point would require the introduction of
graph theoretical terms and measures which would go beyond the scope of this draft. We give
just an example for "hidden similarities" of HDs: In figure 8 we see the comparability {6} <
{47} which seems to disappear in figure 9. But in figure 9 the relation
{6,15,28,42,37,26,36,11,44} < {30} < {18,27,47,50,20} holds (we consider the relation {6}

< {47} as "preserved").

5 Exemplary Evaluation of the Quality Functions
Results of the proposal 1
For the dataset of the leaf layer we get — in dependence on TMF and FCL ~ the
following form of the graph of gurp(*) (see figure 10). Contrary to the expectation that g
should depend monotonically on FCL (more clusters, smaller variances), at higher FCL-values
there is an increase in the value of the quality function. However, this graph is not helpful,

because there is no differentiation between the partition A and Hyb(TMF). The unsharp parti-
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tion, which depends by definition only on FCL, shows on the contrary a monotonous

decreasing quality function gunsharp(®) for increasing FCL (figure 11).

gsharp

Figure 10: ggarp as a function of TMF and FCL
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Figure 11: gunsharp as function of FCL
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TMF

557 FCL

Figure 12: goodusharp as function of both steering parameters FCL and TMF

(In the second figure we consider the proportion 200dunshary/Sunsharp.)

The comparison of goodunsharp(®,®) (figure 12) and badunsharp(®,#} (figure 13) shows clearly that
even for small values of TMF the "bad" part of the error is relatively big: the "bad" part for
high TMF increases up to 75% (FCL=4, TMF=0.9), the contribution of the "good" part to only
62% of the whole variance(at FCL=5, TMF=0.6).
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Figure 13: badunar as function of the two parameters FCL and TMF. Note the scale used here

in comparison to that of Fig. 12.

The main information we get from fig. 12 and 13 is that the form of the graph of
g00dunsharp(®,®) is very similar to that from gg.n(e,#). Therefore the non monotonous
behaviour of guap may be explained by the appearance of TMF-hybrids, i.e. by the effects of

bﬂdunshnrp -

Results of the proposal 2

The mixed partition is much "tamer" than the sharp one (in the sense that the 2-
dimensional curve of the assessment of the optimal partition U can be recognized). Its form is
plausible — the higher TMF, the "more" is the optimal (unsharp) solution rounded. (This
means: The substitution of an unsharp assignment of an object to all clusters with a sharp
assignment corresponds to a "rounding” of one column of the matrix of membership U to a
0/1-valued column vector). It is not obvious that generally the quality function has to be a
monotonous decreasing function of TMF, but we proved it in the theorem 1.

It is interesting that the dependence of TMF on figure 14 is very small in relation to the
dependence of FCL. That seems to affirm that our optimal unsharp solution is only slightly

modified - it should be so because otherwise the rounding of our unsharp partitions would be
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a big distortion (i.e. our method is "empirically justified”). For TMF=1 we would get the

quadratic distance of the unsharp partition (figure 11).

Lo

80

gunsnalp

Figure 14: Mixed partition

6 Conclusions and Outlook

We started with the realization of the fact that large datasets need a reduction — in this
or in other ways — if they shall be evaluated by using the HDT. Now we are at the starting
point again. We ask: How shall data be reduced in order to be still useful?

The aggregation of different attributes in order to form a ranking index, which in turn
induces a total order does not soive that problem — but we can think about some more (not so
primitive) possibilities (like methods of clustering), and try to use their advantages. One of
this advantages is that we can quantify the total error, and explain some details as shown in
this paper. The quantifying of the error may be well done by the proposed methed, however
another important point was omitted: The order preserving. We do not expect this property
from a statistical method — but instead of calling this a weakness of the method, we can say
that this is a way to avoid over-interpretations (only insignificant relations are destroyed). Of
course, in general order preserving methods are better than methods that are not order
preserving. The problem in this point seems to be that there is still no uniform theory of

cluster methods coupled with applications as shown here, even if we see efforts in this field,
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as for example the approach of Janowitz [22]. What we need is a formal combination of order
theory and cluster analysis, especially in environmental sciences, where large datasets are to
be evaluated. However a methodological way which is only defined by mathematical
properties of the input data will be independent from its use. Such a method will be applicable
to non-environmental data too, namely in all those cases, where several properties are to be
considered at once. In that sense it is hoped to contribute to the puzzle "partial orderings in

chemistry”.
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