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Group Theory Applied to Combinatory Analysis

1. H. Redfield’

The Theory of Groups of Finite Order, and the subject of Combinatory Analysis,
are both of them largely concerned with permutations, and so we should expect to
find a good deal of use made of Groups in work on permutations and combinations.
Actually, however, we find very little of such application of the theory of groups, and
my purpose today is to show how group theory can be effectively brought to bear on
a considerable range of combinatorial problems which are not readily handled by the

conventional methods.

Now, in order that we may get as quickly as possible a clear notion of what this
is all about, I will begin by showing how the subject ties up with some of the simple
problems of the elementary theory of permutations and combinations. Take first the
most fundamental problem of all: to find the number of ways of arranging n different
given objects in n different given positions. For this the elementary theory gives the

formula r = n!

Next we introduce a complication by providing that the objects are not all
distinct, but that a are alike and of one kind, b are alike and of another kind, and so

on; and for this we have the formula z = n!/(a®!...) (a+b+...=n).

Going back to the original problem, we complicate it in another direction by
providing that the given positions are equally spaced on the circumference of a circle,
and that no account is taken of any first or last position, but only of the cyclic arder

of the positions. For this we have the formula x = n!/n.

'A manuscript note at the top of the typescript reads “U. of P. 12/10/37 before Grad. Math.
Club” indicating that this is the typescript of a lecture given at the University of Pennsylvania on
10 December 1937, before the Graduate Mathematics Club.



Ohserve that the one derived problem has a qualification respecting the objects,
the other a qualification respecting the positions. These qualifications are independent
of one another. Suppose we combine the two in one problem, and inquire: how many
distinet cyclic arrangements can be made of n objects which are not all distinct but

fall into classes of like objects? (INDICATE z = 7)

1 will not go so far as to say that this last problem could not with a little
ingenuity, be solved by the standard elementary methods, but it may fairly be said to
be beyond the normal range of such methods; what I wish to lead up to is a method
of considerable generality capable of solving not only this problem but an extensive

class of problems of which this one is only a comparatively simple instance.

To see how the theory of groups can be applied to such problems, let us examine
what these four cases have in common, and wherein they are diverse. In all the cases
we have n objects and n positions, and each of the objects may be placed in any
of the positions; but there is diversity as regards what we agree to count as distinct

arrangements.

In this problem (INDICATE n!/a!d!...) any given distinct arrangement is sup-
posed not to change when we make any permutation of the a like objects among
themselves, or of the b other like objects among themselves, and so on, or any com-
bination of such permutations. These admissible permutations, which do not change
any arrangement into another distinet arrangement, of course form a group, and we
may sav that every distinct arrangement is invarient under the operations of that

gronp. acting on the objects.



Similarly in this problem (INDICATE n!/n) every distinct arrangement is in-

variant under a cyclic group of degree n acting on the positions.

And in the combined problem (INDICATE x = 7) every distinct arrangement
is invariant under both groups, one acting on the objects and one acting on the

positions.

Of all the cases we may say that every distinct arrangement is invariant. under
two groups, one acting on the objects and one acting on the positions; but in two of
the cases (INDICATE) one of the groups is the group of identity, while in this case
(INDICATE n!) both groups are the group of identity.

The only essential thing which distinguishes the four cases from each other
is the groups involved; when we know what these groups are, the problem is fully
determinate, and we have a right to expect to find that the required number of
distinct arrangements is a function of those groups, or, if you prefer, a function of
certain numbers associated with the respective groups and known when the groups

are known.

Such a function turns out to exist, but before writing an expression for it, it

will be necessary to take up some details of notation.

The groups which we have to deal with are groups of permutations; their op-
erations are permutations. One of the usual notations for a permutation consists in
writing all the symbols involved in one or more cycles, thus: ach.be.df.g, which stands
for a permutation which changes each letter into the next letter in the same cycle,
except the last letter of a cvcle which goes into the first letter. The numbers of letters
in the various cycles form a partition of the total number of letters; in the present
example we have the partition 32°1 of 8. This partition we will call the cycle-partition

of the permutation.

A permutation group will in general be made up of operations of various cycle-
partitions, which are all partitions of the number giving the degree of the group.
For any group G of degree n we shall use the symbol N(G;p['p3?...) to denote the

Ty, T

number of operations in G which are of cycle-partition p*p3* .. ., that is, which when
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written in the ordinary cyele notation show 7 cycles of p, letters each, m, cveles of

po letters each. and so on.

Now if, in our problem. G is the group acting on the objects, and G the group

acting on the positions, we have the formula:
oo ZPPE . mtm! . N(Guipips - ).N(Gopi'ps )]
(G p(Ga)
in which #(G,) and p(G,) are the orders of Gy and G, respectively, and the summation

¥ covers all the partitions of n the degree of G| and G;, which in practice means
however only those partitions which occur as cycle-partitions of operations both of
G and of G, since if a group happens not to contain any operations of a given cycle-
partition, we shall have N{ ) = 0, and the summand containing it as a factor will

drop ount.

The derivation of this formula will be found in my paper [2]; we shall see that

it is only a special case of a more general result which I shall come to presently.

Let us apply this to a numerical example, and determine the number of distin-

guishable ways of seating three pairs of indistinguishable twins about a round table.

The groups are of degree 6 (n = 6). The group of permutations among the
six persons under which any distinguishable arrangement is invariant contains: 1
operation, the identity, which leaves matters as they were originally, of cycle-partition
18; 3 operations interchanging the members of one pair of twins only, which pair can
be chosen in 3 ways, of cycle-partition 21*; 3 operations interchanging the members
of 2 pairs (3 choices), of cycle-partition 2212; 1 operation interchanging the members
of all three pairs (1 choice only), of cycle-partition 23. Total, 8 operations, so that
w(Gy) = 8.

Next, as to the group G acting on the positions at the table. There is first the
identical operation of cycle-partition 1%, Then there is 1 operation which turns the
table half-way round, thus interchanging the pairs of opposite seats, cycle-partition
2%, Then there are 2 operations turning the table through 120° and 240° respectively,
causing the seats to permute in 3 cycles of 3 seats each, cycle-partition 32. Lastly
there are 2 permutations turning the table through 60° and 300° respectively, giving

one cvele of G seats, evcle-partition 6. Total, 6 operations, so that u(G,) = 6.
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In filling out our table? (INDICATE) we note that zeros appear for G, for cy.p's
32 and 6, and for G, for cv.p’s 21* and 2212, We next put down the factors p]'p3* .. .;
observe that in this numerical factor the 7’s are true exponents, whereas in the
N( ) symbols they indicate the number of times a part is repeated in a partition.
We have: 1°.6! = 720; 21 114! = 48; 2212.2!12! = 16; (I put all of these down for better
illustration, through some of them will not be used); 23.3! = 48: 3%.2! = 18; 6.1! = 6.
Multiplying out and adding. we get 768, which is the numerator in our formula. The
denominator is the product of the orders: p(Gy)u(G2) = 8 x 6 = 48. Finally, the

number of distinguishable arrangements is 768/48=16.

Order 8 6 (12)
Objs. Pos'ns
C_\"C G] G2 Gz

Part.
16 1 1 1 156! = T20 720 720
214 3 0 0 21*4 = 48 0
2217 3 0 3 22122120 = 16 0 144
2 1 1 4 223 = 48 48 192
3¢ 0 2 2 322 = 18 0
6 0 2 2 6.1 = & 0

768 1056

As a further illustration we may vary this problem by supposing that we no
longer distinguish between right-hand and left-hand cyclic order around the table; or,
to put it otherwise, suppose we wish to determine the number of distinguishable ways
of placing on a ring a pair of indistinguishable brass keys, a pair of indistinguishable
copper keys, and a pair of indistinguishable iron keys. The group for the objects is
the same as before, but the group for the positions is now of order 12, there being
added to the original 6 operations 6 new operations = 3 operations in which the ring
is turned over about an axis passing through two opposite keys; the keys on this axis
remain where they were. but the other four keys interchange in pairs, so that we have
the cy.p. 2712, and there are 3 such operations because there are just 3 pairs of keys

which can be taken as axis; also there are added 3 operations in which the axis passes

2The figures in the first of the two columns headed G refer to the twins problem, where the
position group is a cyclic group; the second such column refers to the keys problem (discussed in the
next paragraph) where the object group is a dihedral group. The column totalling 768 also refers 1o
the twins and that totalling 1036 to the keys.



between keys. leaving on each side of the axis a set of 3 keys which interchange in pairs
with the opposite set of 3, giving the cy.p 2*; again there are 3 operations because
there are 3 distinct positions possible for the axis. We now have 3 operations of cv.p.
2217 where we had none before. and 4 of cv.p. 2% where we had only one before.
We modify our calculation accordingly and get (720+144+192)/(8x12)=1056/96=11

distinguishable arrangements.

Consider again the problem of the twins at table. Every distinguishable ar-
rangement either is or is not symmetrical about some diameter of the table. If an
arrangement has this kind of svmmetry, it is unaltered when the table is turned over as
in the problem of the kevs. so that each symmetrical arrangement of the table problem
corresponds to one arrangement of the key problem. But if the table arrangement is
unsymmetrical, it is interchanged with the arrangement opposite-handed to it, which
is also present among the possible table arrangements; but these two count as only
one arrangement in the key problem. Thus, since we have 5 fewer arrangements in
the key problem than in the table problem, there must be five pairs of such unsym-
metrical arrangements in the table problem, leaving 6 arrangements which must be

symmetrical.

All these enumerations you can easily verify at your leisure by forming all the
distinguishable arrangements with the letters @ a b b ¢ ¢ written on the circumference

of a circle.

Before passing on I wish to notice an application to organic chemistry which
led me to choose these particular examples. I refer to the benzine molecule and its
derivatives. The benzine molecule consists of 6 C atoms combined with 6 H atoms.
Any or all of the H atoms can, in the derivatives, be replaced by other univalent atoms
or radicals. such as Cl, Br, NH;, HO, CH;. Derivatives having equal numbers of the
same respective constituent atoms or radicals, but differing in their properties, are
called isomers. The difference in properties is supposed to be caused by differences
in the arrangement of the constituents in the molecule. The isomers thus correspond
to the distinguishable arrangements of our theory. Now the chemists do not seem to

have come to an agreement about the structure of the benzine molecule. The most
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generally held hypothesis is that the carbon atoms form a ring, as in the kev problem.
to which are attached the other constituents, which in the various derivatives may
consist of various combinations of single constituents, twins, triplets. etc. But there
are difficulties about disposing of the fourth valence bonds of the C atoms, and other
hypotheses have been proposed. one being that the C’s are placed at the vertices of
a triangular prism. What can our theory say about this question? A large number
of benzine derivatives have been produced and studied in the laboratory, and the
number of members in the various sets of isomers determined. There may be a few
errors in these determinations, but the evidence as a whole seems to show beyvond
a doubt that the only position-group which can be assumed consistently with the
observed facts is the dihedral group of degree 6, order 12, which we used in the key-
ring problem. The cyclic group of the table problem, of degree and order 6, will not
work: its order is too small and therefore it would give more isomers in many cases
than are found to exist. The same is true of the position-group of the triangular
prism, which is also of order 6 but different from the cyclic group. That is, provided
we suppose the prism to be rigid. If we imagine a triangular prism made, as it were,
of rubber rods, so that it could be turned inside out, then we should again have the
diliedral group, and this would be an admissible structure so far as the group theorist
could judge; the chemists might of course rule it out for other reasons. The number
of distinct types of permutation groups of degree 6 is strictly limited: I suppose there
are not more than 40 such®. If we examine them all, we shall find none other than

the dihedral group which answers the requirements.

Until now we have spoken of certain objects placed in certain positions, but
from a more general point of view we should speak rather of two classes of abstract
entities, of which one class is put in one-one correspondence with the other class.
Further, we need not limit ourselves to two classes; we may think of three classes put
in one-oue-one correspondence, or any larger number g of classes in 1-1-1-...-1
correspondence; in other words we may suppose all the entities made up into parcels,
each parcel to contain one representative of each class. With each of the ¢ classes.

which we call ranges, we associate a group G, (r = 1,2,..., ¢). which we call its

3A manuscript note in the margin reads “There are nearly 60",



range-group. It is found that our previous formula can be extended to cover this
more general case: in the denominator we adjoin a new factor u(G,) for each added
group G,. and in the numerator an additional factor p*p3*...m'm! . .., so that our
formula now reads:

_E [(pr'pa® . m'm! . ) IN(GpP'ps? .. ).N(Gas pT'p5* .. ) .. N(Gyip]'p3? ...))
G (Ga) - p(Gy)

As an example of a problem of more than twe dimensions, consider again the key-ring

T

problem. and suppose we have two red tags, two white tags, and two blue tags, and
that we attach a tag to each key on the ring; how many distinguishable arrangements
do we get? Here we have 1-1-1 correspondence connecting a class of tags, a class of
kevs, and a class of ring-positions. Performing the calculation (INDICATE) we find

696 distinguishable arrangements.

Key ring with tags': (2 red, 2 white, 2 blue)}

16
22
93

1 720 518400
3 162 6912
1 48? 0216
8

o |

ool = s = D

—
L=

In all examples just given we have had to do with groups of rather low order,
for which the numbers N{ ) could be determined by direct counting. When the
groups are of high orders this is not practicable, and the matter is often one of some
difficulty and must be dealt with by various artifices, there being no universal method
available. This is a question which belongs rather to pure group theory than to the

present subject. but I should like to give you some notion of the sort of trick which

serves us here.

*Comparing this table with the previous one, it will be seen that Redfield now omits any row
with a zero entry; this is why the numbers at the foot of columns G, G2, G3 exceed the sum of the
numbers above them. Redfield originally wrote 6 at the foot of column G and then changed it to
12: this is why he has divided 66816 by 6 and then divided by 2 at the end.



I have found it convenient to adopt a symbolic function, which I have called
the group reduction function (GRF), and in which the numbers N ( ) appear as
coefficients of terms whose literal parts indicate the cycle-partitions. This function
has the general expression (1/p(G)) ¥ [(;‘V(G;p’l"pgl I L 1 ] The quantities
s can be interpreted as the sums of the k-th powers of the roots of a polynomial,
and since these are symmetric functions of the roots, every GRF is also a symmetric
function of the roots. However, I do not wish to dwell today on this interpretation;
for our purpose it is sufficient merely to regard the GRF as a convenient symbolic

shorthand to show the properties of the groups which we need.

The simple algebraic properties of GRE’s prove to be useful; in particular, the
product of any two GREF’s is also a GRF, of higher degree of course. For example,
the group of degree 2 which gives all the permutations of two objects has the GRF
(1/2)(s? + s2). The cube of this is (1/8)(s} + 3sp8] + 35257 + s3), which is the GRF
of the group which we used for the independent permutations of three pairs of twins.
The cyclic group used for the table-positions has the GRF (1/6)(s§ + 53 + 253 + 2s4);
for any cyclic group, each term exhibits a power of a single letter si, whose suffix &
is a divisor of n, and whose coefficient is the well-known totient function giving the
number of integers less than and prime to k. For the dihedral group we have to adjoin

additional terms in s3 and s3s%, giving (1/12)(s$ + 3s3s? + 483 + 252 + 2s6).

As an example of the derivation of GRF’s of more complex groups, let us consider
a modification of the table problem in which we now have, instead of three pairs of
twins, one set of sextuplets, and inquire in how many distinguishable ways they can
join hands two and two across the table. We now have as object-group one which
includes all possible interchanges of the members of pairs, for each of which we have
the GRF (1/2)(s? + s»), and also includes all the permutations of the three pairs
treated as units, with the GRF (1/6)(s? + 3s2s) + 2s3). We combine these in the

following way:

1| fs+ 59 ) s2+s) (8345, 83+ 55
G[( 2 )+3 2 SR A

(.s? + 3528} + 98357 + sy + 853 + G545t + 65150 + Ssﬁ)

A
a8
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where you will observe that we have written (1/2)(s2 + sg), a modification of the
first GRF, in place of every s; of the second GRF. Now if we take this group of order
48 as object-group, and the cyelic group of degree 6 as position group as before, we

may caleulate as follows (INDICATE):

19 1 1 72 720
2% 7 1 48 336
3 8 2 18 288
6 8 2 6 96
6)1440

48)240

5

- giving 5 distinguishable arrangements, which may be pictured thus: (INDICATE).

OCOO®

Note that all these diagrams have diametral symmetry; therefore we should
expect to get also 5 distinguishable arrangements in the corresponding key-ring prob-
lem, where we might suppose the keys on the ring tied together with strings two and
two. 1 will leave this to vou to verify, using the dihedral group instead of the cvclic

group as position-group.

This process of combining group reduction functions is of general application;
thus if we were to suppose the table-sitters to join hands to form two triangles, we

should combine the GRF's the other way round, getting:

1 83 4 35,8, + 283 Z + 83 + 35455 + 256
2 6 6

1 2
=t (s? + 6s25) + 93357 + 653 + 45357 + 1283898) + 453 + 18545, + 1235) .
12

We should then find 3 distinguishable arrangements, both in the table problem and

in the key-ring problem; again I leave the verification to you.

Up to this point we have taken account of all the possible ways of placing the

objects in the positions, of all the possible correspondences among the given classes



of entities; we have not counted them all as distinguishable, but we have included
them all. We may however wish to exclude certain arrangements from the count. The
arrangements which we retain, considered as permutations of some assumed initial
arrangement, may or may not form a group; thus if we wished to determine the number
of distinguishable anagrams of the word success, excluding all those in which two like
letters are adjacent, the arrangements retained would not form a group. Many such
cases can be treated effectively by our methods, but the devices at present available
are of no great generality, and so I shall speak only of problems in which the retained

arrangeients do form a group.

Our results from now on are to hold for abstract groups. But as we know, every
abstract group can be represented as a group of permutations, so that it is legitimate
to use permutation groups for illustration and as aids to reasoning whenever it suits

us.

First of all we must specify the group which determines the arrangements or
correspondences, or the abstract equivalent thereof, which we are going to retain as
admissible. We call this group the frame group, F. In the problems previously taken
up, we had a frame group, namely the symmetric group on n symbols, only we did
not find occasion to mention it explicitly; in fact, I had worked out that part of the
theory long before I suspected that there was such a thing as a frame group to be

considered.

We may now think of our abstract system as represented by a set of g classes
of n entities each, and that these classes, or ranges, can be placed in one-one-... cor-
respondence in certain admissible ways. We begin by placing the classes in an initial
correspondence, which is arbitrary except that it must be one of the correspondences
which we agree to regard as admissible. We then apply to each range some arbitrary
operation of the frame group F. This gives a correspondence which may or may not

differ from the initial one, but in any case it is by definition also a correspondence of



the admissible set. We now introduce the range groups G,,G,. ..., G, These must
be subgroups of the frame gronp F, (including it may be F itself), but subject to this
limitation they may be any groups which may be assigned by the data of the problem.
Now taking the derived correspondence, let us apply to range 1 an operation g, of the
range group G. to range 2 an operation g, of the range group G, and so on. This gives
a second derived correspondence. If now it is possible to choose g1, g2, ..., g, (that is,
if the requisite suitable operations are contained in the respective range groups) so
that the second derived correspondence is identical with the initial correspondence,
we say that the initial correspondence and the first derived correspondence are both
of them representatives or aspects of one and the same distinguishable arrangement.
as we previously called it; but if this is impossible because the range groups do not
contain the needed operations, then the initial correspondence and the first derived
correspondence are aspects of different distinguishable arrangements. On this basis
it is evident that we can divide the whole of the admissible correspondences into
classes, each class standing for one distinguishable arrangement and including all its
representatives or aspects. When we have counted these classes, we have counted the

distinguishable arrangements.

When the frame group was a symmetric group, we classified our operations
according to their cycle-partitions; now, with a general abstract frame group, we
divide the operations into classes, each of which classes coincides with a conjugate
set of operations under the frame group F. Suppose now that one of the conjugate
sets of the operations of F contains L members, and that of these L operations,
are found in Gy, I, in Gy, ..., 1, in G,. Then one summand in our new formula will

be (u(F)* iy .. Lo/ (1(G)i(G2) . .. p(G4) L), and the complete formula will be

= (n(F)) [lllg ______ cq]
"= GG Gy = | D

with a summand for each of the conjugate sets into which all the operations of F

are divided: but (as before) a summand exists effectively only when it corresponds

to a conjugate set, under F, which has representatives in all the range groups G,

Where F is a symmetric gronp, this formula reduces to the previous one, since
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all the operations of a given cycle-partition form a conjugate set under the symmetric
group; the analogy of the two formulae is otherwise evident. There is not time for
me to give the proof, but I think anyone who is reasonably familiar with the theory
of gronps would be able to adapt it from the very similar proof of the first formula

as given in my paper [2].

We ought to have some examples of this, so I will suppose that we have two
regular tetrahedra, made of thin sheet material, or of wire if you like, so that one can
be superposed on the other in any orientation. The two tetrahedra can then be fitted
together in 12 different ways. the group of rotations of this figure heing a group of
the 12th order isomorphic with the alternating group on four symbols (which may be
taken to represent the vertices or the faces); this is our frame group F, but we regard
it here as an abstract gronp. Now we mark one edge of one tetrahedron in red; of the
12 ways in which this tetrahedron can be made to coincide with itself, there are just
2 which keep the red edge where it was; so one range group G is a group of order 2
and a subgroup of F. Let us mark one edge of the other tetrahedron in blue, and we
have a precisely similar second range group G,. Now we can state the problem: To

find the number of distinguishable ways of superposing the two marked tetrahedra.

Now the frame group F, which is the group of rotations of the regular tetrahed-
ron, contains 12 operations, which divide into four conjugate sets. One set contains
only the identical operation, so that L = 1; this operation occurs of course in both
the range groups, so that I, = I, = 1. A second set contains 3 operations of order
2, which correspond to the rotations about the three axes which pass through the
mid-point of opposite edges: we have here L = 3; one of these operations occurs also
in G, and one in G, so we have I; = I = 1. A third set contains 4 operations of
order 3, which correspond to the rotations through 120? about the 4 axes through a

vertex and the center of the opposite face; none of these occur in the range groups,
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so we have I} = Iy = 0. The fourth set contains 4 operations similar to those of the
third set, corresponding to rotations through 240°, but these though similar are not

conjugate with those of the third set; again we have I} =1, = 0.

L L I
1 1 1
3 1 1
4 0 0
4 [ ]

Now substituting in our formula we have

o 12 (lxl_'_lxl)w4
o2\ T e

(INDICATE?).
4 6 6 4

In 3 dimensions, with 3 marked tetrahedra, we should have:

7= (1212/2.2.2)(11.1/1.1 + 1.1.1/3.3) = 20;

and so on.

It should be noted that the enumeration depends on the choice of the frame
group as well as the range groups. If the tetrahedra are made of wire and can be
turned inside out as well as turned around, the frame group is of order 24 and the
distinguishable arrangements are in general fewer; on the other hand if the tetrahedra
are not regular, so that fewer rotations are possible, the frame group is of lower order

and the distinguishable arrangements become more numerous.

"It should be remembered that one tetrahedron has an edge marked red and the other tetrahedron
an edge marked blue and Redfield probably drew the edges on the blackboard with coloured chalk.
In the first figure the marked edges are superposed but are drawn side by side for emphasis; in
the others the “vertical” edge may be assumed to be red and the other marked edge blue. With
this colouring, the second figure cannot be rotated into the third one. The number under each
tetrahedron is the number of rotationally different ways of superposing a third marked tetrahedron
(with a green edge, for cxample), but there is no reference to these numbers in the text. The sum
44 6+ 6+ 4 = 20 agrees, of course, with the calculation in the next equation.



Let us now re-write our formula with the summands factored in a special way

for a special purpose which will appear shortly. Then

i Kf((cﬁ))’i) (:g))zL) """ (f((g.,))li) ' (fﬂ)] '

Notice that the last factor involves only the frame group, and that each of the other

factors involves only the frame group and one range group. It is sometimes convenient
to make a table showing, for a given frame group F, the values of L/u(F), and the
values of p(F)I./(u(G,)L) for all the different types of subgroups of F which might
be required to be used as range groups; then we have the figures at hand for various
calculations which we may wish to make. Suppose we do this for the frame group of

order 12 which we have been using in our examples. We get this table®:

my L/u(F) c 1712 3712 4/12 4/12
my Identity (order 1) : 12 0
m, Cyclic group (order 2) : 6
my Cyclic group (order 3) : 4
my Noncyc. grp. (order 4) : 3
m; Frame group (order 12) 1

AN AN A

This table could be used for the calculations of the tetrahedron problems which

- o N
L — T i ]
-0 OO

we just worked; a similar table for the table and key-ring problems could be made,
but that table would have 11 columns and 587 rows and so would not be worth while

making unless for a more extensive series of calculations.

In this table however (INDICATE) we notice that the numbers in the body of
the table are all integers, and perhaps some of you have noticed something else: these
numbers are the so-called characters of the subgroups of the particular frame group

considered. There is a fairly extensive literature on group characters, but most of

SThis table is repeated at the end of Redfield’s paper but with a marked tetrahedron added on
the right-hand side of each row; each tetrahedron has the corresponding group as its symmetry
group. The five tetrahedra are reproduced below the table, but there is no mention of them in the
original text.
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it cloes not happen to have been conveniently accessible to me, so that T am unable
to say whether anyone has used group characters in anything like this way for the

enumeration of what we have called distinguishable arrangements.

The characters which appear here are so-called compound characters appertain-
ing to a group considered as a snbgroup of a larger group. They are expressible as lin-
ear functions with non-negative integral coefficients of a smaller set of so-called simple
characters. The simple characters are not associated with any particular subgroups
of the frame group, and they may involve negative, fractional, and even irrational
and complex numbers. I have not discovered as yet any interesting way of relating
the simple characters to the present subject, but the question is well worth further

investigation.

To those familiar with matrices, it will be helpful to consider the rows of the
table as the main diagonals of a set of matrices whose other elements are all zeros.

Then a symbol such as (4,0,1,1) may be regarded as an abbreviation for

4 000
0000
0010 =M; (say)
0001

and the trace tr(AyM3M;5) of the product

MoA3M; = (1/12,1/4,1/3,1/3)(4,0,1,1)(4,0,1,1)
will be
(1/12x4x )+ (1/4x0x0)+(1/3x1x1)+(1/3x1x1)=4/3+1/3+1/3=2,
which is the number of distinguishable arrangements of two superposed tetrahedra
each having one marked face. (The sums and products of diagonal matrices are of

course also diagonal matrices, and their products are commutative).

This brings us to a new consideration. Let us omit the matrix My and take
the product M§ = (4,0.1,1)?, which is the matrix (16,0,1,1). This we find can
be decomposed into (12.0.0.0) + (4,0,1.1), so that MZ = M, + M. Or, to take
the problem which we solved a few minutes ago, of the tetrahedra with one marked
edge. we have .\!.;f = (36.4.0.0) = 2Af; + 2], while we already had found that

fr{MyM3) = 1 The same thing happens with the product of three or more matrices:



we have tr(AlyAL)) = 20, and” M3} = (216,8,0,0), decomposing into 161/, + 41/,
This is found to be a general property: the product of any number of matrices of the
set is equal to a sum of matrices of the set, the number of such summand matrices
being equal to the trace of My times the given product. That is Af, M, M =
M+ M+ M"™ + ...+ MP_ where the number of terms p (sum of coefficients)
=tr(MoMy, My, ... M,).

The existence of this decomposition is proved for symmetric frame groups in my

AJM paper [2], and the proof can easily be extended to the general case.

The number of summand matrices in the linear decomposition of a product
of matrices is also seen to be equal to the number of distinguishable arrangements
enumerated by the trace of Al times the given product, and in fact it turns out that
to each distinguishable arrangement there corresponds a particular matrix, which
in turn corresponds to a certain group which specifies a certain type of invariance
possessed by the distinguishable arrangement in question. To define this invariance,
let ns return to our one-one-... correspondences of ¢ ranges of n entities each. If we
take any such correspondence. and apply to each r-th range some operation g, of
the associated range group G,., we obtain in general another correspondence which
is an aspect of the same distinguishable arrangement as the first correspondence.
But it may happen that we get exactly the same correspondence, in which case all
the operations ¢, ¢a, ..., g, must be similar operations, belonging in fact all to the
same conjugate set under the frame group F, and further, for each range R, the
operation g, must be in a certain subgroup Y; of G,; the groups ¥},Ys,..., ¥, are
all conjugate to one another under the frame group F, and the character matrix M,
of this conjugate set is the summand matrix corresponding to the distinguishable

arrangement represented by the one-one-... correspondence with which we started.

Now let us see what this type of invariance amounts to in the examples which
we have worked. Take the case of two tetrahedra with one marked edge each. Of the

1 distingnishable arrangements which we found, the following two:

TThe original reads .‘\[(,Mg =(216.8.0,0,), but this is not what was intended.



A A

can be rotated so as to turn the marked edge or edges end for end, while keeping

every marked edge coincident with itself; these arrangements correspond to the two
snmmands giving 21/, and they are invariant under a group of rotations of order 2.

The other two arrangements:

AN

do not admit any rotation which does not shift one or both marked edges; they

correspond to the two summands giving 2M;, and the invariance group is merely the

group of identity.

Now I would remind voun that these methods do not enable us to discover the
actual distinguishable arrangements in any problem, but only to count them; that is
of course equally true of the elementary theory of permutations and combinations.
The practical utility of our theory, if it may be said to have any, is that, when we
have occasion to make a complete list of any fairly numerous set of distinguishable
arrangements, it is of great advantage to know exactly how many we ought to loock
for, so that we may avoid omissions and duplications. This being the case, it is
of still greater advantage to be able in advance to subclassify the distinguishable

arrangements by the invariance groups which they admit.

To do this. we must find the linear decomposition of the product of matrices,
and vou may have noticed that I have given no general method of doing so. I am
not ready to offer any such general method. In the simple cases we have treated,
the decomposition was effected by trial, and you might perhaps suppose that in

more complicated cases it would, failing a better way, be after all only a question of



patience and industry, since the decomposition can be proved to exist in every case.
Unfortunately, there is sometimes more than one way to decompose the product, and
when we have found a decomposition we have no way of telling whether it is the only
one possible, or whether it is the one which applies to the problem in hand. There
are frame groups for which one identical matrix corresponds to different conjugate
set of subgroups, and in such cases there may be different linear decompositions
corresponding to the various ways in which these conjugate sets enter the product
of matrices. It is possible also that a decomposition which looks all right will mean
nothing at all, will not be interpretable in terms of any possible set of arrangements.
1 mean to say, we must be prepared for this possibility; I have not met with such a

case, and I cannot say whether or not such a case can occur®.

The root of the difficulty here is that the character matrices do not contain all
the needed information, and in an attempt to better the position of affairs I have been
led to develop what might be called ezfended character matrices. The matrices we
have been using have a constituent for each conjugate set of the operations of F. The
extended matrices will have a constituent for each conjugate set of the subgroups of F.
That means that in a constituent p(F)I,/(¢(G;)L), L is now to stand for the number
of subgroups of F which are contained in a certain conjugate set, and !, is now to stand
for the nmmber of subgroups, out of those L, which occur also as subgroups of the
group G, or of any of the conjugates of G, under F. The old characters will coincide,
as far as they go, with the new extended characters, except in one particular: where
we have in the old table two or more columns corresponding to similar operations
which, though powers of one another, form distinct conjugate sets, these columns will
be combined to represent the single conjugate set of cyclic subgroups which contain
the operations; thus in the table for the frame group of order 12 the third and fourth
columns will be thus merged. When columns are merged in this way the fractions
L/u(F) in the upper row (1f,) are to be added together, so that the sum of the
whole row continues to be 1. The old columns, as modified by merging, correspond

to the cyclic subgroups of F:: the new columns added will correspond to the non-evelic

%A manuscript note added later reads: “Such a case occnrs with the 9 subgroups of the simple
group of order 168 (1.1.38)".



subgroups of F. including the last column for F itself. The new columns will have 0

instead of L/p(F) in the upper row.

The new table will be as follows:

Ay : :1/12 1/4 2/3 0 0
My ¢ Identity (order 1) : 12 0 0 0 0
M, : Cyclic group (order 2) : 6 2 0 0 0
My Cyclic group (order 3) : 4 0o 1 0 o0
M, : Noncyc. grp. (order 4) : 3 30 3 0
M; : Frame group (order 12) 1 1 1 1 1

The extended character matrices can be multiplied together, and the product so
obtained may be multiplied by My and the trace taken, just as in the case of the
unextended character matrices; but the decomposition is now unique, because, as yon
may readily see, the matrices are now all linearly independent, which the unextended
matrices were not. When a product of matrices has been obtained, there is now a very
simple rule for the linear decomposition: the last non-vanishing constituent points out
the summand matrix corresponding to the highest invariance group order; we subtract
a suitable multiple of this tabular matrix, so as to annihilate this final constituent, and
then we repeat the process until the whole decomposition is obtained. The present
table is too simple to offer any examples of much complexity, but we may take the
product M} already used. In extended matrices this is (36,4,0,0,0). The figure 4
points to M, as the first summand; we must double this to annihilate the 4, and so
we have M7 — 2, = (24,0,0.0.0). We now see that we must next subtract 2M/;, and

we have M? —2M, — 231, = (0,0,0,0,0) = 0, so that finally we get MZ = 2M, + 2],

A proof of the validity of this procedure has been obtained. It depends in great
part on the resnlts which I previously outlined; but none of these proofs has yet been
brought to a degree of elegance which would permit me to give any intelligible account

of them in the time available.

The use of extended character matrices gives a theoretically complete solution of
the problem of classifving distinguishable arrangements according to their invariance
gromps: but the practical difficnlty and labor of working out the tables of matrices is
very considerable, so that I have not been able to make applications comparable in

interest with those of the simpler, purely enumerative theory.



]
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Before leaving the subject I should like to indicate one interesting thing which
emerges. Suppose we tabulate, instead of the values of u(F)I, /(ji(G,)L). the values

of [, simply. We then get a table like this:

C, C C; Cy Cs
Gi: 1.0 0 0 0
Gy: 11 0 0 0
Gy: 1 0 1 0 0
Gy: 13 0 1 0
Gs: 1 3 4 1 1

From this table we form matrices C, whose constituents form columns of the table, and
the products of these can be linearly decomposed just as in the case of the character
matrices. Thus we find C3 = (0.1,0,9,9) = (0,1,0,3,3) + (0,0,0,6, 6) = C; + 6C}.
The following interpretation can be made of this result: If we take a group of the
conjugate set to which G, belongs, and the same group or another from the same
conjugate set, choosing them in all the 9 possible ways, and if we then use the two
chosen groups as generators, we obtain all the groups (3 in number) of the conjugate

set to which G, belongs once, and the single self-conjugate group Gy siz times.
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