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Abstract

In this article we give an algorithm for the constructive enumera-
tion of polycyclic chains with arbitrary ring sizes and present sample
results and running times of the algorithm.

Introduction

The counting and enumeration of molecular graphs of chemical compounds is
a well-established trend in organic and computational chemistry. Isomer enu-
meration is an important topic in chemical information processing, studies
of structure similarity and molecular modelling. A great number of arti-
cles are devoted to the analytical or constructive enumeration of isomers of
polycyclic conjugated compounds, especially, of isomers of benzenoid hydro-
carbons (see [2(16] and references cited therein). The enumeration of isomers
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Figure 1: Examples of polycyclic chains with 4.5.6-membered rings.

with other rings than hexagons is also of interest in chemistry. A number of
papers deal with the counting of graphs consisting of triangular, tetragonal,
pentagonal and g-gonal rings, see e.g. [5]{7][12](13](15]. Detailed results on
the enumeration of fluoranthenoids, fluorenoids and indacenoids have been
reported by Dias and Cyvin et al. [8][10][11]. The corresponding molecular
graphs contain pentagonal and hexagonal rings. Combinatorial expressions
in explicit forms as well as results obtained by computer generation have been
presented for the numbers of isomers of other polycyclic systems having rings
of two different types (di-4-catafusenes, a-g-catafusenes, mono-g-polyhexes,
etc.) [4][6]. The numbers of small polycyclic systems with arbitrary ring
sizes have been mainly counted by analytical methods {3](9].

The present paper deals with the constructive enumeration of polycyclic
chains with rings of arbitrary sizes. The main goal is to describe the ba-
sic ideas of the algorithm and present results of a fast computer program
based on this algorithm.

Polycyclic chains

We consider graphs, called polycyclic chains, composed of rings of arbitrary
size. Two rings in a polycyclic chain have either one common edge (and
are then said to be adjacent) or have no common vertices. No three rings
share a common vertex. Each ring is adjacent to two other rings, with the
exception of the terminal rings to which a single ring is adjacent. The defined
chains include various families of molecular graphs, for instance, unbranched
catacondensed benzenoids [2]. Examples of polycyclic chains are presented
in Figure 1. It is clear that every polycylic chain is a planar graph and



139

that rings of size 3 can occur only as terminal rings. However, if all rings of
a chain are drawn as regular polygons, then this set includes chains which
would possess overlapping edges if drawn in the plain.

The generation algorithm

For polycyclic chains the very powerful homomorphism principle (see [1][14])
can be applied. To this end we need an underlying coarser structure with
the property that isomorphic polycyclic chains have the same underlying
coarser structure and that any isomorphism of two polycyclic chains induces
an automorphism of the underlying structure. In order to have a strictly
coarser partition of the set of polycyclic chains than just isomorphism classes,
it is of course necessary that there are also non-isomorphic polycyelic chains
with the same underlying coarser structure.

‘We have chosen the labelled inner dual of the polycyelic chains as the coarser
structure. The inner dual of a polycyclic chain with n rings is a path of length
n. We label each of the vertices of this inner dual with the size of the face that
it represents. We call this the first label. It is obvious that an isomorphism of
two polycyclic chains induces an isomorphism of the corresponding labelled
inner duals. Figure 2 shows an example of two non-isomorphic pelycyclic
chains with the same labelled inner dual.

oy

Figure 2: Two non-isomorphic polycyclic chains with the same labelled inner
dual.

In order to determine a polycyclic chain uniquely, we have to add some more
information. We fix one of the two boundary paths going from one of the ends
of the chain to the other and for every face that corresponds to a vertex of
degree 2 in the inner dual we add the number of edges of this face contained
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in the boundary path as a second label. An example of such a labelling is
given in figure 3.

Figure 3: Two different second labellings of the labelled inner dual. Choosing
the two boundary paths on the other side, the labellings would be 1,1,1,1,1,1
resp. 1,1,2,2,2]1.

So by fixing a direction in which the chain shall be evaluated and a boundary
path, we can encode a polycyclic chain of length n by a sequence of 2n — 2
integers: First we list the n first labels of the faces in the order given by the
direction and then we list the n — 2 second labels given by the boundary path
in the same order. So there are 4 ways to encode a polycyclic chain, corre-
sponding to the different choices for the direction and the boundary path.
In order to fix one of them as the canonical code, we choose the code that is
the lexicographically minimal word among the 4 possibilities. The canonical
codes for the structures in figure 2 are 5,4,6,6,5.4,5,6,1,1,1,1,1,1, resp.
54,6,6,5,4,5,6,1,2,2,1,1,2. Obviously there is a unique canonical code
for every isomorphism class of polycyclic chains and two different canonical
codes correspond to different isomorphism classes. Our aim is to generate
the canonical code for every isomorphism class of polycyelic chains.

We do this with a 2-step strategy: First we generate all labelled inner duals
and then we assign the second labels to them. We will first describe the basic
strategy and then present some optimizations.

Assume that a set of face sizes that may occur in a chain is given. In order
to generate all isomorphism classes of labelled inner duals, we assign face
sizes that may occur in every possible combination. Having completed the
labelling, we check whether reading our code backwards we get a smaller
word. If this is the case, we reject our structure, otherwise we accept it.
Note that in case the code in reverse order is strictly larger than that in
the usual order, the direction for the canonical code is fixed. If the reverse
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code is the same, there is an automorphism of the labelled inner dual and we
cannot fix the direction yet.

In the second step we assign second labels to the (valency 2) vertices of the
inner dual. If the first label is, say, x, then the second label canbe 1...2-3.
Having done so in every possible way. we check whether choosing a different
direction or boundary path we get a smaller code. If yes, we reject the chain,
otherwise we accept it.

But we can do better:

In cases where the direction is already fixed by the labelled inner dual (which
are by far most of the cases), we have to check only the fixed direction
of course. For this direction we know that if we would choose the other
boundary path, a label y of a face of size @ would become & ~ 2 — g, so the
first face in the fixed direction with y # x — 2 — y must fullfily <2 -2 —y
and it fixes the boundary path for the canonical code, since the other path
would give a lexicographically larger word. From then on, we can assign
labels in the range 1...z — 3 in every possible way. Since the direction and
the boundary path for the smallest code are fixed, we know in advance that
every code from then on will be canonical. We do not have to do any checking
at the end. Furthermore: If we are not interested in the structures, but just
in their number, we can simply multiply up all the numbers of possibilities
for the remaining second labels without really assigning the labels.

As soon as the direction and the boundary path are fixed, things become
easy and very fast. To this end we can modify our strategy a bit: In the case
where the labelled inner dual has not yet fixed the direction, that is where we
have a nontrivial automorphism of the labelled inner dual (e.g. in all cases
with just one face size allowed), we do not label the faces in the order in
which they occur in the path, but we first label face number 2, then number
n— 1, then number 3, number n — 2, etc. The first case with the second label
of face i different from that of face n+ 1 — i fixes the direction again and as
soon as the boundary path has also been fixed (by the same arguments as
above), we can again go on labelling without checking at the end.

This strategy of non-consecutive labelling can already be applied to force
canonicity of the twice labelled inner dual very early. Note that in fact it
is again an application of the homomorphism principle with the underlying
coarser structures given by the second labelling restricted to segments of
equal length on both ends of the inner dual.



Results

The algorithm deseribed in this paper has been implemented as a computer
program chains.c. It accepts as parameters the sizes of the allowed rings and
upper and lower bounds for the length of the chains. It is also possible to fix
the number of rings of a certain size that may occur. The program is free for
scientific use and the source code of the program can be obtained from any of
the authors. Though it is possible to write the structures to a file, it is faster
to generate them from the spot whenever they are needed for tests. Sample
numbers of polycyclic chains for several parameters and computation times
are presented in Table 1. The times without brackets are those needed to
determine the structures without really forming, coding and writing them.
The times in brackets are the times needed when the structures are also
formed, coded in planarcode format (a code for planar graphs described in
the source code) and written to stdout.
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Ring sizes (number)

Total number of rings

Number of graphs

time (sec)

6 5 10 0
6 10 1681 0 (0.02)

6 15 399310 0 (2.37)

6 20 06864964 | 0.03 (758.3)

6 25 23535971854 0.34

6 30 5719200505225 6.2

6 35 1389765184685602 828

6 10 337712029999378756 15145

10 12 70627216 0.04

15 10 107505792 0.05

56 10 391251 | 0.01 (1.58)

56 15 1220750001 0.24

56 20 3814699218751 11.25

56 25 11920920101562501 6154

5(10) 6(10) 20 483853268016 2.4
5(15) 6(15) 30 3161168846625669120 1491.8
46 16 268468224 0.69

4(8) 6(8) 16 9230967 0.15
456 10 3781656 0.14

456 12 136062864 16

4(4) 5(4) 6(4) 12 4111740 0.2
8910 9 1377582840 0.3

8910 10 24795069336 1.0

8(3) 9(3) 10(3) 9 111933150 0.02
45678 10 16018233975 342

4(2) 5(2) 6(2) 7(2) 8(2) 10 81321168 2.0

Table 1: The numbers of polycyclic chains and the time to determine them
on a processor Pentium IT 350 Mhz.




