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Abstract

The Wiener index is a topological index introduced as structural descriptor for mole-
cular graphs of alkanes (trees). It is defined as the sum of distances between all pairs of
vertices in a tree. Branchings and linear segments are natural characteristics of the struc-
ture of trees (every vertex of degree 3 or greater defines a branching point; a path hetween
neighboring branching points forms a segment). A novel formula for the calculation of
the Wiener index of a tree based on distances between branching points is derived.

1. Introduction

The Wiener index is a well-known distance-based topological index introduced origi-
nally as structural descriptor for acyclic organic molecules [1]. In most cases the chemical
applications of the Wiener index deal with molecular graphs of alkanes, that are trees. For
a tree T', this topological index is defined as the sum of distances between all unordered
pairs of its vertices {2]:

W) = Y duw), (1)

{u}QV(T)
where d(u, v) is the number of cdges in a shortest path connecting the vertices u and v.
Many important relationships have been established between the structure of alka-
nes and their physico-chemical properties (see books [3-5] and reviews [6-13]). Recent

progress in chemical synthesis also inspires great interest in new classes of extremely
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branched acyelic molecules {14]. Mathematical properties of the Wiener index and me-
thods for the calculation W for various classes of abstract and molecular graphs have been
described in mathematical and chemical literature (see selected articles [15-37]).

In this paper we consider structural characteristics that reflect branchings in trees.
Several known formulas will be modified using these characteristics. A novel formula for

the calculation of the Wiener index is presented.
2. Branchings in trees

Branchings and linear segments are natural characteristics of the structure of trees. A
vertex v is said to be a branching point of a tree T if deg(v) > 3. The paths are the only
trees without a branching point. Denote by B(T') the set of all branching points of T'.
The set of all pendent vertices of T' together with B(T') will be denoted by BP(T). If T
has p vertices then 0 < |B(T)| < (p—2)/2 and 2 < |BP(T)| < p.

Branching points decompose a tree into segments. A segment of T is a path-subtree
S whose terminal vertices belong to BP(T), i. e., every internal vertex v of S has
degy(v) = 2. In other words, only terminal vertices of a segment may be branching or
pendent vertices in the respective tree. For example, all gomeomorphically reducible trees
have the same number of segments. The length of a segment S is equal to the number
of edges in S and it is denoted by £5. The following parts of S will be also considered:
5% = S\ {u,v} and §* = §\ {u}, where u and v are the terminal vertices of S. By
construction, £go = €5 — 2 and €. = g — 1.

The distance of a verter v, dr(v), is the sum of distances between v and all other
vertices of T, i.e. dr(v) = ¥ ,ev¢r dr(v, u). Then the Wiener index can be written in the

following manner
1

W(T) =5 3 dr(v). 2)
veV(T)

As an illustration of methods based on branching points, we recall two formulas for
the calculation of the Wiener index. Every vertex v with their neighbors define a star
with center at v. These formulas demonstrate that it is sufficient to examine stars for
branching points and remaining parts of a tree.

The first method was elaborated by Canfield et al. [15]. It is a recursive approach for

calculation of the Wiener index of a general tree. Let T, T, ..., T}, be trees with disjoint



Figure 1. Branching point u of a tree T'.

vertex sets and orders py,py,...,pm, m > 2, and w; € V(T}) fori = 1,2,..., m. In the

general case, any tree T on more than two vertices can be represented as shown in Fig. 1.

Proposition 1 [15]. Let T be a tree on p > 3 vertices. Then
W(T) =Y [W(T) + (p - p) dr(wi) — 8] + p(p - 1).
i=1

Doyle and Graver derived a non-recursive formula for the Wiener index (16, 17]. Their

formula does not contain distances between vertices in a tree.

Proposition 2 [16]. Let T be a iree on p vertices. Then

p+1

wn={"; noime

) ueB(T) 1<i<j<k<m

The first term on the right-hand side of this equation is just the Wiener index of the

p-vertex path.
3. Branching points, segments and calculations

In this section we generalize several known formulas for the Wiener index using tree’s
segments. Since all segments may be regarded as elementary pieces of a tree, we also
formulate results in terms of W for segments.

The next useful equalities follows from the definition of a segment. Let T be a p-vertex

tree. Then

S W(S) = EW(S')+%(Z ff-erfl).
SeT SeT SeT



Zt{f(s-)zé(zﬂg-pﬂ),

SeT SeT

Z€g=‘p——l.

SeT

1. First we consider a formula discovered by Wiener [1]. It is based on the observation
that W(T') is equal to the number of edges in the paths between all pairs of vertices of
the tree T. Let e = (x,y) be an edge of T'. Then let n;(e) be the number of vertices of T
lying closer to = than to y and let na(e) be the number of vertices of T lying closer to y
than to 2. The quantities ny(e} and na(e) can be formally defined for an edge e = (z,y)
as ni(e) = {v|v € V(T), dr(v,z) < dr(v.y) }| and nae) = [{v|v € V(T), dr(v.y} <
dr(v,z) }I.

Proposition 3 [1]. Let T' be a tree on p vertices. Then

W(T)= 3 mile)nafe). )
e€E(T)

Formula (3) can be easily generalized in terms of segments. If all internal vertices
and all edges of a segment S are deleted from a tree, we have two nontrivial connected
components. Denote by n;(S) and ny(S) the number of vertices of these components,
m(8) + na(S) = p(T) = b5 +1.

Proposition 4. Let T be a tree on p vertices. Then
1
W(T) = an(S) ﬂz(S) lg + E ZES(KS = 1)(3]) — 245+ 1) (4)
s s
where the summations go over all segments of T.

Proof. Let S = (vg, v1,...,04,) be an arbitrary segment of T. For every edge e of S,
we express quantities ny(e) and n;(e) through n((S) and n3(S). Let e; = (v, vi41). Since
ni(e;) = ni(S) + i, we have ny(e;) = na(S)+€s—i—1for i =0,1,...,f5 — 1. Therefore,
all edges of S make the following contribution to the sum of eq. (3):

ey-1 1
37 (m(S) +i)(na(S) + €s — i — 1) = n,(S) ma(8) £s + Efs(ﬂs —1)(3p — 285 +1).

i=0

The proof is completed by summing this equation over all segments of T'. O



If every segment of T is an edge (i. e., £s = 1 for any S), then eq. (3) coincides with
its modification (4). Since n;(S) and ny(S) are just the numbers of vertices lying on the

two sides of S, it is sufficient to count the vertices from only one side of each segment.
Corollary 1. Let T be a tree on p vertices. Then
w(T) = gm(s) n(8)ls +(p+1) Zs: W(S) - (p+3)2_W(S)
s
where the summations go over all segments of T.
2. It is known a formula that shows how irregularity of the distances of adjacent
vertices influences W.

Proposition 5 (18]. Let T be a tree on p vertices. Then

WT) =2 #e-1) - T (drk)-dr}]. (5)
4 {u,v)EE(T)

Every edge of a tree makes a non-negative contribution to the sum of eq. (5). For
vertices of any pendent edge, [dr(v) — dr(u)]? = (n — 2)® and this value is maximal
among all edges. The minimal value of [dr(v) — dr(u))?, equal to zero, will be achieved
on a bicentral tree. For computational purposes it is convenient to use the equality

d(v) — d(u) = na(e) — ny(e) [20].
Proposition 6. Let T be a tree on p vertices. Then
1 1
W(T) = = (B +D(p—1) - 33 ~ldr(w) —ar(w)’ - 3 € (6)
12 5 ls s
where the summations go over all segments of T.

Proof. Denote by T, and T, the trees obtained by deleting a segment S with terminal
vertices v and w from a tree 7. If n,(S) = |V(T,)| and ny(S) = |V(T.)|, then

dw)—du) = 3 [dv,z)—du,2)] + 3} [dv,y) - d(uy)
+€V(Ty) vEV(T.)
= 3 ls — Y fs=Ls[na(S) —m(S))
2eV(Ta) yeV(T)

Since 41, (S)n2(S) = [n1(S) +n2(S)2— [n:1(S) —na2(85))? and ny(S) +n2(S) = p—fs+1,
we have 4n; (S)n2(S) = (p— €5+ 1)? — [d(v) — d(u)]?/¢2. Substituting the latter equation
back into (3), we obtain eq. (6). a}
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Corollary 2. Let T be a tree on p vertices. Then
B 1, 1 el
w(T) = - 1) - 5 L) - d@P - 25 wis )]
4 5 & 5
where the summations go over all segments of T.

3. The right-hand side of eq. (2) may be regarded as a half-sum of vertex distances
with unit weights. The next formula demonstrates how to compute the Wiener index if

the weights are the vertex degrees.

Proposition 7 [19]. Let T' be e tree on p vertices. Then
W)= |po=1) + T deg)dr(v)]. 0
veV(T)
Recall that the degree of a vertex v is the number of edges in a star with center at
v. A generalized star associated with a vertex v consists of this vertex and all segments
beginning at v. The number of edges in a generalized star is denoted by g.. The set of
such stars covers every edge of a tree twice, i. e., 3, ¢, = 2(p(T) — 1).
In order to determine the Wiener index, we can consider only generalized stars corres-

ponding to the vertices of BP(T).

Proposition 8. Let T be a tree on p vertices. Then

W(T) = 55 {(3p+1)(p—1) +3 ¥ qdilo) - Zes] ®

vEBP(T) s

where the second summation goes over all segments of T.

Proof. By Proposition 7,

W(T)=§(p(p—1) + Y deg)dr(v) + 2 ¥ dT(v))» ©)

vEBP(T) SeT veV(S)

We now calculate the last sum of eq. (9).

Lemma 1. Let S be a segment with terminal vertices z and y in a tree T. Then

3 dr(e) = 565 =~ Dldr(a) + dr(y)] - G45(4E - 1)
rel’ (59



Proof. Denote by T, and T, the trees cbtained by deleting the segment S with
terminal vertices x and y from a tree T. Let ny(S) = |V(T,)|. na(S) = |V(T,)| and
8% = (v5,02, .., ve,-1)- Thenfori=1,2,.. 6s—1

51

dr(v;)= Y d(viu) + 3 d(viu) + E d(vi, vj)

ueV(Tz) ueV(Ty)

¥

2 [dvx) +d(z,u)] + Y ld(v,y) + d{y, w)} + deo ()

ueV(T:) weV(T,)

3 odwu) + Y dlyw) +in(S) + (€s — i)na(S) + dsolvy).  (10)

weV(Ty) ueV(Ty)

The sum of the first and the second terms of eq. (10) we express through the distances

of terminal vertices of the segment. Then

dr(z)

3 dxu) + Y [z y)+d(y.u)] +ds-(z)

ueV(Ts) ueV(Ty)}

Z diz,u) + 3 dy,u) +£€sn(S) +ds-(x). (11)
ueV(Ty) weV(T,)

For the second terminal vertex of the segment,

driy)= Y d(z,u) + Y dyw) +€sni(S) +ds-(y). (12)

ueV(T:) ueV(Ty)

Summing expressions (11) and (12), we have

Y dlzu) + 3 d(y,u)z%idr($)+dﬂy)—l’s(?—fs+1)*55(&—1)]- (13)
weV(Ts) ueV(T,)

Substituting eq. {13) into {10) and then summing eq. (10) over alli =1,2, ... fg— 1,

we obtain
51 1 1 .
> drlv) = S(bs = idr(z) +dr(y)] +2W(5") - 5bs(ls — 1)
-1
51 £5—1 1
+ m(S) Y i+ na(S) Y (s —i)— §(£S—1)(P*fs+1)- (14)
=1 -1
It can be noted that the expression in the second line of (14) is equal to zero. ]

Applying Lemma 1 to the last sum of eq. (9), we have

w(T) = %(p(p*U+§:T(53*1)[dr(x)+dr(y)] Y deg(u)dr(v) -
€

veBP(T)
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- éz es(t2 — 1))

SeT

= %(p(p—l) + 5l +ly+ o+ by — k)r(v)

vEBP(T)

+ P dehdr) - 33 fs(ﬂé—l))

veBP(T)
where k = deg(v) and ¥, ;,, ..., £;, are lengths of segments beginning at v. a

Corollary 3. Let T be a tree on p vertices. Then

vEBP(T) 5

1 .
Wi =4 [p(p— )+ Y qd) - WS )]
where the second summation goes over all segments of T.
4. New formula for the calculation of the Wiener index

Consider two distinct generalized stars of T with branching points u, v and the numbers
of vertices g, and g,. These stars and the path between v and « form a double (generalized)
star of the respective tree. Let g, = g, — ¢, where £ is the length of the unique segment
coming from the vertex u and belonging to the path between u and v. The distance of
an arbitrary vertex v in a tree T may be expressed through the distances from v to all

branching points of T".

Lemma 2. Let T be a tree on p vertices and v be the j-th vertez of an arbitrary
segment S,,, 1 < j < s, +1. Then
1 3 2
dr(v) = Z d(v, u) quy + 3 (Efg +p— 1) (- 1), +1—3)
weB(T) S

where the second summation goes over all segments of T.

Proof. Let Ty be a tree and u € V(Tp). Consider a sequence of trees Ty, T3, ..., Tk
such that T; is obtained from T;_y by joining the vertex u with the terminal vertex of a
new path H; of order ¢, + 1, ¢ = 1,2,...,k. It is clear that an arbitrary tree T can be
constructed by these operations, beginning from one-vertex tree Ty. Every path H; forms

a segment in T". For an arbitrary vertex v € V(Ty), we calculate its distance in Tj.



Let v € BP(Ty). Then

d'l'r (U)

dr,(v)+ Y, dr(v,z)=dg(v) + Y [dr(v,u) +dy,(u,z))

reV(Hy) reV(H)

= () +dnlo,u) + 56+ D),

() = dn(0)+ bdn(v,0) + 366+ 1),

]

drv) = dr,,(v)+bedr,  (v,u)+ %a(e,, +1).

Since dy, (v, u) = dy,_, (v, u) for all i = 1,2, .., k,

k
gl =l et b B G %zmi +1).

i=1

Suppose that Ty = v and T = T} for some k. Since d7,(v) = 0 and &3 +&o+...4+ £ = Gy
the lemma is proved for vertices of BP(T).

Let v be the internal j-th vertex of some segment S,,. The proof is similar to the
above reasoning except of two steps. Namely, two parts of S,, with lengths j — 1 and
£s,, — J + 1 are considered as paths H, and H,. These paths are attached to the vertex

v =T, and form a single segment in T. In this case

dn() = 3iG-1),

de (U)

il

i, (0) + (5. — 3+ Vs, —3+2)

1 , .
= lsnlls, +1) = (= D(ls, —j+1). O

For a double star, define Qy, = [g, — deg(v) + 2] quo + [qu — deg(u) + 2] gyu. It is clear
that Quy = Q. If v is a pendent vertex and v is a branching point in a tree then q,, = 0
and Q... = (qu + 1)guu. If the vertices u and v are both pendent then gy, = gu, = 0 and,
therefore, Q. = 0. The next result shows how to compute the Wiener index of T" through

weighted distances between vertices of BP(T').

Proposition 9. Let T be a tree on p vertices. Then

W(T)=% Gp+D)p-1) +3 Y dwv)Qu+ Y 12 (3~ ts)
{u) CBP(T) 3

where the second summation goes over all segments of T.
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Proof. Define the quantity g, for an internal vertex of a segment. Let v € 5° and
u € BP(T). If u is a non-terminal vertex of' S, then g,, is defined as in the case of
branching points. If u is a terminal vertex of S, we assume ¢, = 0.

Lemma 2 and eq. (2) immediately imply the following equality

W(T) = 5 (2 > ¥ d, u)quv+p(z Z4+p— 1) -2% w(s) (15)

veV(T) ue BP(T) SeT

Because ¢, = 0 for a pendent vertex u, the set B(T') can be replaced by BP(T).

Consider the double sum of eq. (15) separately for the vertices of degree 2 and the
other vertices of a tree. Then we can write

> d(v,u)qu =

veV(T)ue BP(T)

= Y X dvugw + Y Y d(, )

veBP(T) uc BP(T) veV(T\BP(T) ue BP(T)
= Y duwgwta) + X Y Y dulque (16)
{vu}CBP(T) SET veV(5°) uc BP(T)

In order to determine the last term of (16), consider a segment S with terminal vertices
z and y. Let T; and T, be the trees obtained by deleting the segment S from T'. It is clear
that for every internal vertex v of the segment q,, = qu. if u € BP(T}) and gy, = quy if

u € BP(T,). For convenience, assume ¢, = 0 for an arbitrary vertex v of T. Then

Z Z d(v' u)‘]uv =

veV (50) ue BP(T)

Zsu( > v o) +dEu)les + ) [d(v.y)+d(y,u)]quu)
vel’(S%)

u€BP(T:) weBP(T,)

i

1t

» (d(v.m) Yoqu At dvy) Y qwt Y du)u
)

vEV(SY wEBP(T:) ueBP(T,) uw€BP(T:)
+ Y dy, u)q..y) ; (17)
weBP(T,)

For the first and the second terms of eq. (17), we have

Z (d(v.l) Z Guz + d(v,y) E qﬂy):

VEV(SY) weBP(T:) weBP(T,)

Il

1+2+4.. +(fs—1) ( Yo+ ¥ Quy)

w€ BP(Ty) u€ BP(Ty)

I

3Hs(ts = Vo= b5 = 1). (19
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Denote the sum of the third and the fourth terms of eq. (17) by F. Replacing the sets
B(T,) and B(T,) by BP(T), we can write

= Z (2, u)qus + Z [d(z,u) = €s]quy = Z d(z,u)quz — €5 Z Quy

ws BP(Ty) uw€BP(T,) ue BP(T) ue BP(T,)
= Y [dyw-lslge+ Y dyw)gy= Y dyu)qy—Ls Y. Gur
uEBP(Ty) ue BP(T,) weBP(T) u€BP(Ty)
Therefore,

e 1( Y drupe + X d(y,u)q..v—ﬁs(p—fgml)). (19)

2 ueBP(T) wEBP(T)

Substituting (18) and (19) back into (17), we obtain

> d(v,u)q,.u=%(€s—l)( Y dru)ge + Y d(y,u)qu,,).

veV(S9) ucBP(T) u€BP(T) u€BP(T)

Then the triple sum of (16) can be rewritten as follows

%Z(fsvl)( Y oda@ e + Y, d(y,ﬂ)quu)=

SeT ueBP(T) u€BP(T)
= % b (lqu ~deg(v)] Yy d(v, u)qu..)
veBP(T) we€BP(T)
= % 3 du,v)[(g — deg(v))guy + (gu — deg(w))gu). (20)

{v.u)CBP(T)

The proof of proposition follows from egs. (15), (16) and (20). u]

Corollary 4. Let T be a tree on p vertices. Then
1 .
W(T) =7 [ 3 du,v)Qu+2pY W(S)-2p+1) Y WI(S )] (21)
{(u.0)CBP(T) s 5

where the second and the third summations go over all segments of T.
5. Example of calculation of the Wiener index

As an illustration consider the dendrimer-like tree T° shown in Fig. 2. This tree has
52 segments of length 10 and, therefore, p = Y glg + 1 = 521 vertices. All vertices of the
set BP(T) are marked by big circles. In order to calculate the first term of eq. (21), we

consider two types of pairs of vertices.



Figure 2. Dendrimer-like tree T'.

Let u,v € BP(T) and deg(u) = 1, deg(v) = 4. Let u be fixed and v goes over all
branching points of T. Then there is one vertex v such that d(u,v) = 10 and d(u,v) =
20, three vertices v with d(u,v) = 30 and d(u,v) = 40, and nine vertices v for which
d(u,v) = 50. For every such pair, @, = (10 + 1)(4 - 10 — 10) = 330. Since the tree T has
36 symmetrical pendent vertices, we have

36 S d(u,v) Quo=36-330-(1-10+1-20 +3-30 +3-40 + 9 - 50) = 8,197,200.

veB(T)

Let u,v € BP(T) and deg(x) = deg(v) = 4. For every pair of such vertices, Qu, =
2(410 — 4 +2)(4- 10 — 10) = 2280. Tt is not hard to count that the tree T contains 16
pairs of vertices at distance 10, 30 pairs of vertices at distance 20, 36 pairs of vertices at
distance 30, and 54 pairs of vertices at distance 40. Therefore,

d(u, v) Que = 2280 - (16 - 10 + 30 - 20 + 36 - 30 + 54 - 40) = 9,120,000.
{0 }CB(T)
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Because Is = 10 for every segment S of T, W(S) = 220 and W(S*) = 165. This
implies

2} W(S) = 2(p+ 1) Y W(S5) =2-52- (521220 — 522 - 165) = 2,962,960.
s S

Finally, we have

1
wW(T) = 5(8,197,200 + 9,120,000 + 2,962,960) = 5,070,040.
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