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Abstract

A polyhex graph is either a benzenoid system or a coronoid sys-
tem. The enumeration of Kekulé structures in polyhex graphs by
means of determinants is discussed. The application of John-Sachs
formula is extended to a class of coronoid systems.

A benzenoid system(1], also called “honeycomb system”[2], is a finite con-
nected plane graph with no cut-vertices in which every interior region is
bounded by a regular hexagon of side length 1. A coronoid system G [3] is
a subgraph graph of a benzenoid system H which is obtained by deleting at
least one interior edge (i.e. edge not lying on the perimeter of #) or/and
at least one interior vertex (i.e. vertex not lying on the perimeter of H)
together with its incident edges such that a unique “hole” (i.e. an interior
region bounded by a polygon with more than six edges) emerges and each
edge of G belongs to at least one hexagon of G. A coronoid system G and
the benzenoid system H from which G is obtained are depicted in Fig.1.

A polyhex graph is either a benzenoid system or a coronoid system.
The study concerning polyhex graphs is of chemical relevance since poly-
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hex graphs are natural graph representations of benzenoid hydrocarbons and
coronoid hydrocarbons [4].

H G
Fig.1

A coronoid system G and the benzenoid
system H from which G is obtained.

A perfect matching of a graph G is a set of disjoint. edges covering all
vertices of G. Perfect matchings in polyhex graphs which are called Kekulé
structures by chemists play significant role in numerous chemical theories
(5]. Dozens of papers dealing with the enumeration of Kekulé structures in
polyhex graphs have appeared.

For convenience, in the following we assume that a polyhex graph G in
question is drawn in the plane so that two edges of each hexagon are vertical.
Then a peak is a vertex lying above all its first neighbours. A valley is a
vertex lying below all its first neighbours. A monotonous path in G is a path
starting from a peak and going downwards.

Let x1,79, ..., 7, be peaks of a polyhex graph G, and let y;,v0, ..., be
valleys of G. Denote by W the matrix whose element (W);; is the number
of distinct monotonous paths joining the ¢ — th valley with the j — th peak.
Evidently, a polyhex graph with Kekulé structures must have s = ¢t (cf.
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[1]). It was found[6] that for a benzenoid system G, the number of Kekulé
structures K(G) is equal to | detW |, i.e., K(G) =| detW |. This is the so
called John-Sachs formula.

A fast algorithm has been developed to determine the elements (W),; [7].
John-Sachs formula is particularly useful for the enumeration of K(G) by
means of computer, and suitable computer programs have been designed [8].

Unfortunately, John-Sachs formula fails for a lot of coronoid systems.
This feature may be reviewed as a challenge for mathematical study ([4],chap-
ter 8).

In this note we prove that John-Sachs formula holds for a class of coronoid
system. Thus extend the application of this elegant formula.

Let G be a polyhex graph with Kekulé structures. An edge e of G is
said to be a fixed single bond if e does not belong to any Kekulé structure
of G; e is said to be a fixed double bond if e belongs to all Kekulé structures
of G. A fixed bond is either a fixed single bond or a fixed double bond.
A polyhex graph with fixed bonds is said to be an essentially disconnected
polyhex graph|5].

For a coronoid system (3, it has two perimeters: the outer perimeter (i.e.
the perimeter of the benzenoid system from which it is obtained) and the
inner perimeter (i.e. the perimeter of the “hole”).

Definition 1[9] A straight line segment P, P; is called an elementary cut

segment of a coronoid system G if

1. each of P; and P, is the center of an edge on the outer or inner perimeter
of G;

2. PP, is orthogonal to one of the three edge directions;

3. any point of P P, is either an interior or a boundary point of some

hexagon of G.

The set of all the edges intersected by an elementary cut segment is called
an elementary cut.

Definition 2[3] A broken line segment Py P,P; is called a generalized cut

segment of a coronoid system G if

1. each of Py and P is the center of an edge lying on the outer or inner
perimeter of G, and P, is the center of a hexagon of G}

2. PP, is orthogonal to one of the three edge directions of G, P, P; and

P, P, form an angle of 7/3 or 27/3;

3. any point of Py PP is either an interior or a boundary point of some

hexagon of G.
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The set, of all the edges intersected by a generalized cut segment is called
a generalized cut.

A special edge cut is either an elementary cut or a generalized cut. It is
evident that each special edge cut £ has exactly two edges on the inner or
the outer perimeter of G. If these two edges are simultaneously on the outer
or the inner perimeter of G, E is said to be of type I. If one of them is on
the outer perimeter and the other is on the inner perimeter, then E is said
to be of type II.

Theorem 3[9] An essentially disconnected coronoid system possesses an
special edge cut consisting of fixed single bonds.

In the following we confine ourselves to those polyhex graphs with Kekulé
structures. Since a polyhex graph is bipartite, in the following we assume that
the vertices of a polyhex graph G in question are coloured black and white
such that any two adjacent vertices are differently coloured. Assume that G
has n white vertices 71, 72,...,#,. Then G has n black vertices ¥, 2, ..., ¥n-
Let B* denote the square matrix of order n such that (B*);; = 1 if vertex x;
is adjacent to vertex y;, and (B*);; = 0 if vertex z; is not adjacent to vertex
Y.

Lemma 4 For an essentially disconnected coronoid system G with a special
edge cut of type II, we have K(G) = |detB"|.

Proof. By algebraic knowledge the absolute value of the determinant
of B* is independent of the labelling of the vertices of G. Without loss of
generality we may labe] the vertices of G such that white vertex z; is adjacent
to black vertex y; for 1 = 1,2,...,n since G has Kekulé structures, Let M
be a Kekulé structure of G. Recall that an M-conjugated circnit is a circuit
whose edges are alternately in M and in E(G) — M, where E(G) is the edge
set of G. We claim that the length of any M-conjugated circuit L is 46 + 2
(b=1,2,..). Denote by G’ the subgraph of G induced by the vertices on L
and in the interior of L. Evidently, G’ M is a Kekulé structure of G'. Since
G has a special edge cut of type II consisting of fixed single bonds, G’ cannot
contain the inner perimeter of G. Otherwise, a fixed single bond lies on L
(an M-conjugated circuit), which is contrary to the fact that any edge on an
M-conjugated circuit is not a fixed bond. Assume that G’ has z vertices, h
hexagons, m edges, and the length of L is d. Then we have 2m = d + 6h.
Thus d/2 = m — 3h, which together with Euler’s formula z = m — h + 1
vields d/2 = z — 1 — 2h. Bear in mind that G’ has a Kekulé structure. Then
2z is even. Therefore, d/2 is odd, i.e. d/2 = 2b+ 1, and hence d = 4b + 2
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{b=11;2x):
Now consider the determinant of B*. By the usual definition of a deter-
minant, detB* = 3 sgn(m)by 2,025, - - - bn x, . Where the summation is over all

permutations
(1 2 - n )
n=
T My crr Tp

Each permutation 7 can be expressed as the composition of disjoint cycles
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Then sgn(w) = (~1)¢, where Ne is the number of even cycles in 7. It is
not difficult to see that the term corresponding to permutation 7 is non-zero,
i€, by gz bony -+ bnx, = 1if and only if the set {zyx,,ZoYny, -+, Tnlm, } is &

Keknlé structure M of G. Furthermore, if the term corresponding to = is
non-zero , then each cycle

3 3 -v- gemp G
iy i3 o+ iy i
in 7 corresponds to an M-conjugated circuit of length 2s: =, yi @i, 4i -+ - 74, _,
Yiy Tiy Yir Ty -
As mentioned above, the length of any M-conjugated circuit must be

4b+2 (b =1,2,..). This implies that s must be odd. Hence, if the term
corresponding to 7 is non-zero, then

sgn(m) = ()" = (-1)°

Therefore,

[detB*] = 3 bywiboms -+ - bum, = K(C)

In the following, without loss of generality, we may further assume that
the peaks of G are white, and hence the valleys of G are black. Since G has
Kekulé structures, G has an equal number of peaks and valleys, as well as an
equal number of white vertices and black vertices. Let t and n be the numbers
of peaks (valleys) and white (black) vertices of G, respectively. We label the
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vertices of G in a special way as follows. From the top to the bottom we
assign consecutively a number to each horizontal line which passses through
white vertices of G such that the highest one (i.e. the one passing through the
highest peak) has number 1, the second highest one has number 2, and so on.
The n white vertices are arranged such that xy, g, ..., z, are peaks, x4, ..., %p
are non-peaks; and if j > ¢, then the horizontal line passing through z; is
below the horizontal line passing through a;, or x; and =, are on the same
horizontal line with #; on the right of ; (see Fig.2). The n black vertices of
G are arranged such that ¥, 4o, ...y are valleys, yy41, ..., yn are non-valleys;
y; and x; are connected by a vertical edge for j =1t +1,t+2,...,n.

Fig.2 An illustration of the labelling of vertices
of coronoid system G

Let the vertex set of G be V(G)= {v; = 21,v2 = T3, ...,V = T} Upy1 =
Y1, Uns2 = Y2, Van = Y} With the above assumption, it is not difficult
to see that the adjacency matrix A(G) of G has the form as shown in Fig.3,
where BT is the transpose of B. Moreover , BT has the form as shpwn in
Fig.4, where Q is a square matrix of order » — ¢ such that (Q); = 1 for
i=1,2..,n—tand (Q); =0ifj >i.
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Fig.3 The adjacency matrix A(G) of coronoid system &
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Fig4 The matrix BT

With the above notation, we have the following.

Lemma 5 For a polyhex graph G with Kekulé structures, the following
equality holds: |detBT| = |detW|
Proof: Denote by R the (n —t) x t matrix whose element (R);; is the
number of monotonous paths from peak z; (j = 1,2,...,t) to white vertex
T (0 =1,2,...,n—t). Then CRis atxt matrix whose element (C'R);; equals
the number of monotonous paths form peak x; to valley y, (i =1,2,....,¢;5 =
1,2,...,t). Hence

CR=W (1)



Denote by R’ the (n — t) x ¢ matrix whose element (R');; is defined by
(R)y; = (—1)"=+)(R),;, where h(z.s;) is the label of the horizontal line
passing through vertex z;,;. Denote by I’ the # x  matrix whose element
(1) is defined by

N 0 if 1#)
(1 )ij == { (_l)h(z.) if 4 =j
where h{z;) is the label of the horizontal line passing through peak z; (i =

1:2sewt): Pait
ro
1% i)

where [ is the identity matrix of order n—¢. Evidently, detJ = detI'det] = 1
or —1. In the following we prove that

DI'+QR =0 (2)

We first assume that y;.¢(1 <7 < n — t) is not adjacent to any peak. Then
(D)ip =0for p=1,2,...,t. Hence (DI');; = 0. Since y; is not a valley, it is
adjacent to two white vertices z,4, and x,4, which are on two neighbouring
horizontal lines " and {“, respectively; or it is adjacent to three white vertices
To—)4t, Tz a0d T4y, where x4,y and x4, are on V', while 2;4, is on ",
Note that in the former we have (R),; = (R);;, and in the latter we have
(R)ij = (R)s-1, + (R)s;. Thus

(QR');

(=1)MEe)(R),; + (—1)=(R),,
(—D)ME(R),; + (—1)HE0+ 1 (R),,
0

or

(QRY; (=M= (R),y j + (1)MEI(R),; + (1) )(R)y
(‘l)h(h-lﬂ)(R)’_l‘j + (-l)h(z"‘”’)(ﬁ.),j
&
= 0.

(m1MEs (R), i + (R)y)

Therefore, (DI');; + (QR');; = 0.



Now suppose that y;,; is adjacent to exactly one peak x,(1 < a < t).
Then we have (Laypten
n [ (M=) i j=a
(D”""*{ 0 if j#a
(R Ry = [ (1P =
@Ry = (e, = | COT A 12

or

(QR);

(_1)h(1'+!)(R)sj 4 (Wl)h(2-+t)(R)‘J
(=)o) = (phiears it j=a
(_l)h(z,ﬂ)(l{)sj =R (_])h(r,+z)+1(R)sj =0 if j#a

Hence (DI');; + (QR');; = 0.
Lastly we consider the case that y;. is adjacent to two different peaks z,
and @ (1 < a,b < t). Then we have

(1)) §f j=a
(DI)y; = (~1)M=) i j=b
0 if j£a,#b

N (e gy, = | (F1ER) i j=aorj=b
(QR)._,—( 1) +(R)l)-{ 0 if ]#a.#b

Note that h(z,) = h(z,), and k(zy:) = h{z,) + 1 = h(zs) + 1, we also
have (DI');; + (QR')i; = 0. Therefore, we have established equality (2).
Consequently,

|det BT| = |detBT||detJ| = |detBTdetJ| = |detBTJ|

. |d.'et( o g ) ( [ )|= \det ( C(f’ S ) |(Equality (2))

= |detCR'detQ| = |detCR'| = |detCR| = |detW|(Equality (1))

Theorem 6 For an essentially disconnected coronoid system G with a spe-
cial edge cut of type II, John-Sachs formula holds: K(G) =| detW |.

Proof: Note that |detBT| = |detB*|, we have K(G) = |detB*| (Lemma 4)
= |det BT| = |detW| (Lemma 5).



General remark: Theorem 6 can also be obtained from [6,7]. In doing
that, one need to find out all fixed single bonds. The authors of (7] pointed
out that John-Sachs formula, i.e. the formula given in Theorem 6, also ap-
plies to generalized benzenoid systems. A generalized benzenoid system [7]
is defined to be a connected subgraph of a benzenoid system in which the
length of the boundary of any region is 4s+2 (s=1,2,...). Compare the defi-
nition of a generalized benzenoid system with the definition of an essentially
disconnected coronoid system, we find that an essentially disconnected coro-
noid system need not to satisfy the condition that the length of the boundary
of any region is 4s+2 (s=1,2,...). Thus an essentially disconnected coronoid
system need not be a generalized benzenoid system. Therefore, Theorem 6 in
this paper is not an immediate consequence of the theorem from John-Sachs
for benzenoid system [6,7,10].

In [11] John represented elegant algorithms for calculating the determi-
nant W of both benzenoid system and defect benzenoid system. Those al-
gorithms are simple and simply handleable. The so called "defect benzenoid
systems” include not only coronocid systems. The algorithm for defect ben-
zenoid systems in which the length of the boundary of any region is 4s+2
(s=1,2,...) differs from the algorithm for defect benzenoid systems in which
the length of the boundary of at least one region is 4s (s=1,2,...). For es-
sentially disconnected coronoid systems, it is clear that the length of the
boundary of the "hole” may be 4s+2 (see Fig.5) or 4s (see Fig.6). Therefore,
in order to apply the algorithms described in [11] to essentially disconnected
coronoid systems, we need to find the length of the boundary of the "hole” .

Fig.5 Fig.6
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