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Abstract

Using a Monte Carlo method the average values of the Tiirker angles are calculated
for graphs with n vertices and m edges, among which are the graphs representing
isomeric conjugated hydrocarbons C, Hs, o . The approach is extended to all values
ofm, 1< m < n{n—1)/2. The basic features of the dependence of the Tiirker
angles on 1 and m are established. The results obtained shed new light on some
fundamental properties of the total 7-electron energy of conjugated molecules.

1. INTRODUCTION

The concept of the angle # was introduced into the theory of total m-electron
energy of unsaturated conjugated molecules by Lemi Tiirker [1], and was eventually
elaborated both by the same author [2]-[3] and by others [6]-[8]. Recently, Tiirker
defined [9] two more angles, denoted here by « and 3. These, so-called “Tiirker
angles™ satisfyv the condition

atd=>0

and conform to the relations (7] [9]:
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where E stands for the total w-electron energy (calculated within the HNO approx-
imation and expressed in the units of the carbon-carbon resonance integral). and
where 7 and m are the numbers of vertices and edges, respectively, of the correspond-
ing molecular graph [10, 11]. In what follows a graph with n vertices and m edges will
be referred to as an (n, m)-graph. Some of such graphs represent isomeric conjugated
hydrocarbons with formula C,, Hy,_on, , provided, of course, n — 1 < m < 3n/2.

Originally {1. 9] the angles f, a and 3 were considered only in the case of even
alternant conjugated hvdrocarbons. They, however, are easily extended to arbitrary
m-electron systems or, more generally, to arbitrary (n, m)-graphs. This is achieved as
follows.

Let G be an (n,m)-graph, and let Xy, Xy,..., X}, be its eigenvalues. It is well
known that [10, 11]

E=|X|+

X;

ot Xl 4
and
X4 XI4+ o X2=2m. {5)
Note that the relation (5) is valid for all graphs. Eq. (4) is the definition of the
so called energy of the graph G and is, as such, also applicable to all graphs. In the
case of the vast majority of chemically relevant graphs, E coincides with the HMO
total r-electron energy (in J-units) of the underlying conjugated molecule; in a few
cases this “graph energy” slightly deviates from the true HMO value. A detailed
discussion of this marter can be found in the book [11}.

Coustruct two n-dimensional vectors A = (1,1,...,1) and

B = (X |Xy]..... |X.]). and recall that by Eq. (4) their scalar product is just the
energy of G
n n
AeB=3(L-[X))=3|X|=E. (6)
i=1 =1

On the other hand. the same scalar product is equal to |A] - |B| cos# with # being



the angle between the vectors Aand B. The lengths of these vectors are:

4] = (12 + )2+ +(1)2= va

and. in view of Eq. (5),

1B = (X

2+ (X)) + -+ (| Xa])2 = V2 .

A
Whence.
e B=V2mn cosd . (7}

Combining Eqgs. (6) and (7) we arrive at formula (1).

The quantities «v and 7 are defined [9] as the angles between the vector € = 4+ B
and the vectors 4 and B . respectively.

The geometric interpretation of the Tiirker angles @, a and 3 is clear from Fig.
1. Knowing the lengths of the vectors A, B and €, formulas (2) and (3) are deduced

by standard trigonometric reasoning (7, 8).
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Fig. 1. Geometric interpretation of the Tiirker angles

In the study of the Tiirker angles the question to be asked first is how these
quantities depend on various structural features of the conjugated molecule under
consideration, i. e., on the structure of the underlying molecular graph. The simplest
among these questions is how #, a and 3 depend on the parameters n and m. In

this work we offer a partial answer to it.



2. A MONTE CARLO APPROACH TO THE TURKER ANGLES

Following a recently elaborated technique [12. 13], we calculated the average
Tiirker angles by a Monte-Carlo type computer experiment. Using the Haas random -
number generator [14] we constructed labeled graphs with n vertices and m edges,
uniformly at random. This was done by fixing a value of n, starting with the n-vertex
graph without edges and adding to it new edges one-by-one, uniforinly at random:
thus the number of edges varies between m = 1 and m = n(n—1)/2. For the (i, m})-
graph thus obtained the energy was calenlated and then, by using Eqs. (1)-(3), the

three Tiirker angles. Tyvpical resnlts are shown in Figs. 2, 3 and 4.
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Fig. 2. The Tiirker angle # (in degrees) calculated for n = 20 and
m=12..., 190 the three bottom curves are results of three
consecutive Monte Carlo experiments, the top curve is the
average value of 250 repeated Monte Carlo experiments; the
second. third and fourth curves are shifted upwards by 10, 20
and 30 degrees. respectively

It shonld be noted that the present procedure generates svimmetric graphs less
frequently than those asvmmetric, and thus somewhat distorts the average values

obtained. We believe that these discrepancies are not too significant, especially in view



of the fact that, as the number of vertices is increasing, the vast majority of the graphs
encountered in our study has a trivial automorphism group. Nevertheless. efforts are
being made to upgrade our analysis by employing graph generators that produce
{n,m)-graphs (not labeled graphs!) uniformly at random. The results obtained along

these lines will be communicated elsewhere.
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Fig. 3. The Tiirker angle o (in degrees) calculated for n = 20 and
m=1,2,...,190: other details are same as in Fig. 2

Whereas the individual Monte Carlo results vary significantly (cf. the three lower
curves in Figs. 2, 3 and 4), after averaging over a sufficiently large number of repeated
runs an almost perfectly smooth curve is obtained (cf. the top curve in Figs. 2. 3 and
4). Empirically we found that 250 repetitions are sufficient for obtaining a smooth

and reproductive (72, m)-dependence of the Tiirker angles.
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Fig. 4. The Tiirker angle ;3 (in degrees) calculated for n = 20 and
m=1,2,...,190: other details are same as in Fig. 2

3. PROPERTIES OF AVERAGE TURKER ANGLES

The basic features of the (n, m)-dependence of the Tiirker angles are seen from
Figs. 2 5.
The Angle 8

For a fixed value of n the average 6 = #(m) curve decreases, has a minimum and
then monotonically increases. The value iy, of m at which # is minimal linearly

increases with n. A least-squares fitting of the data for n = 5,6,....30 gave

Hiin = (2.33 £ 0.05) n — (9.0 % 0.9)

with correlation coefficient I? = 0.995 .

Curiously, however. the minimal value of # is practically independent of n and is
found to be 35.5 + 0.8 degrees.
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Fig. 5. The in-dependence of the three average Tiirker angles (in
degrees) for n = 30; the curves are averages of 250 repeated
Monte Carlo calenlations: m = 1,2,..., 435

The Angle «

For a fixed value of n the average a = a{m) curve first rapidly increases, attains
a maximum and very near to it a minimum, and then monotonically increases. In
this latter region the a(m) and #(m) curves run practically parallel to each other, a
consequence of the fact that 3 is nearly constant (see below).

Both the maximuim and the minimum on the a(m) curve are quite shallow and
(especially for smaller values of n) are located so close to each other that are difficult
to observe. With increasing n the position of the maximum is only sightly shifted
towards larger values of m . The same is true for the separation between the maximum
and the minimum. Thus, for n = 10, Gy = 22.2° at m = 4 and ap,, = 21.7° at

m = 6, whereas for n = 20, a0 = 22.7° at m = 14 and api, = 22.5° at m = 20.

The Angle 3
For a fixed value of n the average 3 = 3(m) curve first rapidly decreases and then

attains an almost constant value. This constant value is weakly dependent on n. For
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instance. for n = 10,20.30 it is equal to 12.3, 10.3 and 9.0 degrees, respectively. A
closer inspection reveals that 3(m) has a very shallow minimum. whose depth does

not exceed 0.5, and which in Figs. 4 and 5 cannot be noticed.

x % ¥

We believe that by means of the above described stochastic approach we estab-
lished the fundamental characteristics of the dependence of the Tiirker angles on the
parameters n and m. We examined this dependence in the entire range of m, that
is for 1 < m < n(n—1)/2. By this we extended the study of the angles to graphs
having more edges than it is possible in the case of molecular graphs. We consider
this as an advantage: some of the above specified properties of #, a and J would

hardly ever be discovered if their study would be restricted to molecular graphs.
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