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Abstract

Building upon previous work, software that generates isomers from real-life constraints (large
fragments, hybridisation states, etc.) is presented. The software is based on the genetic
algorithm. Isomer generation seems exhaustive. Numerical analysis objections against floating-
point approximations to real number-based topological indices are delivered. Also described is a
novel, integer-based, efficient way to discriminate between isomers by computing their
“fingerprints”. This also allows determination of topological equivalence classes.

Results are compared with those from DENDRAL, MOLGEN+, AEGIS, CHEMICS,
Hendrickson's SKEL_GEN and ESESOC. Omissions in DENDRAL's isomer lists are observed
and illustrated. Comparison with SKEL_GEN and MOLGEN show small, explained
discrepancies with Galvastructures for some very unsaturated molecules; perfect agreement is
obtained in all other cases.

The software used is available freely, to let readers replicate the results and test the method on
the information of their choice.

Keywords

Structural elucidation, connectivity matrices, topological equivalence classes, isomer
generation, genetic algorithm, GalvaStructures.



1. The Problem

In a previous paper (Ref. 1), | had described a method (and its associated software,
GalvaStructures) for reconstituting correct connectivity matrices from partial information, to wit,
fragment lists or atom numbers. It seems a good thing to use the genetic algorithm’s peculiar
competence in managing any mixture of constraints through the use of a "fitness function”,
rather than using the graph theory formalism and finding the symmetry group. The present
paper builds on these first results in a few directions.

First, thanks to the flexibility of the genetic algorithm’s fitness computation, isomers satisfying
any mixture of criteria, from the very lax ("find all iscmers having N carbons and any number
of hydrogens") to the very strict (complete the given partially-filled connectivity matrix, with so
many Hs and specified hybridisation states) can be reconstituted. It is now possible to complete
partially-filled connectivity matrices, containing for instance fragments and hanging bond
specifications deduced from '3C NMR spectra, making the software close to actual, practical lab
use. Practical experimentation showed us that reassembling fragments is fraught with
difficulties, even for an experienced practitioner. This is a thankless, uncreative task, well worth
automating.

Secondly, we were faced with the problem of many connectivity matrices actually
describing the same molecule. This abundance of duplicates made the task of checking
isomers, as well as comparing to other generators' outputs, very painful. There has to be a
"preterred” form among all those possible, the “canonical matrix”. Producing this canonical
matrix may involve working on the matrix itself, or finding some "cancnical numbering” for the
atoms.

Of course the problem of canonical matrices is not new, and not easy either. It is equivalent to
that of unambiguously ordering atoms in a molecule, since once a "canonical labelling" has
been obtained, one only has to rewrite the connectivity matrix with the atoms in the canonical
order.

After a careful review of the literature, and convinced of the difficulty of the problem as it is
traditionally posed, we ended up completely avoiding working on matrices and instead
generated unique "fingerprints” for the connectivity matrices, fingerprints for two connectivity
matrices being equal if & only if they describe identical molecules. These fingerprints play the
same role as molecular topological indices while avoiding the pitfalls of floating-point
calculations. There does not seem to be any degeneracy. Encouraged by this partial
success, we then increased our ambitions from finding a couple of isomers to exhaustively
generating them.

Thirdly, various improvements were made to increase the efficiency of the software. Compact
encoding was implemented in addition to "straight” bonding matrix encoding, to shorten the
genotype when large molecules are concerned. Our encoding differs from Hibbert's "bond
tuples” (Ref. 2) in that we explicitly encode the number of bonds of each type in the tuple
instead of repeating the tuple as many times as the order of the bond; this makes decoding
quicker & simpler. GalvaStructures automatically chooses whichever encoding is shorter.

2. Floating-point topological indices : a numerical
analysis viewpoint

In a nutshell, topological indices are real numbers used in order to condense the information
contained in a whole matrix (local information for an adjacency matrix, global information for a
connectivity matrix). The transtormation of the matrix into a single number is performed using a
mathematical function or an algorithm-like series of steps.

There can be two aims to this. First, we may want that the size of the difference between two
indices reflect that of the differences in their associated structures. Here the numerical value
has meaning.

In the other and more common use, we are not interested in the actual value produced, but we
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want each different structure to map to a different real number for indexing or discrimination
purposes. Here we are concerned only with that latter aspect.

With all due respect to my distinguished predecessors, there are a few fundamental problems
associated with numerical topological indices.

Topological indices and hashing

This problem of transforming a large amount of data into a small one while ensuring a one-to-
one mapping is well known in computer science under the name of hashing. There is a small
formal difference in that programmers read the number generated as a large integer and use it
as an index into a database. But the need for a unique mapping is the same, and both types of
numbers are represented in computer memory as series of bits.

It is surprising to notice, when reading the chemical literature, the complete absence of the
term hashing, or of any reference to standard algorithm books - most of them have a whole
chapter on the subject. This is a pity because the first thing they mention is that "no hash
function is perfect” (Ref. 3). "Collision resolution processes” (actually, second-level hashing)
always have to be introduced to resolve the unavoidable cases where two distinct records
map to the same index.

As if this were not enough, computer-style «real numbers» also pose problems of their own.
Real numbers vs. floating-point numbers

Mathematical, continuous real numbers are not the same as their discrete computer
approximations, floating-point numbers. Floating-point representations of real numbers (as
finite-size mantissa and exponent, plus a sign bit) pose special problems. The apparent
confusion between real numbers & their floating-point computer representations is quite
surprising to any programmer with a smattering of numerical analysis. This is not uncommon
and resembles the erroneous distinction often made between "binary encoding” and "real
ancoding"” in the genetic algorithm world - both end up encoded as bit strings anyway.

First, it is a well-known rule among numerical programmers to never test floating-point
numbers for equality. Any calculation generates rounding-off errors, and index computation
procedures risk not yielding the exact same results according to the order in which calculations
were carried out, the brand and model of the processor, even compilation options. "A computer
result always being the (sometimes very bad) approximation of a real number, equality of
computer images does not imply equality of the numbers themselves, and conversely. Thus,
test x == y, If one is not working with integers, is absurd on a computer” (Ref. 4).

Also, the accumulation of cperations has the consequence of increasing loss of precision :
“pretty much any arithmetic operation among floating numbers should be thought of as
introducing an additional fractional error of at least en," (Ref. 5). em, the "machine accuracy”, is
the smallest floating-point amount such as 1 + ey is computationally different from 1. It equals
around 2.2 107 for double precision numbers (coded on 64 bits), and is defined as
DBL_EPSILON in the C programming language, in standard header £1oat.h.

Liberal use of square roots, whose values are often computed by the floating-point processor by
summing a slowly-converging series, compounds the problem as their precision is generally
much less than optimal, sometimes as little as 12 significant bits on older computers.

The numerical analysts’s dilemma

Even if the procedure is sound as far as the order of calculations is concerned, we are falling
between two stools : either we use short floating-point numbers at the risk of not discriminating
between two similar molecules because their associated indices differ only at a too-remote
decimal place that gets rounded off, or we use very long representations, at the risk of rounding
procedures and calculation order making different two numbers that should have been equal in



a "perfect” mathematical calculation.

Only one author (Ref. 6) broaches the subject of the number of "useful digits" necessary. Using
|EEE-754 double precision numbers (52-bit significand, 11-bit exponent, 1-bit sign), there
cannot be more than 15 significant digits at best. This writer's experience is to perform
calculations using double precision, and then cast the results to single precision (32 bits) before
comparing them. There are then 8 significant digits only. This is similar to the operation of the
computer’s floating-point processor : the internal format for computation of exponentials and
such is 80 bits during intermediary computations, and the result is truncated to the regular 64-bit
format only in the end.

The only "safe” computer representations are those involving only integers.

Indices such as Hu & Xu's (Ref. 7) are claimed to never give the same result for two different
molecules, but it can be argued that they will not even give the same result for two different
connectivity matrices describing the same molecule, or on a computer with a longer or shorter
floating-point size. On top of this, a simple, quick numerical analysis performed on their
algorithm indicates that, in using a formula like

weight = Term1 + Term2 x 107,

where Term1 and Term2 are of the order of unity, beyond atom rank j = 16, the contribution of
Term2 x 107 is smaller than &, and therefore computationally zero. Such a procedure may
then not perform any better than BID (Ref. 8) or SID (Ret. 9) indices, that were at least valid up
to rank 18 or 20.

Moreover, the use of 107, or 0.1/, lends itself to criticism as 0.1 cannot be exactly represented in
the binary system (it is 0.0001100110011...).

All this may or may not be a problem in practice, but it would be reassuring to be able to think
that the authors of any procedure are at least aware of the existence of the problem.
"Numerical methods without some determination of the errors involved are of
questionable usefulness” (Ref. 10).

Also and more fundamentally, it seems quite wrong to claim that any molecule can be described
by a fixed-size number. One cannot fit an unlimited amount of descriptive information into
64 bits. Unambiguous description has to be similar to the IUPAC naming scheme : the more
complex the molecule, the longer the name or the molecular descriptor.

3. Unambiguous "fingerprints” and topological
equivalence

The fingerprints | propose are an ordered list of integer values describing as completely as
possible the environment of each atom in the molecule. Information-reducing procedures such
as replacing a list of values by their sum, as well as arbitrary, ad hoc coefficients, were avoided.

The method will be generally exposed, with a practical example following. It is independent from
the rest of the software and could be coupled with any structure generator, preferably as a
sieving stage for the output of a (possibly crude) systematic generator.

As has been already observed, a truly unambiguous atom environment descriptor must take
into account all of the atom's environment, up to the extremities of the molecule. | followed
Carhart's (Ref. 11) good advice to “carry out a full atom-by-atom, bond-by-bond comparison of
the total topological environments of atoms being compared”.

Each atom’s description has four parts :

e description of the atom : nature, hybridisation state, number of first neighbours, rank of
most distant neighbour, rank of most distant bond.



* ordered list of its first neighbours' descriptions (nature, hybridisation state, number of
first neighbours and rank, for each neighbour),

* concentric list of the bonds as seen from the central atom, and
« ordered list of the individual fragments.
The ordering we mention here is by increasing rank as seen from the atom under consideration.

Each fragment is described by the quadruplet (class index of atom 1, class index of atom 2,
bond rank, bond type). Atom 1 and Atom 2 are ordered so that atom 1 always has the smallest
class index. The concentric list of bonds mentioned above is a list of (number of single bonds,
number of aromatic bonds, number of double bonds, number of triple bonds) by increasing bond
rank.

Atom ranks are the usual ones : 1 for the central atom, 2 for its first neighbours, etc.

Bond ranks are designed as follows : rank 0 describes bonds between the central atom and the
first neighbours, rank 1 describes bonds between first neighbours if any (if there are such
bonds, this means the atom being considered belongs to a 3-cycle), rank 2 describes bonds
between first neighbours and second neighbours, rank 3 describes bonds between second
neighbours if any (if there are such bonds, this means the atom being considered belongs to a
5-cycle), etc.

Any difference in bond location will make a local difference from the viewpoint of the atoms
close to it : there will therefore be a difference in these atoms’ environments. Practical results
indeed reveal no degeneracy, except in one case analysed farther.

Each atom’s environment description will have length proportional to N-1 (in addition to the
central atom’s description), N being the number of atoms in the molecule. There will be N such
descriptions, so the total length of the molecule’s fingerprint will be of the order of N squared.
This is computationally unsatisfying, but looks more robust from a theoretical viewpoint.
Advances in computer memory size & processing power make this a small price to pay if true
nondegeneracy is actually achieved.

All complete descriptions are then sorted with respect to each other, so we end up with an
unambiguous descriptions list, no matter in what order we considered each atom. The order in
which atoms are sorted is used to attribute class indices to them. The comparison function used
for sorting compares everything in the description. To the extent that the environment
description is complete, two atoms comparing as equal are chemically equivalent.

Recalcitrant compounds such as Figure 1
Shelley & Munk's (Ref. 12) 1 and 2 -
(Figures 1 & 2) as well as all others in this N/
paper are correctly dealt with :
GalvaStructures does find that all atoms in
these molecules are nonequivalent. We 72\
therefore seem to have, en passant, N

stumbled across a method for reliably identifying topologically equivalent —

atoms. But for us, this is merely a method of renumbering the atoms in a

representation-independent way, for use in each atom’s fragment list.

As class indices are used in the fragments, themselves used for sorting, there is a loop
between sorting the descriptions and renumbering the atoms, repeated as long as the
numbering is not stable. No oscillatory behaviour was observed during this procedure.
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4. A practical example : Cs isomers

The following describes atoms and their environments for the Cs molecule, illustrating the
method used to build the fingerprints. The detailed fingerprint information displayed here is
available using GalvaStructures' /DFP option.

1 &
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0.0 H, 6 Cy, 0 ArCy. 1 equivalence class. Highest atom rank=2.

First the connectivity matrix is displayed, as well as some molecule-wide information : number of
Hs (in this example it is 0), number of cycles (6 for this isomer), number of aromatic cycles and
of equivalence classes, and the highest atom rank.

nunwna

Atom 1 (Class 0) : C, MaxRank :2, Hybr. :sp3, 4 first+0 other
neighbours.

First comes information about the central atom : nature, rank of the farthest neighbour,
hybridisation state and number of nearest and farther neighbours.

Neighbours : Atom 2 :Rk2, C, 4 1stNg, Hysp3, BdS. Atom 3 :Rk2, C, 4
1stNg, Hysp3, BdS.

Atom 4 :Rk2, C, 4 1stNg, Hyap3, BdS. Atom 5 :Rk2, C, 4 1stNg, Hysp3,
BdS.

Then each neighbour is described : first its number, then its rank with respect to the central
atom, its nature, number of its first neighbours, and finally the nature of the bond between it and
the central atom (this latter information mentioned only for first neighbours, of course).

Bonds by rank : Rk0 :4+0+0 Rkl :6+0+0

Now the list of bonds of each of the three types (S, D, T - in this isomer there are only single
bonds) as seen in concentric order from the central atom is mentioned : There are 4 bonds of
type S between the central atom (drawn in black). All other bonds bind second neighbours
together and are all of rank 2, which is not intuitive when looking at a 2-D representation. These
bonds are shown in blue. The central atom considered is that on top.

Fragments : F0 :0-0,Bds,Rk0 F1 :0-0,BdS,Rk0 F2 :0-0,BdS,Rk0 F3 :0-
0,Bds,Rk0

F4 :0-0,BdS,Rkl1 F5 :0-0,BdS,Rkl F6 :0-0,BdS,Rkl F7 :0-0,BdS,Rkl F8 :0-
0,BdS, Rkl

F9 :0-0,BdS,Rkl

Last, a complete ordered list of all fragments in the molecule is given. Fragments are numbered
from 0 as is common with programmers. Each fragments is described by the classes of the
atoms bound (in this example, all atoms belong to class 0), the bond nature (here, always S),
and the fragment's rank (as in the bond ranks earlier).

Atom 2 : same as 1

Descriptions of equivalent atoms are not repeated.

Atom 3 ; same as 2.

Atom 4 : same as 3,

Atom 5 : same as 4.

The other isomer descriptions are similar and follow :
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0.0 H, 1 Cy, 0 ArCy. 1 equivalence class. Highest atom rank=3.

Atom 1 (Class 0) : C, MaxRank :3, Hybr. :sp, 2 first+2 other
neighbours.

Neighbours : 3 :Rk2, C, 2 1lstNg, Hysp, BdD 4 :Rk2, C, 2 1stNg, Hysp,
BAD

§ :Rk3, C, 2 1stNg, Hysp 2 :Rk3, C, 2 1stNg, Hysp

Bonds by rank : RkO :0+2+0 Rkl :0+0+0 Rk2 :0+2+0 Rk3 :0+1+0
Fragments : FO :0-0,BdD,Rk0 F1 :0-0,BdD,Rk0 F2 :0-0,BdD,Rk2 F3 :0-
0,BdD,Rk2

F4 :0-0,BdD,Rk3

Atom 2 : same as 1.

Atom 3 : same as 2.

Atom 4 : same as 3.

Atom 5 : same as 4.

3
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0.0 H, 4 Cy, 0 ArCy. 2 equivalence classes. Highest atom rank=3.

noo

Atom 1 (Class 0) : C, MaxRank :3, Hybr. :sp2, 3 first+l other
neighbours.

Neighbours : 3 :Rk2, C, 4 1lstNg, Hysp3, BdS 4 :Rk2, C, 3 1latNg, Hysp2,
BdS

5 :Rk2, C, 3 1stNg, Hysp2, BdD 2 :Rk3, C, 3 1stNg, Hysp2

Bonds by rank : RkO :2+1+0 Rkl :2+0+0 Rk2 :2+1+0

Fragments : F0 :0-0,B4D,Rk0 F1 :0-0,BdS,Rk0 F2 :0-1,BdS,Rk0 F3 :0-
1,Bds,Rkl

P4 :0-1,B4S,Rkl F5 :0-0,BdD,Rk2 F6 :0-0,B4S,Rk2 P7 :0-1,BdS,Rk2
Atom 2 : same as 1.

Atom 3 : same as 2.

Atom 4 : same as 3.

Atom 5 (Class 1) : C, MaxRank :2, Hybr. :8p3, 4 first+0 other
neighbours.

Neighbours : 1 :Rk2, C, 3 lstNg, Hysp2, BdS 2 :Rk2, C, 3 1stNg, Hysp2,
BdS

3 :Rk2, C, 3 1stNg, Hysp2, BAS 4 :Rk2, C, 3 1stNg, Hysp2, BdS

Bonds by rank : RkO :4+0+0 Rkl :2+2+0

Fragments : FO :0-1,BdS,Rk0 P1 :0-1,BdS,Rk0 F2 :0-1,BdS,Rk0 F3 :0-
1,Bds,Rk0

F4 :0-0,B4AD,Rk1 F5 :0-0,BdD,Rkl F6 :0-0,BdS,Rkl F7 :0-0,BdS,Rkl
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Cl C2 C3 C4 C5
¢l1.7.8

cz2 ., TS8
c3l.8
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0.0 H, 2 Cy, 0 ArCy. 2 equivalence classes. Highest atom rank=3.

<

Atom 1 (Class 0) : C, MaxRank :3, Hybr. :sp, 2 first+2 other
neighbours.

Neighbours : 3 :Rk2, C, 4 1stNg, Hysp3, BdS 5 :Rk2, C, 2 1lstNg, Hysp,
BdAT

2 :Rk3, C, 2 1stNg, Hysp 4 :Rk3, C, 2 1stNg, Hysp

Bonds by rank : Rk0O :1+40+1 Rkl :1+0+0 Rk2 :2+0+0 Rk3 :0+0+1
Fragments : F0 :0-0,Bd4dT,Rk0 F1 :0-1,BdS,Rk0 F2 :0-1,BdS,Rkl F3 :0-
1,Bds,Rk2

F4 :0-1,BdS,Rk2 F5 :0-0,BdT,Rk3

Atom 2 : same as 1.

Atom 3 : same as 2.

Atom 4 : same as 3.

Atom 5 (Class 1) : C, MaxRank :2, Hybr. :sp3, 4 first+0 other
neighbours.

Neighbours : 1 :Rk2, C, 2 1stNg, Hysp, BdS 2 :Rk2, C, 2 1stNg, Hysp,
Bds

3 :Rk2, C, 2 1stNg, Hysp, BdS 4 :Rk2, C, 2 1stNg, Hysp, BdS

Bonds by ramk : RkO :4+0+0 Rkl :0+0+2

Fragments : FO :0-1,Bd8,Rk0 F1 :0-1,BdS,Rk0 F2 :0-1,BdS,Rk0 F3 :0-
1,Bds,Rk0

F4 :0-0,BdT,Rkl F5 :0-0,BdT,Rkl

5 3

€l C2 C3 C4 C5
cl . DD

€2 T
c3 .
Cc4 8
cs

0.0 H, 2 Cy, 0 ArCy. 3 equivalence classes. Highest atom rank=3.

w W
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Atom 4 (Class 0) : C, MaxRank :3, Hybr. :sp2, 3 first+l other
neighbours.

Neighbours : 1 :Rk2, C, 3 1stNg, Hysp2, BdS 2 :Rk2, C, 2 1stNg, Hysp,
BdS

5 :Rk2, C, 2 1stNg, Hysp, BdD 3 :Rk3, C, 2 1lstNg, Hysp

Bonds by rank : RkO :2+1+0 Rkl :0+1+0 Rk2 :1+0+1

Fragments : FO :0-2,BdD,Rk0 F1 :0-0,BdS,Rk0 F2 :0-1,BdS,Rk0 F3 :0-
2,BdD,Rkl

F4 :1-1,B4T,Rk2 PS5 :0-1,BdS,Rk2

Atom 5 : same as 4.

Atom 2 (Class 1) : C, MaxRank :3, Hybr. :sp, 2 first+2 other
neighbours.

Neighbours : 3 :Rk2, C, 3 1stNg, Hysp2, BdS 4 :Rk2, C, 2 1lstNg, Hysp,
BAT
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5 :Rk3, C, 3 1stNg, Hysp2 1 :Rk3, C, 2 1stNg, Hysp

Bonds by rank : RkO :1+0+1 Rkl :0+0+0 Rk2 :2+1+0 Rk3 :0+1+0
Fragments : FO :1-1,B4dT,Rk0 ¥1 :0-1,BdS,Rk0 F2 :0-2,BdD,Rk2 F3 :0-
0,BdS,Rk2

F4 :0-1,BdS,Rk2 F5 :0-2,BdD,Rk3

Atom 3 : same as 2.

Atom 1 (Class 2) : C, MaxRank :3, Hybr. :sp, 2 first+2 other
neighbours.

Neighbours : 4 :Rk2, C, 3 1stNg, Hysp2, BdD 5 :Rk2, C, 3 1stNg, Hysp2,
BdD

2 :Rk3, C, 2 1lstNg, Hysp 3 :Rk3, C, 2 1stNg, Hysp

Bonds by rank : Rk0 :0+2+0 Rkl :1+0+0 Rk2 :2+0+0 Rk3 :0+0+1

Pragments : F0 :0-2,BdD,Rk0 F1 :0-2,BdD,Rk0 F2 :0-0,BdS,Rkl F3 :0-
1,Bds,Rk2

P4 :0-1,BdS,Rk2 F5 :1-1,BdT,Rk3

6 s

€L C2 C3 C4 C5 34
€l .88D [
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0.0 H, 3 Cy, 0 ArCy. 3 equivalence classes. Highest atom rank=3.

Atom 1 (Class 0) : C, MaxRank :3, Hybr. :8p2, 3 first+l other
neighbours.

Neighbours : 3 :Rk2, C, 3 lstNg, Hysp2, BdS 4 :Rk2, C, 3 1lstNg, Hysp2,
BdS

5 :Rk2, C, 3 1stNg, Hysp2, BAD 2 :Rk3, C, 2 1stNg, Hysp

Bonds by rank : RkO :2+1+0 Rkl :2+0+0 Rk2 :0+2+0

Fragments : F0 :0-0,BdD,Rk0 F1 :0-1,BdS,Rk0 F2 :0-1,BdS,Rk0 F3 :0-
1,B4S,Rkl

P4 :0-1,BdS,Rkl FS :1-2,BdD,Rk2 F6 :1-2,BdD,Rk2

Atom 5 : same as 1.

1

Atom 3 (Class 1) : C, MaxRank :3, Hybr. :sp2, 3 first+l other
neighbours.

Neighbours : 1 :Rk2, C, 3 1lstNg, Hysp2, BdS 2 :Rk2, C, 3 1stNg, Hysp2,
BdS

5 :Rk2, C, 2 1latNg, Hysp, BAD 4 :Rk3, C, 3 1stNg, Hysp2

Bonds by rank : RkO :2+1+0 Rkl :10+1+0 Rk2 :2+1+40

Fragments : FO :1-2,BdD,Rk0 F1 :0-1,BdS,Rk0 F2 :0-1,BdS,Rk0 F3 :0-
0,BdD, Rkl

P4 :1-2,BaD,Rk2 F5 :0-1,BdS,Rk2 F6 :0-1,BdS,Rk2

Atom 4 : same as 3.

Atom 2 (Class 2) : C, MaxRank :3, Hybr. :8p, 2 first+2 other
neighbours.

Neighbours : 3 :Rk2, C, 3 1stNg, Hysp2, BdD 4 :Rk2, C, 3 1stNg, Hysp2,
BdD

1 :Rk3, C, 3 1stNg, Hysp2 5 :Rk3, C, 3 1stNg, Hysp2

Bonds by rank : RkO :0+2+0 Rkl :0+0+0 Rk2 :4+0+0 Rk3 :0+1+0

Fragments : F0 :1-2,BdD,Rk0 F1 :1-2,BdD,Rk0 F2 :0-1,BdS,Rk2 F3 :0-
1,Bds,Rk2

F4 :0-1,Bd8,Rk2 P5 :0-1,BdS,Rk2 F6 :0-0,BdD,Rk3
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From complete descriptions to fingerprints

All this information is then collected into an integer array, itself compacted into a byte array,
taking into account the fact that all values considered have well-defined ranges. For instance, a
number of neighbours will never be lower than 1 or higher than 4, so it can be encoded into 2
bits (values 0 to 3).

Then each atom’s description is compared with the others, using ordinary memory comparison
(memcmp in the C language). Different environments describe nonequivalent atoms. The binary
descriptions can then be sorted in arbitrary order (using gsort and mememp); this creates our
canonical numbering.

Even though complete descriptions, omitting nothing, are necessary for distinguishing
nonequivalent atoms, only a subset of the data is necessary for fingerprints.

This information is useful because fingerprints take up lots of room and the complete
descriptions contains redundancies as a precaution. Even so, a 10-atom molecule will need
around 500 bytes for its fingerprint, much more than the genotype itself (around 10 bytes) |
Some kind of second-level compaction is obviously needed, while taking into account memory-
versus-computation time tradeoffs. Like compact encoding versus straight, this would bring
fingerprint size dependency from the order of N° to that of N' or so, fractal dimension of a
maximally-branched molecule.

The one degeneracy observed

GalvaStructures fails to distinguish between the two isomers shown opposite : this the cause of
the difference in isomer numbers between MOLGEN and GalvaStructures, as explained in the
next section.

This degeneracy is due to the fact that we consider concentric environments globally while we
should explore them in each of the four bond directions separately.

It should be noticed that this is a kind of cis-trans isomerism, of the kind notoriously not
supported by the connectivity matrices that underlie GalvaStructures' operation.

=] <]

We are planning to generate separate fingerprints for each bond direction. This should
remove the degeneracy observed and will be implemented in the next version of
GalvaStructures.

5. Practical results. Comparison with other generators.

Intensive tests were performed on compounds from multiple sources in the literature. At least
eight tries were made for sach compound. In the main series of experiments, performed in
1996, population sizes were as large as would fit in 32 MB, i.e. 40,000 to 130,000
chromosomes depending on the number of atoms in the molecule. Evolution was stopped at
stabilisation, this being defined as no new isomer appearing after five million genetic
operations or twelve hundred times the expected number of isomers, whichever is greater. Thus
we can be confident (though not completely sure) that the isomer numbers mentioned are the

imal possibl. bers of I s within the limits of the method, not underestimated
numbers due to lack of patience.

Due to the population-based nature of the generator, it is very slow to use our method beyond a
few thousand expected isomers : the last isomers take very long to appear. Each new isomer
being independently created, the more complete the isomer population, the least likely it is for a
not-previously-present one to appear.



80

The population size does not need to be large : we abtained all 4679 isomers of CgH, from a
population of only 20,000 in five minutes. Using large populations is just a good-practice
precaution. Obtaining the 7981 isomers of CgHg used all of 230 MB of memory in a population of
600,000 chromosomes and took 20 minutes on a Pentium 11-350. On that machine and for CgHg,
one fitness computation takes 0.07 ms, that is 13,000 fitness computations a second. All this is
nevertheless very slow compared to MOLGEN, which is nearly-instantaneous. The worst-case
performance i is very bad : while trying to compute the C,o isomers, we had only 4286 after 24
hours (1.1 10° tries) out of the 4330 expected (see below, Table 2). The more cycles and
insaturations, the slower the convergence.

Table 1 describes the isomer numbers found by GalvaStructures for some acyclic compounds,
compared to those of DENDRAL (Ref. 13). The DENDRAL values are at the top of each square,
ours at the bottom if different. Squares in italics have been independently checked by hand by
two qualified people, and we have found our numbers to be the correct ones.

Nb of Cs 4 5 6 7 8 9 10 11 12

CHene 2 3 5 | 9 [ 18 | 35 | 75 | 159 | 355
CoHan 3 5 | 13 | 27 | e | 153 | a7 | B | 208
CoHanz 4 e | g8 | e | T ] e
CHme | 2 | 6 | 25| G | 210 | o9 | 1014

oo aEAE
A

CoHzn.16 17

CoHanezO 7 | 14| 32 | 72 | | 405 | see | 2450 | 912
CoHznaN 8 | 17 | 39 | 89 | 211 | sor | 1238 | 3057

Table 1

The differences in numbers obviously invite comments. | did not find it likely that we could
be right and DENDRAL wrong, but careful checking by hand of some of the least
numerous isomer families (grey background in Table 1) confirmed that some isomers are
indeed “forgotten” by DENDRAL (see Figure 10 for a list of the 14 isomers of CgH,,
Figure 11 for a list of the 24 isomers of C;Hg).




Figure 10 : isomers of CoH,
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This is unexpected, first because the DENDRAL isomer generator has been "rigorously proved"
{Hu & Xu) ...or not (Ref. 14), secondly because we expected some degeneracy in
GalvaStructures because of the bond-by-rank summation described earlier. We would have
expected GalvaStructures to find fewer isomers than DENDRAL - actually, the opposite
happens most of the time. The intricate nature of most other isomer generators does not allow
one to exclude the occasional forgotten isomer.

When dealing with large numbers of isomers, other considerations apply. It would not be
surprising that GalvaStructures find a smaller number of isomers than expected, because the
last few isomers take a long time to appear. This asymptotical behaviour is due to two things :
the first isomers taking up lots of room in the population, there is less room available for the next
ones to come into play and the "usable" population size diminishes; and also, any isomer having
{a priori) the same probability to appear, the more isomers, the less likely are newly-appeared
ones not to be already present in the population.

Indeed, at the beginning of evolution, new isomers appear by the hundred at each generation;
at the end, one often sees a new isomer only once every few generations. As far as large
numbers of isomers are concerned, speed is not GalvaStructures' most remarkable feature.
However, the memory size used for the experiments at the time, 32 MB, is small compared to
today's (1999) equipment.

Considering its good deduplicating power, it would probably be more advantageous to use the
fingerprint method on a systematic generator, even a crude and very redundant one, instead of
a stochastic one. The advantage of using the genetic algorithm is that only very basic chemical
knowledge is needed, and the time to a working program is short.
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Figure 11 : 24 isomers of C;Hg

Table 2 describes isomer numbers for the C,, family, as taken
from Hu & Xu's paper mentioned above. Our numbers are at
the bottom of each square.

‘ Nb of Carbons 5 6 7 8 9 10
Nbof C, 6 19 50 204 832 4330
isomers 6 19 50 199 828 4286

Table 2

The G, molecules are the trickiest because there are very few differences between two isomers,
while acyclic alkanes seem to be the easiest to count, and were historically the first ones
tackled (as early as 1877, Ref. 15). As for very cyclic molecules (e.g. C,) that are very far from
being flat, a sheet of paper is just Inadequate for representation and identifying nonrepeating
isomers without omissions is nearly humanly unfeasible. In other words, the necessary
inventory and comparison of isomer lists are difficult, bordering on the impossible, and while the
results are obviously different, it is difficult to know which cne is correct. | did not even try to
draw the 204 (or is it 199 ?) Cg isomers.

It is well-known that manual generation is prone to duplicates & omissions (Ref. 16). C,
molecules are probably the best benchmark for a molecular topological index. Dealing with
them adequately may be useful in the emerging field of buckminsterfullerenes chemistry.

Table 3 lists isomer numbers for a few compounds from Hu & Xu's paper cited above.

Formula CO | CHuO | CNH | CHNO | CeHaNO | CiHuN
356 2589 2991 7038 3418 3826
Nbofisomers | 55¢ 2589 2879 6339 3345 3800

Table 3
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The large discrepancy observed for CeHNO warrants further investigation, especially when
contrasted with the fair agreements observed for CoHzn.gN and CpHan.20 (Table 1). The ready
explanation is that we do not consider the N-O dative bond; for us, nitrogen is always trivalent.

But this explanation would not be adequate to explain the small difference observed for
CeHisNO.

Considering the respective natures of the isomer generators, the risk with Galvastructures is
"collision" or degeneracy, where two distinct molecules have the same fingerprint, therefore
missing isomers. The risk with other, generate-and-deduplicate isomer generators is to fail to
recognise isomorphic structures, that is, extra, spurious isomers.

Table 4 lists isomer numbers for a few compounds generated using various isomer generators,
using data from Contreras (Ref. 17) and Bohanec (Ref. 18). Empty squares mean no data.

Generator | CAMGEC | AEGIS | CHEMICS |[DENDRAL | GEN | MOLGRAPH |GAStr
C,HsNO, 84 84 87 84 84 84 84
CyH;NO 84 84 87 84 84 84 84
C.H,NO 767 764 802 764 764 764 764
C;H,BrCI 8 10 10 10
CsHgBrCl 140 140 108 140 140 140
CeHyo0 748 747 745 747 747 747 747
Table 4

There is agreement between GalvaStructures, MOLGRAPH (now MOLGEN), AEGIS and GEN
for these data. As usual, there is more consensus when the compound is saturated and has few
atoms,

CHEMICS is wide off the mark. DENDRAL results are good in this table, but there were big
differences exposed in Table 1.

CAMGEC is essentially in agreement with us except for the two slight discrepancies mentioned
in (Ref. 17). | tried some of the Hendrickson data (Ref. 19) that were giving problems using
CAMGEC. For CgH44 with 3 cycles (obtained with GASTR /nc9 /nhl4 /bd1#0#0H#0 /ny3),
we do find the expected 1278 isomers. For Cy4Hz2 with 1 cycle, GalvaStructures conjures up
1231 isomers, also in agreement with Hendrickson.

A general comparison of Hendrickson’s results against ours fellows in Table 5. Numbers of
carbon skeletons are easy to obtain using GalvaStructures : GASTR /nc8 /bAl#0#0#0 finds
all molecules with 8 carbons and only single bonds allowed, with no condition on the number of
hydrogens or of cycles. This is the number of skeletons. The breakdown by number of cycles
automatically supplied by GalvaStructures can be directly compared with the results.

o

Total
NbofCs | ois 1 2 3 4 5 6 7 B 9 10

Cs 6 2 2 1 1

Cs 21 3 5 5 4 2 1 1




Cs 78 5 12 |17 |18 ha 8 3 N1
c, 353 |9 (29 (56 (79 (79 |59 (31 [9 |2
1929 6
Cs je27 [18 |73 [182 |326 |430 |427 [298 [134 35 |3
12207 707 (154 |16
G 12204 35 [185 (573 |1278 2161 |2768 2616 [1714 70 100 |13
Table 5

Again, there are small discrepancies for some highly unsaturated compounds. It would be
interesting to obtain the & Cg isomers having 9 cycles from the authors. For repeated tries, we
only obtained four of them. Paper representation of the 15 isomers of Cq having 10 cycles has
been attempted, but the result is absolutely incomprehensible and not repeated here.

Galvastructures was also put to work on compounds from Benecke's data (Ref. 21), all
hydrocarbons with a specified gross formula (from C3H, to CgH4g), as opposed to Table 1 where

only acyclic ones were represented. The same pattern of small differences for larger, more
unsaturated compounds Is observed.

NbofHs| 2 4 6 8 10 12 14 16 18

Cs 2 3 2 1

Cs 7 " 9 5 2

Cs 21 40 40 26 10 3

Cs 85 185 | 217 | 159 | 77 25 5
(] 356 | 920 | 1230 | 1031 | 575 | 222

1804 | 5308 | 7982 | 7437
Ca 1802 | 5305 | 7981 | 7436 4679 | 2082 | 654 | 139 18

Table 6

The first discrepancy occurs with CgHz, where the are 1804 (according to MOLGEN) or 1802
{according to Galvastructures) isomers. Galvastructures finds fewer isomers than MOLGEN in a
few cases, always large and very unsaturated molecules. Human checking is (again) barely
possible and more work on automated comparison is needed. The nature of the observed
Galvastructures degeneracy is described above, at the end of section 4. There is every reason
to believe that the MOLGEN numbers are the correct ones.

The question of "how many i s are there lly ?" is difficult to solve conclusively.
Tables 1 to 6 indicate that problems appear sometimes only with numbers or molecule
complexities that are beyond the range of the humanly verifiable. Even for a simple, saturated
molecule such as Cy4Hao, there is some doubt as to whether there are 1858 or 1859. DENDRAL
sez 1859, Benecke & al. say 1858, Hu & Xu say either 1858 or 1859 (Ref. 20) depending on the
paper | We find 1858 isomers using GalvaStructures. GalvaStructures does, however, find the
agreed-upon 4347 isomers for C,sHaz, and 10359 isomers for CygHss. For subtle differences
visible only on complex molecules, it is very difficult to check by hand.

The fact that generate-and-deduplicate software and Galvastructures agree to a large extent is
interesting because radically different methods were used.

| also tried the software on miscellaneous interesting problems. The 22 positional isomers of
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dioxin are duly found, the correct form of anagyrin is found as well as 111 others. To save time,
the /BFP option checks for the presence of a given fully-filled connectivity matrix among many
isomers. Benecke & al.'s "BASF" problem (Ref. 21) is solved yielding 4500 isomers to choose
from, no improvement at all over the 201 isomers exhibited by their method. GalvaStructures
does not allow conditions on cycle lengths at the time, but we can exclude triple bonds (/BD
option) and the possibility to specify exactly the number and type of hanging bonds decreases
the number of candidates. Benecke's 201 candidates have conditions on bond type as well as
cycle size. We probably need to be able to impose conditions on cycle lengths in
GalvaStructures as a future improvement, using Panaye & Doucet's procedure (Ref. 22) and
lakmg into account Figueras' remarks But it is important to notice that, except for C; and C,
rings that can be recognised on a "*C NMR spectrum, a priori specification of ring size is more a
matter of chemist’s habit (not to say prejudice) than a reality.

6. The genetic algorithm and isomer generation

Even though the genetic algorithm is admittedly very Inefficient at isomer generation, it does
seem to be exhaustlve. Our genetic algorithm/simulated annealing library seems to very
exhaustively explore the possibilities space, while the fingerprint method is apparently quite
competent at weeding out duplicates. Also, use of the genetic algorithm and lls ability to handle
various constraints will take all its meaning when a (neural network-based) *C NMR spectrum
simulator is coupled to the software. Spectrum comparison will be a natural addition to the
fitness function. The limitation to a few thousand expected isomers does not seem to be a
problem for real-life tasks, especially when the number is limited to those isomers whose
spectrum is close enough to the obtained spectrum.

We take pride in not special-casing our genetic algorithm library for any specific application. |
also fike to consider this a proof of good design. The Galvano library has an elitist mechanism
that automatically prevents the best elements in the population from being lost. This has been
shown to be a necessary condition of g to the opti (Ref. 25).

p

The problem of many genotypes (bit strings manipulated by the genetic algorithm) mapping
onto the same phenotype (here, connectivity matrices) is common to many genetic algorithm
applications. It is important to avoid the population being swamped by what are actually variants
of the same solution. Therefore, the fingerprint mechanism is a part of the basic library. If many
genotypes have the same fingerprint, only one genotype is kept. Conversely, one of each
differently-mapped genotypes is always kept. This mechanism thus “grabs” every newly-
appeared isomer and ensures that it is kept to the end of the evolution. Thus, isomer numbers
in the population never decrease.

Of course, each different application has a different way of computing the fingerprint; this is
made possible by the use of a “callback function”, called by the library but supplied by the
application programmer.

7. Conclusion and directions for future work.

The system presented uses the unprecedented memory and processing capabilities now
available to us to (apparently) exhaustively generate isomers using methods that wouid have
been impractical only a few years back. By using somewhat crude methods, this one-man team
could put together in less than six man-months a decently-working isomer generator and
duplicate eliminator. The intricacies of graph theory were avoided. The difficult task of finding a
molecule’s symmetry group for duplicate elimination was eschewed entirely.

The point of this article is to prove that these newfangled methods can make profitable use of a
computer's present processing power while releasing the user for more high-level work.
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Of course the missing isomers have to be found and the problem (probably with the
fingerprinting method) fixed. The very next step will be, now we have a validated generation
method, to couple it with a spectrum generator. PMSI already has a neural network-based °C
NMR spectrum generator. Modifying the fitness function so that an isomer’s fitness depends on
its closeness to the experimental spectrum puts to good use the genetic algorithm's flexibility.

It could also be interesting to explore chirality. It seems that exploration of each active carbon
along the four bond directions will lead us to partial fingerprints of the same style, which may
then be compared. If all four partial fingerprints are different, they can be ordered in two
ditferent ways for each active centre. However, fine software such as MOLGEN+ already does
this.

The absence of mandatory lists of absent/present features (goodlist/badlist) is also a drawback,
and must be corrected. This, however, like ring counting, can only be applied after candidate
generation. But it does not pose any implementation problems.

1 am deeply indebted to Profs. Jean-Pierre Doucet and Annick Panaye of ITODYS, University of
Paris, for their guidance and learned advice in preparing this paper. Thanks to trainee Lamia
Benabbas for checking some of the results.

GalvaSt 3.2, the e described here, Is avallable at no charge from PMSI.

Christopher Le Bret, born 1963, is a graduate of the Ecole Nationale Supérieure de Chimie de
Paris and of the University of Paris. He is the technical manager of PMSI, a company
specialised in artificial intelligence (or decision support, or data mining, or whatever is this
week's buzzword).
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