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Abstract

Redfield was a pioneer in applying group theory to enumerative combinatorics
but only one of his papers on the subject was published (in 1927) during his
lifetime; a second was published posthumously in 1984, many years after it was
originally submitted (in 1940). The typescript of a lecture which he delivered
in 1937 is now published in this issue of Match. The present paper examines
the material in the lecture and its relation to the 1927 and 1940 papers.

Introduction

During his lifetime. J. Howard Redfield (1879-1944) published a single paper
[18]. Although it appeared in the American Journal of Mathematics, it was generally
overlooked for about 30 vears. It was cited briefly by Littlewood in both editions
of his book [9], but there seems to be no other citation of the paper until Harary
(5] pointed out that Redfield had anticipated various major developments which had

taken place in combinatorial enumeration in the intervening years.

Not surprisingly, combinatorialists began to ask the question “Who was Red-
field?". A little information was obtained by Harary and the text of a letter (dated
19 December 1963) from C. Qakley to him is included in a footnote in Harary and
Palmer’s book [6]. Oakley was writing some twenty years after he had known Red-
field, so one or two details in his letter are wrong, but the overall picture of him as
a man with broad interests, earning his living for much of his life as an engineer, is

correct. The letter ends with the information that Redfield “has a very distinguished
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brother (Alfred Redfield) at Woods Hole. Massachusetts™. For some reason no-one
seems to have followed up that information - Alfred was still alive when [6] was pub-
lished and a letter addressed to him at the Woods Hole Oceanographic Institution

would certainly have reached him.

The Dictionary of Seientific Biography contains an entry [2] by Harold L. Burstyn
on William C. Redfield (1789-1857). The present author, suspecting (correctly) that
William might be an ancestor of Howard, wrote to Burstyn in 1976 enquiring if he
knew anything of J. Howard Redfield. Burstyn passed the enquiry to Alfred C. Red-
field who responded to the author with some information. Later Howard’s daughter,
Mrs Priscilla Redfield Roe, contacted the anthor by telephone when she visited the
United Kingdom. She recalled that her father had submitted a second paper which
the American Journal of Mathematics had rejected, but she was certain that a copy
of it still existed. Thus the Redfield family learnt, rather belatedly, that Howard
had done significant mathematical research and, in addition, the mathematical world
was to learn that Redfield had continued his researches in enumerative combinatorics,
Imt it was not until 1981 that the rejected typescript was tracked down in the family

papers. Other material was also found at that time and later.

It was in 1940 that Redfield had submitted the rejected paper: after its redis-
covery. it was published in 1984 [21] in a special issue of the Journal of Graph Theory
dedicated to Redfield. Other articles in that issue include a paper [7] about the
rediscovery of Redfield’s work. another [4] comparing the material in the newly dis-
covered work with that published by other authors in the meantime and a biography

of Redfield [10]. The content of the 1940 paper is also discussed in [22].

Over a number of generations, several members of the Redfield family have been
interested in scientific matters. William Redfield’s interests, for example. included
steam navigation and meteorology, and he was the first president of the American
Association for the Advancement of Science. William also produced some genealogical
tables of the Redfield family in the United States; these were revised and extended
[17] by his eldest son, John Howard Redfield (1815-1893), the grandfather of the

“mathematician” John Howard Redfield. Perhaps “polymath™ would be a better de-
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scription of the younger John Howard, since he obtained degrees both in engineering
and Romance languages, but although he had a few short-term university appoint-
ments (both in languages and in mathematics) he never obtained a permanent post.
For much of his life. he earned his living as a civil engineer, but during part of the
19305 he was unemploved and did what work he could find such as translating patents

(see [10] for further details).

Enumeration problems

Enumerative combinatorics is concerned with problems such as how many dif-
feront (or inequivalent) wavs are there to place a collection of n objects into a set of
n positions (one object in each position). The answer. of course, depends on what
one means by “different”™. As an example. in his 1927 paper, Redfield asks for the
number of strnetures which can be formed by placing four identical black balls and
four identical white balls at the eight vertices of a cube (one ball in each corner). The
set of balls has a svmumetry group and so does the cube. Two distributions of balls
are regarded as equivalent if one can be obtained from the other under the actions of
one or both of these two groups. Redfield introduced two methods for solving such
problems. both of which make use of a polynomial (which he called the group reduc-
tion function or GRF) associated with a permutation group. The same polynomial
was introduced independently by Pélya in the 1930s (see in particular [15] of which
an English translation appears in [16]). Since Pélya’s paper was noticed by hoth
combinatorialists and chemists, his name for the polynomial has been adopted as the

standard term; in English it is called the eycle indes.

Each of the structures formed in this type of construction has its own symmetry
group aud in his 1927 paper [18], Redfield asks if it s possible to break down the
counting so as to keep track of the number of structures with each possible symmetry
group. He defines a binary operation on GRFs and shows that this composition of two
(or more generally ¢) GRFs is equal to a linear combination of GRFs. The coefficients
in this expansion are, in some cases, the desired numbers. The method fails to work
in general, however, since different groups may have the same GRF and furthermore

the GRFs involved are not always linearly independent. In an unpublished typescript



dated 1935 [19]. Redfield indicates that he now believes that he has the solution to
the problem. but he has not yet been able to prove that the method works in general.
A later typescript (20] (published in this issue of Match) is the text of a lecture which
he delivered at the University of Pennsylvania on 10 December 1937 to the Graduate
Mathematics Club. In it he states that he has proved that the procedure works “but
none of these proofs has vet been brought to a degree of clegance which would permit
me to give any intelligible account of them in the time available”. A proof is included
in his 1940 paper {21].

The text of Redfield's lecture is very readable, and anyone wishing to study his
work would be well advised to read the lecture before passing on to his 1927 and
1940 papers. The text is also of historical interest, since it establishes that by 1937

Redfield had already worked out the theory in his 1940 paper.

Content of Redfield’s lecture

Tu his lecture, Redfield starts with some elementary problems: (1) permutations
of distinet objects. (2) permutations where some objects are indistinguishable from
others (here a non-trivial symmetry group acts on the objects) and (3) arrangements
of distinct objects around a circular table (here a symmetry group acts on the po-
sitions). These three problems can be solved by elementary arguments but, in his
fourth problem, there is a group acting on the objects as well as one acting on the

positions, so the problem is more difficult.

Some of Redfield’s notation and terminology is no longer current. For example.
he speaks of group operations rather than group elements, he writes 1(G) rather than
|G| for the order of G and he nses dots rather than parentheses in permutations written
in evelic form. so, for example. he writes ach.be.df.g rather than (ach)(be)(df)(g). This
permutation has cyele-partition type 3217 (one cycle of length 3, one cycle of length
2 and 2 exeles of length 1),

Redfield now quotes the following formula from his 1927 paper:

Tty el N(G G e s ) N (G T s )
o MG (G ‘

This expresses the number ¢ of arrangements as a sum over all partitions of the degree

of the gronp 7 acting on the ohjects (which is, of course, the same as the degree of the
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group G acting on the positions). Each summand involves the product of the number
N(G\;pl'p3* .. .) of elements in G, with cycle-partition p{'p3®... and the number
N{(Go; pi'p3* ...) of elements in G, with the same cycle-partition (so the summand
is non-zero only when both G, and G5 contain elements with that cycle-partition).
Redfield then applies the formula to various problems. First he asks for the number
of distinguishable ways of seating three pairs of identical twins around a cireular table
(there arve 16). He then varies the problem by not distinguishing between right-hand
and left-hand cyclic order around the table or, more realistically, by considering an
equivalent problem with three pairs of identical keys (brass, copper and iron) on a
ring (the number reduces to 11). In his first calculation, Redfield includes in his
table a row for each partition of the degree of the groups, but subsequently he omits
those rows which contribute zero to the sum. He also returns to the twins problem
and considers which of the arrangements are symmetrical about some diameter of the

table (there are 6).

In his work, Pdlya [15], following up work of Cayley and others, includes the
enumeration of several chemical compounds. Redfield’s inspiration, however, had
come from a different direction, in particular from MacMahon’s Combinatory Analysis
(14], and there is no mention of chemistry in either his 1927 paper or his 1940 paper.
It is interesting, therefore, to find that in his lecture he does have a short section on
the benzine (sic) molecule and its derivatives. The spelling which he adopts is that
more usnally nsed in the USA as a generic term for petrols and petroleum distillates;

the particular compound is usually spelt benzene.

Redfield discusses the problem of determining the structure of the benzene mo-
lecule, something which had taxed the minds of chemists over a long period. But,
in writing that “the chemists do not seem to have come to an agreement about the
structure of the benzine molecule”, he is a little out of date, since by 1937 very
few chemists would have doubted that the carbon atoms in benzene form a ring.
Nometheless, Redfield’s argument is sound. The number of theoretically possible de-
rivatives can be determined for various position-groups, and these numbers can be
compared with the known number of derivatives. The cyclic group gives the best

match between the theoretical number and the known number. Similar reasoning
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had been used by chemists but Redfield had a systematic method for calculating the

theoretically possible numbers.

After this diversion, Redficld returns to the main theme of the lecture. He
points out that placing objects in positions can be described abstractly as putting
two classes (objects and positions) in one-one correspondence; this formulation can
then be generalised to putting ¢ classes into 1-1-1-...-1 correspondence. The
earlier formula generalises to the following:

oo Sl mima! . )N G pl ) NG ) N(Gnf B )]
(G (Gs) . .. p(Gy) ’

As an example of a 1-1-1 correspondence, Redfield returns to the key-ring problem

and adds a tag to each key where there are two red, two white and two blue tags.

This simple change to the problem increases the number of solutions to 696.

At this point in the lecture, Redfield introduced his group reduction function
(GRF) and he calculated the GRFs for the twins problem. Then he considers a set of
identical sextuplets joining hands two and two across a table. The object group here
is a wreath product (but he does not give it a name). Forming its GRF involves first
calculating two GRFs, (1/2)(s? + s2) and (1/6)(s} + 35281 + 2s3), and then writing
(1/2)(s3 + s in place of every sy in the second GRF. If the sextuplets join hands to
form two triangles, then the group is a wreath product with the factors interchanged,

50 the GRFs are composed the other way round.

Up to this point (apart from the chemistry) the main ideas in the lecture are
in Redfield’s 1927 paper, though the particular illustrative examples differ. Now he
moves on to new ideas and instead of allowing any object to go in any position,
restrictions are introduced. Arbitrary restrictions are not allowed since the permitted
permutations must form a group which Redfield calls the freme group. The object
group and position group, or. in the general case, the ¢ groups acting on the classes
(called ranges), must all be subgroups of the frame group. The subgroups are denoted

by G, Gy, .. .. G, and are called range groups.

In the unrestricted case, a frame group did not feature explicitly, but to fit in

with the general theory, the full symmetric group plays the role of the frame group.



In that case, the summands in his formula correspond to splitting the set of group
elements into cycle-partition types or, equivalently, into conjugacy classes with respect
to the svmmetric group. In the general case, the set of group elements is divided into
conjugacy classes with respect to the frame group. The new formula for the number

of arrangements (or structures) is:

i ((F))! [Ma ------ fq]
G Ga) ... n(Gy) Li-1 ’
Here each summand involves a product [yl .. .1, where the corresponding conjugacy
class contains {; elements of Gy, [, elements of Gy, ..., [, elements of G; the total
number of elements in the conjugacy class is denoted by L. Redfield did not have
time to prove this formula in his lecture but he indicates that the proof is similar to

that of the carlier formula where the frame group is a symmetric group.

As an example of the new formula, Redfield studies two regular tetrahedra made
of wire so that one can be superposed on the other in any orientation; thus the frame
group is the alternating group A,;. Next, one edge of the first tetrahedron is marked
in red, so the range group for it is a cyclic group of order 2 (in modern parlance
the group is the stabilizer of the marked tetrahedron). The second tetrahedron has
one edge marked in blue, so the second range group is also a cyclic group of order 2.
Applying his new formula, Redfield calculates that there are 4 ways to superpose the
two marked tetrahedra; he also gives the calculation for superposing three marked

tetrahedra and obtains 30 as the number.

Redfield now factorises his formula in the following way:

<=2 (i) (i) - Gient) - ()]

Here each summand is a product of ¢ + 1 terms, where (for r = 1,2,...,¢) the r-th

factor p(F)I./(u(G,)L) involves the r-th range group and the frame group, but the
last factor L/p(F) involves only the frame group. Next he produces a table in which
the rows my, mo, ... correspond to the various subgroups of the frame group 4, and
the columns to the conjugacy classes of A4. The table also has an upper row ng
giving the values L/u(F) for the varions conjugacy classes. He then observes that the

entries in the main part of the table are compound characters of the subgroups of the
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frame group. Each row m, is then used to form a diagonal matrix M, which he calls a
character matrir. This is really a device which enables component-wise multiplication
of vectors to be avoided and replaced by matrix multiplication of diagonal matrices,
but as Redfield generally writes his diagonal matrices as row vectors the introduction
of the matrices is hardly necessary. The earlier calculation can be expressed as the
trace tr( Mo, M,, ... M. ) of the product of diagonal matrices, where the matrix My
corresponds to mg and the matrices M;, (i = 1,2,...¢g) correspond to the rows indexed
by the ¢ range groups. This method is illustrated for two superposed tetrahedra each

with one marked face, rather than one marked edge.

When the factor A, is omitted, the product of the remaining matrices can
be expressed as a linear combination of character matrices, and, in some cases, the
coefficient of M, in this decomposition is the number of structures (distinguishable
arrangements) which have as their symmetry group the subgroup corresponding to
Af.. This is the analogue for general frame groups of the linear decomposition of
GRFs in the 1927 paper, but it suffers from similar deficiencies: sometimes different
groups correspond to identical diagonal matrices and in some cases the matrices are

not linearly independent.

Towards the end of his lecture, Redfield explained how to overcome the dif-
ficulties. He introduces what he terms eztended character matrices. In the corres-
ponding tables, each column corresponds not to a conjugate set of elements but to
a conjugate set of subgroups of F. The columns in the earlier tables correspond to
cyelic subgroups, but, in the new tables some of the old columns are merged and new
columns are added for the non-cyclic subgroups. The new table is square and, if the
rows are ordered in increasing order of size of the subgroups, then the table is lower
triangular with non-zero entries on the diagonal (but Redfield does not explicitly say
this). Now the rows of the table' are clearly linearly independent, so, when the ex-
tended character matrices are used, a unique decomposition is always obtained. Thus
the problem of counting structures according to their symmetry groups is solved. The

proof of this result was not included in the lecture, but it can be found in Redfield’s

'"Here Redfield uses the same notation M, for an extended character matrix as he does for the
corresponding row of the table.



1940 paper [21].

Although Redfield made use of some of the libraries in the Philadelphia area,
he did not alwavs have ready access to material which would have helped him in his
researches. For example, the tables containing what he termed extended characters
appear in the second edition of Burnside’s book [1] under the name fables of marks.
It seems. however, that Redfield had only seen the first edition of the book. Much
of the material in Redfield’s 1927 paper [18] can be reformulated in terms of group
characters and this was done hy Foulkes [3]. He also showed that marks can be used
to overcome the difficulties which Redfield had encountered in his 1927 paper, but he
was, of course, unaware that Redfield had already done this in his 1937 lecture. The
table of marks is sometimes called the table of supercharacters and some authors (see
Kerber [8], for example) write the table as the transpose of that favoured by Burnside
and Redfield. For details of how Redfield’s work may be used in chemistry see [11]

and [13] and references therein.

Finally, at the end of his lecture, Redfield forms a table giving the values of
I;. He then forms diagonal matrices from the columns of the table and goes on
to give (withont proof) an interpretation to the coefficients appearing in the linear

decomposition of these matrices.

Other material by Redfield

As well as material already mentioned, some letters from Percy A. MacMahon
and Sir Thomas Muir were found in the Redfield family papers. Redfield had studied
MacMahon’s hooks [14] and he sent an offprint of his 1927 paper to him. In his replyv
(dated 19 November 1927), MacMahon suggested that Redfield might be able to prove
a conjecture which he had posed at the Toronto meeting of the International Congress
of Mathematicians held in 1924 and also at the Rouse Ball Memorial Lecture which he
had delivered in Cambridge in 1927. Within a few weeks Redficld had indeed proved
the conjecture - the details are included in a draft reply from Redfield to MacMahon
dated December 26, 1927. MacMahon was delighted that his conjecture had been
settled, but, for some reason, Redfield did not submit his proof for publication. even

though, a few vears later, he was encouraged to do so by Sir Thomas Muir. In
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another unpublished tvpescript. Redfield gives a different proof of the conjecture;

further details, including both proofs. may be found in [12].

In his letter of submission to the American Journal of Mathematics, dated
October 19, 1940, Redfield states that the accompanying paper [21] deals primarily
with theory and that he plans to follow it with another concerned with applications
which was ready for final revision and copying. This paper, entitled Enumeration of
distinguishable arrangements for general frame groups has also been found together
with a further untitled typescript in a much less finalised form. The former contains

the second proof of MacMahon's conjecture mentioned above.

Editing of the lecture typescript

In his letter to Frank Harary (see pp. 81/82 of [6]), Oakley, who had heard
Redfield lecture on a number of occasions, wrote “His board work, however. was
impeccable. Tt could have been photographed and printed by photo offset, it was so
perfect”. It is not clear how much of the lecture text would have been written on the
blackboard, but presumably the tables and figures were, and certainly the typescript
has required minimal editing. The tables and figures were variously placed in the
main typescript and on two manuscript pages at the end (with some in both places):
these have all been placed at appropriate points in the text in the published version.
At varions points Redfield tvped “(INDICATE)” to remind himself when to draw
attention to a table, figure, efc. Most of these reminders have been left in (and it
should be clear to what they refer), but where they refer to an item in the references
thev have been replaced by the number of the reference. Several footnotes have been
added: in some cases they refer to later manuscript notes added by Redfield; in other
cases they are intended to clarify details in certain tables. With a manual typewriter,
Redfield could ouly emphasise text by underlining it; this has been replaced by the
nse of italic type. Details of publisher, ete, have been added to the first reference and

a very small number of typing errors has been corrected.
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