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Let (G,§2) be a permutation group of degree n. Let V(G,) be the set of all square
matrices of order n which commute with all permutation matrices corresponding to per-
mutations from (G, 2). V{(G, §1) is a matrix algebra which is called the centralizer algebra
of (G,€). In this paper we introduce the combinatorial analogue of centralizer algebras,
namely coherent (cellular) algebras and consider the properties of these algebras. It turns
out that coherent algebras provide a very helpful tool for the investigation of the symme-
tries of graphs of different kinds, in particular, of molecular graphs.
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1 Introduction

1.1. Mathematical chemisiry was developed as a new area of science during the last
decades. The term mathematical chemistry appears also in the names of an international
scientific society, international conferences, journals, ete. This is justification enough for
its general use. However, the subject of mathematical chemistry is still not well-defined.
Just as "mathematical physics” and "applications of mathematics in physics” are not
synonyms, mathematical chemistry is not simply ”application of mathematical tools” to
problems in chemistry.

In our opinion, the kernel of mathematical chemistry is associated with mathematical
modelling in structural chemistry (in particular organic as well as stereochemistry) and
with methods and algorithms for the solution of problems which appear in the course
of gaining, processing and manipulating information about chemical structures and reac-
tions.

Molecular design, computer synthesis of molecular structures, chemical informatics, inves-
tigation of structure—activity relationships (QSAR), expert systems, and other artificial
intelligence applications in chemistry — all these areas of activity require the systematic
use of "non-numerical procedures” such as combinatorical exhaustive search, algebraic
transformations, logical deduction, processing of lists of symbols, etc. For this reason,
mathematical tools from graph theory, group theory, algebraic combinatorics, discrete ge-
ometry, logical programming and from other branches of mathematics play a significant
role in the creation of mathematical chemistry.

1.2. The structural formule (constitutional formula) of a compound is certainly the main
tool in modelling chemical isomers. For mathematicians, it deseribes a colored multigraph.
For this reason, identification of graphs and description of their symmetry properties are
subjects of joint interest for chemists and mathematicians. Moreover, investigation of
chemical graphs was one of the most productive points in the development of early graph
theory (as it was conclusively shown in [BigLW76]). On the other hand, at the early stage
of creating structural notions, chemists prefered to use clear and simple graph-theoretic
notations (see brief historical surveys in [KerLM90], [RanT94]). Unfortunately, this ini-
tial harmony between chemists and mathematicians (for impressive examples see [Crug64]
and [Syl878]) did not survive for a significantly long period of time,

In spite of the continuous existence of many productive interdisciplinary links created by
the efforts of several bright persons acting in both areas of science, at the beginning of
our century graph theory and structural chemistry started to develop independently.

1.3. With the outset of the computer era new technology was required also in chem-
istry. One of the first answers to this need was given by H. L. Morgan in [Mor65]. He
introduced what a mathematician would call a stabilization procedure for finding the
automorphism partition of the vertices of a graph (the notation used here is explained
in subsequent sections). At the same the time first publications on graph isomorphism
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recognition appeared in mathematical journals, more or less independently, for example
[Ung64], [Tur68], [Sko69]. These and other publications suggested heuristic isomorphism
algorithms. Also counterexamples for the correctness of such algorithms were presented
in these papers. Within a few years the graph isomorphism problem became very fash-
ionable. This fact created a peculiar situation which in [ReaC77] and [Gat79] was called
"the graph isomorphism disease”. [ReaC77] and [Gat79] are annotated bibliographies
reporting on the state of the art at that time. To the credit of mathematicians, starting
with the paper by Morgan, they felt responsible to be acquainted with all results in the
area (independent of their mathematical or chemical origin).

1.4. Soon after the appearance of Morgan’s paper several Soviet scientists (in partic-
ular, G.M. Adel’son-Vel’skii and his students A.A. Leman and B. Yu. Weisfeiler) were
attracted by the graph isomorphism problem. They generalized the original simple sta-
bilization process and discovered its algebraic nature. Eventually, Weisfeiler and Leman
introduced the new notion of celluler algebra which turned out to be extremely useful in
the study of graph isomorphism. This notion is one of the central subjects of our paper.

Almost at the same time D.G. Higman introduced a similar notion and called it a coherent
configuration [Hig70]. In matrix terminology, it is now called a coherent algebra [Hig87).

The first paper on cellular algebras [Weil.68] was written in a rather sophisticated man-
ner. New attempts were undertaken in [Wei76] to create a more complete and friendly
exposition. Nevertheless, during two decades the Weisfeiler-Leman approach was almost
unknown beyond the former USSR. The language of coherent algebras became adopted
in mathematics but remained unknown in chemistry.

1.5. As we intend to show in this and in subsequent papers, coherent (cellular) algebras
play a crucial role in Algebraic Combinatorics, a new area of modern mathematics. Unfor-
tunately, up to now, there is almost zero influence of this powerful mathematical subject
on mathematical chemistry. In all "chemical” papers concerned with the identification
and manipulation of chemical structures (see Section 3 for a brief survey) algebraic ideas
related to cellular algebras are still not in use.

In our opinion, the most serious reason for this is a terrible lag of mathematical education
of chemists, especially of organic chemists, behind modern requirements (briefly men-
tioned in Subsection 1.1). A prospective chemist in whatever country will learn a little
bit Calculus and some fundamentals in Differential Equations Theory and Linear Algebra,
but he will not become acquainted with (or will be left having serious gaps in) the foun-
dations of Set Theory and Mathematical Logics, Group Theory and Discrete Mathematics.

The mathematical community, too, shares responsibility for the increasing disproportion
between the powerful abilities of modern mathematics and the non-satisfactory level of
their use in other areas of science. In particular, there is still no friendly and detailed
self-contained introduction to coherent (cellular) algebras available for a wide chemical
community. Several survey papers written by Western and Soviet mathematicians, see
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Section 10, are oriented cnly towards experts in mathematics.

1.6. It is our first and deliberately chosen aim to fill this gap. The present paper is the
first in a planned series. For this reason, it is mostly of an expository nature. However, it
will create the background necessary for the understanding of new applications in math-
ematical chemistry which will be described starting with the second paper in the series.

Those who are chemists by training will find in the paper a reasonable amount of motiva-
tion, arguments and examples related to chemistry. We hope that this chemical material
will permanently maintain their attention to the topic. However, our style of exposition
follows mostly the standards of teaching mathematical material, hence, we suppose from
the beginning the presence of sufficient initial interest to a new chapter of mathematics.
Thus we do not always try to create immediate rewards for the patience and openness of
the reader.

We hope also that the paper will be a helpful introduction to applied algebraic combi-
natorics for students and professionals in discrete mathematics, independently of their
acquaintance with chemistry.

1.7. It is worthwhile to mention that each of the authors has followed his own complicated
way to our joint subject.

M. Klin developed in 1969 - 1974 (partly in joint work with L. A. KaluZnin) a general
scheme for the use of Galois correspondences in the investigation of overgroups of a given
permutation group, as well as for the enumeration of graphs with a prescribed automor-
phism group, see [K1i70a], [K1i70b], [K1i72], [KalK72], [K1i74].

G. Tinhofer in 1974 - 1977 worked out (partly in joint work with his student J. Hinteregger)
an approach to graph stabilization which is equivalent to the cellular algebra approach,
see [Tin75|, [Tin76], [HinT77]. In spite of the fact that this approach was discussed in
[Gat79], these papers are still almost unknown even to experts in algebraic combinatorics.

Ch. Riicker and G. Riicker (a chemist and a mathematician by education) perhaps were
the first in chemistry to apply a matrix stabilization procedure for the perception of
symmetry and isomorphism of graphs in the course of their work on computer genera-
tion of IUPAC nomenclature for chemical graphs, see [RueR90a], [RueR90b|, [RueR91al,
[RueR91b].

Starting in 1990, acquaintance between the authors was built up stepwise, first by com-
munication and then personally. During nine years all of us made a lot of steps in order
to achieve a common understanding in chemistry and mathematics. This paper is in fact
the product of a long "friendly struggle”, interchange of ideas and mutual compromises in
the elaboration of a suitable style of the presentation. Therefore we hope that the paper
will serve as a complete, self-contained, friendly and helpful introduction to the algebraic
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point of view to the problems of graph symmetry perception.

1.8. We did our best to load the text with a large number of examples which will serve
the reader as a guide on his long travel to the country of algebraic combinatorics. Our
presentation is rather elementary, we avoid proofs and the overuse of abstract notions.
Sometimes the discussion of details is deliberately postponed to further papers of the series
(for example, a full description of the Weisfeiler-Leman stabilization will be the subject
of the second paper). However, a reader who considers mathematics only as a source of
immediately working prescriptions perhaps will be disappointed by our ”slow” speed of
presentation. Applications to real problems in chemistry will not appear before the end
of the paper in Section 9. Discussion of actual algorithms, disproof of naive conjectures
related to stabilization, discussion of practically efficient methods for graph identification
and perception of graph symmetry, comparison and ”competition” of classical heuristics
with rigorous procedures will be certainly the subject of our considerations, but only in
future papers of the series.

1.9. Let us add some words about the structure of the paper. Informally, it can be
divided into four parts.

Part 1 consists of Sections 1-3, it can be considered as a comprehensive introduction. For
this reason, the presentation in this part is plain text. Here we deliberately avoid rigorous
formulations.

Part 2 consisting of Sections 4-6 is the crucial part of the paper. Here the knowledge of
permutation groups, centralizer rings and cellular algebras is introduced. The reader has
to understand everything in this part, otherwise he will not be able to follow the further
parts.

Part 3 consists of Sections 7-9 and contains rather abstract mathematical material. A
reader who is not educated sufficiently in mathematics, as it may happen with a chemist,
perhaps will not be able to digest this part at the first reading. However, we urge ev-
erybody to display patience and persistence: after a few serious attempts the main ideas
will become clear, and then the content of this part will create additional insight into the
material and explain the connections between the notions introduced in Part 2.

Part 4 consists of Section 10 and the bibliography. Some historical remarks and some
comments on the content of our intended subsequent papers will broaden the reader’s
outlook and will help to find an independent way to articles and books which treat the
presented material more deeply and widely.

1.10. In principle, no fundamental mathematical education is necessary for the under-
standing of this paper. Hence, we hope that the paper is useful for every chemist who has
acquired a certain experience of dealing with mathematical literature. However, we have
to suppose acquaintance with certain elementary prerequisites. For example, notions and
notations related to sets such as subset, element of a set, inclusion, are used without any



explanation. Also a knowledge of basic terms in graph theory is of advantage but not
obligatory. In case of any misunderstanding the reader may consult one of the standard
textbooks in graph theory, e.g. [Har69], [Big85]. Acquaintance with elementary linear
algebra is supposed, at least at the level of matrix manipulation.

All fundamentals of group theory which are necessary for the reading of the paper will be
developed in Section 4. However, several times we appeal to the knowledge of classical
crystallographic point groups which we consider as a traditional obligatory element of a
chemist’s mathematical training.
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2 The subject of algebraic combinatorics

2.1. Combinatorics is a part of mathematics which deals with various structured ob-
jects called combinatorial objects: graphs, hypergraphs, designs, finite geometries, etc. In
this context combinatorial object is a basic notion. It can be rigorously defined by set-
theoretical means using the notions of ”subset”, ”cartesian product of sets” and ”function
between finite sets”. One of several attempts to formalize the notion of combinatorial ob-
jects was undertaken in [KalP86]. A similar approach based on the use of a "ladder of
combinatorial objects” was set up in [TraZ87], [Tra95] in order to formalize ”chemical
combinatorial objects” for the purpose of structural organic chemistry. In this paper we
restrict ourselves to the consideration of graphs and some of their modifications.

2.2. Let us start with the notion of a simple (undirected) graph (a rigorous and general
definition is given in 4.17).

A graph T = (V, E) consists of a set V' of vertices and a set E of edges, where E is a subset
of {g}, the set of all 2-element subsets of V. If e € E and e = {z,y}, then the vertices =
and y are called endpoints of e, e is incident with = and y, and = and y are adjacent (or
joined by the edge e).

The valency or degree of a vertex z is the number of edges incident with z. The graph I’
is called regular of valency r, if each vertex has valency 7.

A graph can be represented by means of a list (”connection table”), a diagram or an adja-
cency matrix (see Sections 4-5 for details). In a diagram, vertices are usually represented

by small circles (or by bold dots), while edges are depicted by line segments or arcs joining
their endpoints.

H‘S HE HIO H2

13 H ¢ ¢ c? et H13

Figure 2.1

In order to distinguish vertices, we can associate labels to some or to all of them (different
vertices get different labels), such a graph is called a labelled graph. Moreover, we can
associate additional labels of another kind to vertices and also to edges. Such labels are
often called colors. They need not be different for different vertices or for different edges.
For convenience, as a rule, labels for vertices will be natural numbers. Colors for vertices
and edges in mathematical chemistry can carry chemical information (type of atom or
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bond).

2.3. EXAMPLE. Figure 2.1a represents a labelled graph, while Figure 2.1b shows a colored
labelled chemical graph representing the structural formula of n-butane. The superscripts
at the atom symbols are the conventional labels of the corresponding vertices in Figure
2.1a.

2.4. Let V.V’ be two sets, and let g : V — V' be a mapping which assigns to each
element 2 € V' an element z' € V'. We shall write 2' = z9 in order to express that z is the
image of z under the mapping ¢. The mapping g is called a one-to-one correspondence
on or a bijection between V and V' if

(i) different elements from V' get different images and

(ii) each element z' from V" is the image of some element in V.

Two graphs I' = (V, E) and I = (V', E') are called tsomorphic if there exists a bijection
g between V' and V'’ which preserves adjacency of vertices. If this happens then g is called
an isomorphism from I to I'. In other words, a bijection ¢ is an isomorphism from T to
I if and only if for each edge e = {z,y} of I' its image e? = {z%,y%} is an edge of I
and each edge ¢’ of I is the image of some edge e of I'. Roughly speaking, isomorphic
graphs are distinct only in their labeling. The class of all graphs which are mutually
isomorphic and which are non-isomorphic to every graph not contained in that class is
called an isomorphism class of graphs or an abstract graph. An abstract graph can be
thought of as the prototype of a certain structure, each particular graph in the class is a
representative of this structure.

The graph isomorphism problem (the problem of recognizing whether two graphs I and
T' are isomorphic or not) is non-trivial, even for relatively small graphs which can be
depicted by diagrams.

2.5. EXAMPLE. Figure 2.2 shows diagrams of eight labeled regular graphs of valency 3.
Each of them has 8 vertices. Recognize which graphs are isomorphic.

Note that the graphs Iy and I's are identical, they have the same vertex set and the
same edge set. Hence for these two graphs the essence of the isomorphism problem is
rather artificial. It is related only to the different geometrical view of the corresponding
diagrams. The diagram of ['s is plane, i.e. edges intersect only at their end points if at
all. The diagram of I'y is not plane.

For all other pairs of graphs in Figure 2.2 the solution of the isomorphism preblem is
not so evident. First we can distinguish obviously non-isomorphic pairs. I's and I'y are
the only graphs which include triangles, hence they cannot be isomorphic to any of the
other six graphs. I'y and I'; possess cycles of length 5, while such cycles cannot be found
(and we have to prove this) in I'),I';, I’y and I's. Hence, I'; and I'; are candidates to be



isomorphic graphs. To confirm this, we have to establish an actual isomorphism. For

example
(12345678
9=l13572468

is an isomorphism from I'; to I'7. In this notation for g the arguments z are listed in the
first row while the corresponding images 29 are given in the second row. If the bijection ¢
is given as "Deus ex machina” then there is no problem to check that g indeed represents
an isomorphism. However, up to the moment, the only generally applicable way to find
a suitable permutation for representing an isomorphism is a more or less complete search
through all 8! = 40320 possible bijections. We suggest to the reader to prove that for
example I'; and [y are isomorphic, and hence, are different representatives of the same
abstract graph.

7 7 4
4 3 6 5 8 6 5
h L 5} Iy
1 2
s 6 2
2 4
1 2 p 8 3
1 3
1 3 5
8 7 5 4 7 ] 6 5
s Tg o) Iy
Figure 2.2.

2.6. According to the well-known Stirling formula (see, e.g. [Fel57])

n n
n! = V2mn (—) .
e

in general, a complete direct search for the solution of the isomorphism problem for two
graphs with n vertices requires exponential time, i.e. a number of operations exponen-
tially increasing for increasing n. During the last three decades numerous rigorous as
well as heuristic strategies were established and implemented in order to avoid complete
search in isomorphism testing. Some of them will be discussed in subsequent sections of
this paper and in subsequent papers of this series. For restricted classes of graphs these
strategies can be successful. However, in general, whether there exists an algorithm for
isomorphism testing which runs in polynomial time is still an open problem. Moreover,
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this question is considered as one of the most challenging problems in graph theory.

2.7. An isomorphism of graph ' = (V, E) with itself is called an automorphism of I'. Let
Aut(I") denote the set of all automorphisms of I'. It turns out that Aut(I') together with
the operation of the superposition (muliplication) of bijections satisfies all the axioms
which define a special algebraic structure called a group (see Section 4). Hence, Aut(I')
is called the automorphism group of T'.

To describe all symmetries of a graph means to find all its automorphisms. In mathemat-
ics special attention has been paid to graphs with high symmetry. The level of symmetry
of a graph can be described in terms of the action of Aut(I") on its elements of a prescribed
kind: vertices, edges, non-edges, cycles of given length, etc. For example, a graph T is
called vertez—transitive, if all vertices are equivalent with respect to the action of Aut(T),
i.e. if for each pair z,y € V there is a g € Aut(I") such that y = 7. Every vertex—transitive
graph is regular, the opposite claim is not true. For example, in subsequent sections we
shall show that the graphs I's and I's of Example 2.5 (which are, in fact, isomorphic) are
not vertex-transitive, while all other graphs in this example are vertex—transitive.

2.8. The investigation of highly symmetric graphs was the starting point of Algebraic
Combinatorics.

oy |
—

Figure 2.3.

As a typical example of such a problem let us consider the problem of enumerating all
cubic graphs , i.e. all graphs which are regular of valency 3 (see [BarF78]). It is evident
that each cubic graph has an even number n of vertices. There exists exactly one cubic
graph on n = 4 vertices, namely the complete graph K. It can be easily seen that there
are exactly two non-isomorphic cubic graphs with n = 6. For n = 8 the problem is less
trivial. According to [BarF78] there exist exactly five non-isomorphic connected cubic
graphs with 8 vertices. Three of them can be found in Figure 2.2. The remaining two are
depicted in Figure 2.3.
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These two graphs, as well as I's and I's, are not vertex-transitive. All connected cubic
graphs with n = 8 are hamiltonian, i.e. contain a cycle passing through all vertices ex-
actly once (see Figures 2.2 and 2.3). Further interesting graph-theoretical properties of
8-vertex connected cubic graphs are mentioned in [BarF78]. For example, exactly two
of them are nonplanar, i.e. cannot be répresented by a plane diagram. By the way, hy-
drocarbons corresponding to the planar graphs I'y,I's and I’y have been synthesized, see
[Eat92], [RueT88].

2.9. Now, let us define the problem of enumerating combinatorial objects with given
properties (for example, with given values of certain parameters). We distinguish two
kinds of enumeration: constructive and analytical enumeration.

Constructive enumeration means to construct a transversal of the set of all isomorphism
classes of certain objects with given properties. A transversal includes one and only one
representative of each isomorphism class. For instance, Iy, 'y, ['s, I's and I'yg is a transver-
sal of the isomorphism classes of connected cubic 8-vertex graphs.

For analytical enumeration, it suffices to know the size of a transversal or certain addi-
tional information about the number of objects in a transversal having prescribed values
of other parameters. In our case, the number 5 is the result of the analytical enumeration
of all connected cubic graphs of n = 8 vertices. Below we have listed the results of the
analytical enumeration of such graphs for n < 18 (due to [BarF78]). The first line shows
the number n, the second line the corresponding size ¢ of a transversal:

n|4|6|8]10|12| 14 | 16 18
t|1]12|5]1985 5094060 | 41301

Table 2.1:

In the same paper, the results of the constructive enumeration are also given for n < 12
(they occupy several pages). The complete results of constructive enumeration achieved
as yet would fill a voluminous book.

2.10. Enumeration of graphs (analytical as well as constructive) was one of the origins
of interest into graph theory from the point of view of mathematical chemistry. Several
references will be briefly discussed in the next section. Here we only stress that enumer-
ation of cubic graphs has a rather long history in mathematical chemistry, as well as in
graph theory, see for example [Bal66], where all connected cubic 10-vertex graphs are
constructed.

In mathematics enumeration of highly symmetric graphs is regarded as part of the clas-
sification problem. From the beginning techniques from group theory and linear algebra
were used for the formulation of the problem as well as for its solution (see e.g. N. Biggs
[Big74] who coined the term ”algebraic graph theory”).

In the course of the development of algebraic graph theory the following general strategy
was applied. Suppose, we want to describe graphs of a given type of high symmetry.
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Then we may start with some ”combinatorial approximation” to this property which is
easier to deal with. This means that we establish necessary conditions in terms of cer-
tain graph parameters. Then we investigate the wider class of graphs which satisfy these
conditions. Thus, replacing the class of vertex-transitive graphs by regular graphs gives a
naive example of such an approximation. Unfortunately, in this case, the approximation
is not very successful. For example, only 5 out of the 41301 connected cubic 18-vertex
graphs are vertex-transitive (see [BarF78]). This shows that in general a combinatorial
approximation has to be established on a deeper foundation.

2.11. One of the more successful approaches to combinatorial approximations, the theory
of association schemes, helps to form the kernel of modern Algebraic Combinatorics. A
brief survey of the initial notions of this theory, even in the more general framework of co-
herent (cellular) algebras, is presented in Sections 5-6. Historical comments will be found
in Section 10. Here we only mention D.G. Higman and B.Yu. Weisfeiler & A.A. Leman as
the founders of two simultaneous approaches to the investigation of those algebras. We
also stress once more that one of the important stimuli for the creation of cellular algebras
came from the problem of identification of molecular graphs.

2.12. In the preface of their book [BanI84], E. Bannai and T. [Ito jocosely announce
their intention to give a treatment of group theory without groups. In fact, they replace
the centralizer algebras of permutation groups (in particular, of transitive permutation
groups) by their combinatorial approximation, namely by coherent algebras (Section 6).
One can state the axioms of coherent algebras without using group-theoretical notions.
However, the use of cellular algebras helps (via the so-called Galois correspondences, see
Section 7) to obtain new information about the whole symmetry of all graphs which are
invariant with respect to a prescribed permutation group. Of course, at this moment not
every reader will understand the essence of all links mentioned here. Anyway, please,
consider this subsection as a brief outline of the bulk of material in this paper.

2.13. As stated in the introduction, algebraic combinatorics and mathematical chem-
istry have a rather long history of mutual fruitful influence in the course of their almost
simultaneous development. Unfortunately, the theory of coherent algebras is still almost
unknown to experts in mathematical chemistry. We intend to fill this gap and to introduce
new ideas into the world of chemists investigating symmetry and identification problems
of chemical graphs. Our series of papers is designed

to introduce the reader to the theory of coherent algebras and its applications

to describe systematically different approaches to graph stabilization (including pro-
gram implementations of the classical Weisfeiler-Leman stabilization)

to acquaint the reader with recent results in graph isomorphism theory

to describe rigorous practically efficient graph isomorphism algorithms and algo-
rithms for the construction of the automorphism group of graphs which are based
on the combination of backtracking techniques with group-theoretical tools.



3 Problems related to the perception of the symme-
try of chemical graphs

3.1. The traditional view of "symmetry through the eyes of a chemist” (title of the book
[HarH86)) is based on geometry. Generally speaking, a molecule is regarded as a sys-
tem of nuclei of atoms and an electron density distribution in 3D space. With 3D atom
coordinates given, the symmetry of the molecule is represented by the symmetry of its
geometry. The latter can be described in terms of transformations of the Euclidean space
which preserve distances between points and angles between lines. For every molecule,
there is a limited number of symmetry operations effecting this, which form a group in the
mathematical sense, and this is where group theory traditionally enters chemistry. This
view is very successful for numerous applications in physical and organic chemistry, as
reflected in many textbooks, see for example [Cot90], [Wig59], [Sch65), [Hoc66], [Hal69),
{Bis73], and others. In what follows we shall use the term ”geometrical symmetry” for
this classical approach.

However, in organic chemistry sometimes an even more abstract picture of a molecule is
used, the constitutional formula, carrying information simply on which atom is related
to which other atom by what type of bond, and neglecting any geometrical implications.
This picture actually is a graph (an entity made of points (vertices) and lines {edges)
connecting them), and graph theory therefore has its legitimate place in chemistry, see
[Tri92], [BonR91]. Some of its major fields of application are listed below.

A graph, too, has its symmetry, for example two vertices may be equivalent with respect
to their relations to the remainder of the graph. In mathematical chemistry, this kind of
symmetry is considered as the constitutional, graph-theoretical, topological or combina-
torial symmetry.

The two distinct kinds of symmetry are, of course, closely related. The equivalence of
vertices in a constitutional formula is a necessary but not sufficient condition for the
equivalence of the corresponding atoms in a spatial embedding of the real-life molecule.

3.2. Computer manipulation of constitutional formulas requires a special mathematical
language. This is certainly the language of graph theory. For historical reasons, half a
century ago graph theory was considered a part of topology. Perhaps this is the reason
why chemists sometimes still refer to graph-theoretical properties of molecular models as
to topological ones and use such terms as topological index and topological symmetry,
see for example [Pre76], [Ran74], [HalK90], [LiuBM90a], [Ban94], [HuX94]. In fact, truly
topological considerations appear in the chemical literature rather rarely, see for example
[MerS89] (where finite topologies are used). However, topology is used in mathematical
chemistry as a link between geometry and discrete mathematics, as discussed in [GutP86]
and [Mez83).



3.3. By now, it is generally accepted that graph theory is an appropriate tool for mathe-
matical modelling in chemistry. Books like [Bal76], [GutP86], [Tri92], [BonR91], [Rou90]
provide a good introduction to both graph theory fundamentals and numerous applica-
tions in chemistry.

In chemistry, graphs serve as models for chemical objects and connections between them.
The most important chemical graphs are molecular graphs (constitutional formulas: ver-
tices represent atoms, edges bonds). Another important class of chemical graphs are
reaction graphs (vertices represent molecular species, edges represent reactions, [Bal77],
[K1iZ91], [Bro94], [KvaP90]). In any case, the knowledge of the symmetry of a graph is
significant or even crucial.

3.4. The symmetry of a graph is completely described in terms of its automorphism
group. In turn, an automorphism group is a particular case of a permutation group, and
the latter notion is less popular in chemical literature. Gutman and Polansky [GutP86)
give a brief and very bright introduction to the subject, freely using the notion of a
permutation group, but not defining it rigorously. Each of the references [BroGW83],
[Hin79], [UgiDKM84], and [Fuj91] introduces some new area of application of group the-
ory to chemistry. In the present series of papers, we intend to introduce to mathematical
chemistry the ideas, methods and algorithms which are already commonly used in alge-
braic combinatorics. In particular, this initial paper of the series has as its main subject
a combinatorial approach to the notion of 2-orbits of permutation groups, especially of
automorphism groups of graphs. We start with briefly mentioning several areas of math-
ematical chemistry and chemical information where the use of combinatorial symmetry is
absolutely necessary.

3.5. Analytical and constructive enumeration of chemical combinatorial objects (i.e. iso-
mer generation) are classical (and the earliest) applications of permutation groups starting
from A. Cayley [Cay875], A.C. Lunn and J.K. Senior [LunS29], J.H. Redfield [Red27] and
G. Polya [Pol37]. For a detailed discussion of this class of problems see the chapter " Chem-
ical Graphs” in the book [BigLW76]. Exhaustive graph enumeration has been important
for many years in computer-assisted structure elucidation [Smi77], (Gra86], [KerLM90], it
recently became urgent again in the explosive growth of fullerene chemistry [BabKS93],
[KleL94]. Recent developments related to the use of so-called Burnside techniques in
analytical enumeration are found in [Ker91], [Fuj91], [L1092], see also the brief essay in
Section 3.1 of [FarKM94]. Modern techniques for constructive enumeration can be learned
from [BroM74], [CorM78], [Far78], [LamT89]. Applications to the generation of molecular
graphs are presented in [GruKKL92), [Mol94].

3.6. The graph isomorphism problem is certainly the central link between algebraic
combinatorics and mathematical chemistry. Every chemist will many times solve such
a problem "in mind” whenever it is necessary to identify or to distinguish two given
compounds represented by their constitutional formulas. The huge number of known
compounds necessitates efficient coding/decoding procedures ("nomenclature”) in order
to store and retrieve them by computer in large databases [BurMW94]. Finding a fast
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(polynomial-time) graph isomorphism algorithm was a challenging task with which a large
number of scientists were (and are still) concerned. Like during an epidemic more and
more people were seized with this challenge, reports on some progress attracted a new
crowd of researchers. Eventually, the situation was characterised as "the graph isomor-
phism disease” in [ReaC77), [Gat79]. There and in [ZemKT82], [Bab81], [Hof82], [ButL85]
one can find discussions of many facets of the problem and detailed classifications of dif-
ferent approaches to its solution. Discussions of the problem through the eyes of chemists
are found for example in [BonMB85)], [Gra86], [LiuK91].

For practically comparing graphs rigorous and heuristic methods can coexist. It is con-
venient to find rather frequently the answer "no” in isomorphism testing by means of a
very simple and fast heuristic procedure. Then for a small number of structures which
are most suspect of being isomorphic to a given one, the final answer will be achieved by
a slower subroutine which is known to always give the correct answer.

From a theoretical point of view the most important achievement is that isomorphism of
graphs of bounded valencies can be tested in polynomial time [Luk82]. This result was
derived by using exhaustively group-theoretical methods. However, attempts to exploit
this result in a practically helpful algorithm, e.g. [FurSS83], are not yet sufficiently suc-
cessful.

3.7. The graph symmetry problem (i.e. the graph automorphism problem) in its most
explicit form is encountered everywhere in the manipulation of chemical structures by
hand or by computer. The questions of which atoms, bonds, pairs of atoms, etc., are
equivalent in a structure have to be answered in order not to duplicate efforts. The an-
swers to these questions, namely the partitions of the respective objects into equivalence
classes, can be obtained more or less reliably using simple heuristic algorithms. Many
such algorithms exist, most of them are concerned only with the partition of the atoms,
the so-called automorphism partition. In other words, they try to find the orbits (1-orbits
more exactly). The description of the 1-orbits is one of the oldest problems in mathemat-
ical chemistry. The classical paper [Mor65] by H. L. Morgan is considered as the starting
point of the story. Almost at the same time the notion of canonical ordering of a graph
was introduced by J. F. Nagle in [Nag66).

Starting with Morgan a tremendous amount of work was devoted to the problem of find-
ing the automorphism partition of a graph. It is known that in terms of computational
complexity this problem is equivalent to the isomorphism problem, which means that one
can solve both of them simultaneously with about the same effort.

3.8. In Morgan’s procedure initially all vertices are indistinguishable, i.e. they all belong
to a single equivalence class. To indicate this fact, all vertices are equally weighted by
assigning to each of them the attribute (weight) 1. In the following process weights of
vertices are changed step by step. In each step, every vertex gets a new weight which is the
sum of the weights of its neighbors. Vertices of the same weight form a new equivalence
class. Unless the graph is regular this procedure will produce a sequence of partitions
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of the vertex set. It stops when at a new step no refinement of the current partition is
achieved. The final partition is called a stable partition.

There are numerous generalizations and improvements of Morgan’s procedure. To obtain
a first impression the reader is referred to the survey [BalMB85]. A detailed discussion
of different stabilization procedures will be presented in our forthcoming publications.
In spite of several serious attempts to find more effective versions of the stabilization
procedure, see e.g. [WipD74], [MekBB85], there is still no polynomial-time stabilization
procedure which applied to an arbitrary input graph I' gives as output the correct auto-
morphic partition of I'. Moreover, recent results in [CaiF192] have destroyed the hope to
obtain polynomial-time procedures when using so-called deep stabilization with bounded
depth (see [Wei76] for definitions).

On the other hand, numerous heuristical stabilization procedures are rather quick and
rather successful on certain classes of graphs. Adequate descriptions of such classes of
graphs as, for instance in [Tin91], can create a more rigorous background for a restricted
use of stabilization procedures.

3.9. One of the disadvantages of Morgan’s and similar approaches is that these methods
will not give any non-trivial partition of the vertex set of a regular graph (even not in
the case when Aut(T') is the trivial group, for details see [BalMB85]}. To our knowledge
Weisfeiler and Leman were the first to consider the more general problem of finding the
2-orbits of a graph, that is the partition of pairs of vertices into equivalence classes. Let
Q) be the vertex set of a graph I and G = Aut(T). Two pairs of vertices (z,y) and (u,v)
are considered as equivalent if there is an automorphism g € G which maps z onto u and
y onto v. Each maximal set of equivalent pairs of vertices is called a 2-orbit of G on Q2.
The set of all 2-orbits is denoted by 2-orb(G, ), its construction is straightforward once
the automorphism group is given. In this setting the automorphism partition of a graph
is a byproduct of the determination of the 2-orbits: the 1-orbit for atom a is simply the
2-orbit of the pair (g, a), and this fact implies the partition of the vertex set of a regular
graph.

From the algorithmic point of view, the paper [WeiL68] was based on ideas similar to
Morgan’s approach, i.e. on the use of an iterative stabilization procedure. The crucial
advantage of the new approach was a systematic application of algebraic tools. Unfortu-
nately, though the Weisfeiler-Leman procedure in many cases yields the set 2-orb{G, Q)
correctly, there are examples where this procedure fails. Such examples can be found for
example in [Mat78] where a list of "difficult” highly symmetric graphs for testing isomor-
phism perception algorithms was given.

More or less the same as Weisfeller-Leman's approach was independently elaborated by
one of us and his coworkers in [HinT77], however, without explicitly using the group-
theoretical notion of 2-orbits. The approach itself (as part of the theory of coherent
algebras) is now rather familiar to the experts in algebraic combinatorics and discrete
mathematics {see e.g. [KuzA85], [Hig87], [Fri89]), however, a careful investigation of its



abilities is still lacking.

From the fact that Weisfeiler and Leman made reference to [Mor65] and from some addi-
tional remarks in their paper (as well as from [Ade95)) it is evident that their interest in
the topic came from chemistry. However, during twenty years their ideas were completely
unknown in mathematical chemistry.

3.10. While these approaches due to mathematicians were performed on a rather high
mathematical level, chemists went their own ways. In a series of papers M. Uchino per-
haps was the first in the chemical literature who used matrix multiplication for obtaining
the automorphism partition [Uch80], [Uch82]. He exploited matrices of open walks and
distance matrices, both produced from the adjacency matrix of a molecular graph. In
the paper [CarSV85], the problem of classifying atom pairs was approached using simple
graph invariants such as the color of atoms and their graph-theoretical distance. The
reader will find in the literature also several publications where operations on matrices
were used for similar goals (e.g. [Ber87], [Bal90], [LiuBM90al).

Finally in 1989, two of us again independently realized the necessity of having a method
for the partition of atom pairs, and produced a heuristic yet rather successful computer
program for that purpose by simple reasoning without using any mathematical machin-
ery [RueR90b], [RueR91a], [RueR91b). This approach is very close to the two approaches
mentioned in 3.9 with one distinction: a certain desymmetrization step (see 6.14) is not
involved in the procedure.

However, all heuristic algorithms fail for some classes of more or less nasty graphs, and
in most cases the limitations are not exactly known.

3.11. In the foregoing paragraphs we mentioned the three main computational problems
of algebraic combinatorics: constructive enumeration of combinatorial objects, testing
isomorphism of graphs and finding the automorphism group of a graph. Obviously, these
problems are intimately related. Generation of isomers requires both symmetry recogni-
tion and graph isomorphism testing in order to avoid multiple construction of the same
isomer. Testing two graphs for isomorphism is equivalent to looking for automorphisms
of their disjoint union graph [ReaC77], [Mat79]. Conversely, finding the automorphism
group of a graph can be considered as a special graph isomorphism problem: find all
isomorphisms of the graph with itself.

The solutions to the above problems are more or less conveniently obtained once the
graph’s automorphism group Aut(I') is known, as will be shown in the following sections.
So it all boils down to the question of how to obtain this group. Here the use of strong
generating systems of Aut([') (see Section 4) is of great advantage. There are a few
well-known program implementations of backtracking algorithms for the computation of
Aut(T). Three of them, elaborated by J. S. Leon (see [Leo84]), by B. D. McKay (see
[McK90]} and by 1. A. Faradiev ([FarK91], [FarKM94]) are regarded as reasonably fast
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and efficient.

The modern approach to the solution of all these problems is based on common ideas,
roughly speaking its main features look as follows:

Graphs (and other combinatorial objects) are represented by means of matrices
(adjacency matrix, incidence matrix, etc.). Matrices are encoded as words over
some finite alphabet. All possible code words can be ordered lexicographically.

In every class of isomorphic graphs, one graph with extremal value of its code word
(for example with maximal value) is selected. This code word is called canonical, the
graph which is described by the canonical code word is the canonical representative
of its isomorphism class. To enumerate graphs means to find all different canonical
code words. To test if two graphs are isomorphic or not means to compare the code
words of their canonical representatives. To find the automorphism group means to
find all permutations of the vertices of the graph which preserve the extremal value
of the canonical code word.

For constructive enumeration decision trees (search trees) are used in order to control
the enumeration process and in order to reduce the total time needed for solving the
enumeration problem. Special predicates are defined on the interior nodes of the
decision tree. If in the course of the process a predicate on some interior node turns
out to be false, then consideration of the descendants of this node can be dropped
(see e.g. [Far78]). For testing graph isomorphism or for computing automorphism
groups the decision tree is arranged via the so-called iterative classification where
sequences of easily computable local invariants of vertices are systematically used
to distinguish non-equivalent vertices ([FarKM94]).

In all cases group theoretical information is permanently considered, collected and
used. For example, when computing the automorphism group of a graph (see Section
4), the search tree controls a backtracking procedure for finding a strong generating
set of the group. To select new permutations for this set, at every step of the
algorithm the subgroup generated by the currently stored automorphisms and the
cosets of this subgroup are considered. Using this strategy, considerable parts of the
search tree can be excluded from further processing.

3.12. Many of the above ideas were independently developed in mathematics and in chem-
istry. For example, an algorithm for graph canonization was introduced in [ArlZUF74],
and in chemical literature such an algorithm was proposed for the first time by M. Randi¢
in [Ran74], see also [RanBW81]. In the paper [Tri86] a symbol manipulation system for
computations with permutation groups is presented on a rather high level. In [UgiB-593]
effective procedures for economical storage and fast generation of permutations and their
practical implementations are used.

However, the level of ” group-theoretical literacy” involved in parts of mathematical chem-
istry still remains rather low. Up to date still a lot of heuristic algorithms for the solution
of the above-mentioned problems (sec e.g. [BieB92|) are elaborated and published, not
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only without rigorous theoretical background but also without any reference or compari-
son to algorithms and programs previously described. Sometimes even most experienced
experts in mathematical chemistry are not using all the options, provided by the mod-
ern computational group theory. For example, the algorithm presented in [RazBM93|
requires more than 82h of CPU time for computing the automorphism group of a cer-
tain "complex” 16-vertex graph (in fact, this graph is not even regular). An improved
version of the algorithm described by one of the authors (see [Bal94a]) requires only 1
min 29 sec for processing the same graph. However, using the modern techniques briefly
mentioned above should allow to reach the result significantly (at least 100 times) faster.
The same author informs us in (Bal94b] that his algorithm will produce a complete list
of all automorphisms of the input graph. For instance, generating and listing all 1036800
automorphisms of a certain edge-weighted 12-vertex graph (the automorphism group of
which 1s the wreath product S, Ss, see 4.30 for definition) needed 37.5 min of CPU
time. This graph was processed by one of us using the computer package COCO on an
IBM personal computer (see [FarK91], [FarKM94]) needing CPU time of 0.66 sec. The
reason for this speed-up may be found in the fact that COCO uses a strong generating
set for describing the automorphism group. In the case of S; 1 S there exists a strong
generating set of 11 elements only, which is enough for storing and providing access to
the whole group. For more details concerning group-theoretical notions used here see 4.21.

We hope that this and forthcoming papers in our series will help to overcome the still
existing disbalance between the actual abilities of algebraic combinatorics and its current
very limited application in mathematical chemistry.

3.13. A detailed account of all illustrations, examples and facets of combinatorial sym-
metry goes far beyond the bounds of this paper. We shall restrict ourselves to the areas
familiar to us and to results closely related to our taste and/or experience. The paper
[UgiB-S93] containing 226 references is strongly recommended for a survey. It is written
on the base of an algebraic model for the logical structure of constitutional chemistry
which was suggested by J. Dugundji and I. Ugi [DugU73], [UgiS-W93|.

In what follows our main attention is directed towards the problem of finding the 2-orbits
and, as a byproduct, the 1-orbits of the automorphism group of a graph.

Generally, scientists are not only interested in objects, but also in relations between ob-
jects, and this is the reason why graphs are ubiquitous in science. Thus, chemists do not
consider atoms as such, but atoms in the context of a molecule. Moreover, they are not
fully content with molecules, but care about reactions (relations between molecules) or
even reaction networks (relations between reactions). In other words they consider and
classify pairs of objects. Therefore it is both very natural and important to obtain the
2-orbits of automorphism groups. For the remainder of this paper we shall concentrate
on a narrower subject, the deseription of the 2-orbits of the automorphism groups of
molecular graphs (2-orbits for reaction graphs, neglected here, are dealt with in [Bal77],
|RanK-B87], [K1iZ91], [KIiTZ91], [BonR92|, [JonL83], [Bro94], [L1oJ98]).



3.14. There are several more reasons for taking care of 2-orbits of molecular graphs (pairs
of atoms), a few are listed here:

(1) Finding all paths through a molecule is often required. A path represents a certain
relation between its first and last atom, in fact, between all atoms involved. So if the
paths between atoms x and y arc already known, and if the pair of atoms (u, v} is known
to be equivalent to the pair (z,3) by symmetry, then paths between u and v need not be
traced: all their properties exactly correspond to those already known. This situation is
encountered for example in chemical nomenclature, where the IUPAC rules for naming
polycyclic compounds require finding all bridged cycles of maximum length in a molecule.
A computer program written for automatically naming any polycycle is therefore sup-
ported by a symmetry perception program ([RueR90a] and [RueR90b]). Enumeration
of all maximum length cycles without path-tracing (for a very special series of polycy-
cles), based on the knowledge of the automorphism group, was demonstrated recently

(KILP8Y), [KILPZ92]).

Paths and numerical values associated to them are the basis of some of the most useful
topological indices [KieH86]. Therefore calculation of such indices will profit from knowl-
edge of the equivalence classes of atom pairs.

(2) Coupling phenomena in NMR spectroscopy reflect interactions within a pair of atoms
in a molecule, see [Gue85] or any textbook of organic chemistry, e.g. [Vol87]. So the num-
ber of identical and distinct eouplings found for a particular atom in a *C or 'H NMR
spectrum reflects the number of identical and distinct coupling partners for that atom.
While the chemical shift information (number of 1-orbits) was used for computer-assisted
structure elucidation, surprisingly the coupling information {number of 2-orbits) was not
([LiuBM90b], [Bal9sal).

(3) In synthesis planning by hand or by computer missing knowledge of the equivalences
of bonds as well as of non-bonds in a molecule (pairs of atoms) will obviously result in
duplication of efforts (see [ZefG87], [ZefGT88], [ThIG95]).

(4) Quantitative structure activity relationships (QSAR) are based on the dogma that
compounds of similar structure exhibit similar biological activity. Molecular similarity
can obviously be defined in various ways, [JohM90]. Sometimes it is expressed as nu-
merical similarity of topological index values. Another approach is based on E. Fischer’s
lock-and-key idea: Since the drug receptor is a well defined arrangement of certain func-
tional groups to be described in terms of geometrical distances, a potential drug will be
characterized by a complementary arrangement of functional groups (hetero atoms) re-
sponsible for binding. Since geometrical distance information is usually not contained in
large organic compound databases, in early work graph-theoretical distance information
was used as a crude approximation. So similarity was described in terms of presence or
absence of distinct atom pairs, such a pair being defined by the chemical nature of the
atoms and by their graph-theoretical distance ([CarSV85]).



3.15. After all these foregoing considerations it is no surprise to see that sometimes
chemists used notions which are very close to our notion of 2-orbits. For example in
|Z1aE92] the problem of establishing a spatial model of a chemical compound is consid-
ered. The authors describe an iterative procedure which needs as input the adjacency
matrix of a molecular graph I', some parameters of the desired spatial model of I' and a
description of the point group the model should have. The output are the 3D coordinates
of the model produced. Implicitly, in the course of the iterations the procedure finds and
reuses the 1-orbits, some of the 2-orbits and even some 3-orbits of Aut(I') in order to find
similar angles between the edges in the model of the molecular graph.

In the paper [StaTZ88] the authors use the notions of a base matrix and an equivalence
matrix. According to their definition a base matrix is just a matrix which belongs to the
centralizer algebra of the automorphism group of the given molecular graph, while the
equivalence matrix completely describes the 2-orbits of the automorphism group.

3.16. Let I be a graph on the vertex set  and G = Aut(I'). We complete Section
3 stressing once more that we distinguish two different approaches to the description of
2-0rb(G, 2): an empirical and a rigorous one.

Program implementations of the WL-stabilization process (see [BabCKP97]) as well as
the algorithms TOPSYM and MATSYM ([RueR90b), [RueR91a)) serve in our opinion as
successful examples of the empirical approach.

A rigorous approach to finding the 2-orbits of an automorphism group G is based on the
knowledge of a set of generators for G. At first sight, this method may seem too round-
about: first we have to find G and then we have to study the induced action of this group
on the pairs of vertices. However, our experience shows that this way is the only absolutely
reliable one and that the time needed for this approach is rather acceptable for all graphs
of say less than 1000 vertices. The corresponding algorithms and the results of tests with
preliminary versions of computer programs are presented in [FarKM94]. A recent version
of the program package has been described in [FarK91]. We believe that this rigorous ap-
proach (which was developed for processing "mathematical” graphs with high symmetry)
will work most efficiently for chemical graphs if it is combined (in a clever portion) with
a simple stabilization procedure used in a first phase of the processing. Modification and
development of the existing program package for the use in mathematical chemistry is in
our opinion the most important line of future activity.
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4 Fundamentals of permutation group theory

Here we introduce a very elementary brief outline of the main notions from the theory of
permutation groups. For more details we refer to [Wie64], [Big85] and [KIiPRS8).

4.1. Let G be a set (finite or infinite) and = a binary operation on G. This means that
for every a,b € G there exists a unique element ¢ = a * b € G which is considered as the
result of the application of * to the ordered pair (g, b) of elements from G. G is called a
group if

(G1) a#*(bxc) = (axb)*cforall a,b c € G (associative law);

(G2) there exists a unique element e € G such that exe =axe=aforalla e G
(neutral element);

(G3) for every element ¢ € G there exists an inverse element a™* € G such that

alxa=axal=¢!

For example, the set of non-zero rational numbers together with multiplication is a group.
Likewise, the set of all integers including zero together with addition is a group. Accord-
ingly, the sign - or + may be used to denote a general group operation. Just as in the
multiplication of numbers the sign - is often omitted. Thus, the result of the operation -
between a and b may be written a - b or ab. The same type of capital letter (for example
@) is used both for a set and for a group, since sometimes encountering a set together
with an operation * we do not know whether it is a group. If it is, then we also write (G, *).

Let |G| denote the cardinality of the set G. If G is finite, i.e. if |G| = n, then G is called
a finite group of order n.

4.2. Let H be a subset of G, where (G, -) is a group. We shall say that (H,-) is a subgroup
of (G,-) (denoted H < G) if (H,-) is a group with respect to the binary operation -. In
other words, H must be closed with respect to the group operation, i.e. a-b & H for all
a,b € H, and the axioms (G1) - (G3) must be satisfied.

The set H = {...—8,—-4,0,4,8,...} together with addition is a subgroup of the second
group mentioned above.

A finite subset H of G is a subgroup of (G, ), iff it is closed with respect to -, i.e. (G1) -
(G3) are then automatically satisfied ("iff” means ”if and only if").

Let H < G. For g € G the set Hg = {hg : h € H} is called a right coset of G with
respect to H. The notation Hg means: "Multiply” all elements of H by the particular
element g from G. The set of all results hyg, hag, ... is the right coset Hg.

This system of axioms contains redundancies, see e.g. [Hal59). However, it is convenient for general
use,
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All elements of Hy are pairwise distinct. Moreover, two cosets Hg' and Hg" are either
disjoint or they are equal as sets. Hence, the group G can be decomposed into pairwise
disjoint cosets Hg,, Hga, ..., Hgn such that G = Hgpy U Hga U ... U Hg,,,. If the number
m of different cosets is finite then this number is called the indez of the subgroup H in
. We use the notation [G : H| for the index m of H.

ExaMPLE: Let G be the set of all integers together with the addition operation. Let H =
{...,~8,-4,0,4,8,...}. Take as g the number 1. Then H+¢=1{...,-7,-3,1,5,9,...}.
Now take as ¢’ the number 2, to obtain H + ¢' = {...,—6,-2,2,6,10,...}. Then ¢" =3
and g¢" = dgive H+¢" = {...,-5,-1,3,7,11,.. .Jand H+g" = {...,—4,0,4,8,12,.. .} =
H. Obviously, these are the only such cosets, thus [G : H] = 4.

If H < G and G is a finite group then
Gl = |H|- G : H].
This equality is often called Lagrange’s Theorem.

We can also consider left cosets gH which are defined similarly. In general, the two de-
compositions of G into right and left cosets do not coincide.

In what follows our attention will be devoted to special representations of those groups
which are called permutation groups.

4.3. Let Q be a set. A mapping f : Q2 — § assigns to every element z € £ an image
y = 2/ € Q. The mapping f is called

injective (mapping into), if ¢ # y = = # yf holds for all z,y € &

surjective (mapping onto), if for all y € Q2 there exists at least one z € § such that
o
Y=z,

bijective (one-to-one mapping onto), if it is injective and surjective.

A bijective mapping from a finite set {2 onto itself is called a permutation acting on €.

For every mapping f : £+ ) we can consider an inverse correspondence f~' which to
every y €  associates a subset y/ ' of  where z € /7' & y = z/. In general, y/ ' can
contain more than one element, so that f~! is not necessarily a mapping. The following
proposition can be easily proved.

4.4. Proposition. For a mapping f on a finite set Q the following statements are equiv-
alent:

(a) [ is injective;

(b) f is surjective;

(c) f is a permutation;

(d) the inverse correspondence f~! to f is a mapping;
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(e} the inverse correspondence f~! to f is a permutation.

4.5. In what follows we shall consider permutations on a finite set Q. In most applica-
tions considered later on, Q will be the vertex set of a graph I'. We shall use the notation
5(0) for the sct of all permutations acting on 2. Let f, g € S(€2). The product h= fog
(or simply fg) of the permutations f and g is the mapping h : 2 — £ for which z* = (z/)9.

It can be easily proved that the product of two permutations is also a permutation. In
this context the group operation o is considered as a kind of "abstract” multiplication.
This explains also the term "product” of f and g.

Consider the set S(§2) together with the binary operation o. It turns out that (S(§2),¢)
satisfies all axioms for a group. The neutral element in S() is the identity e defined by
z¢ =z for all € , and for a permutation f of Q the inverse element f~' is the inverse
permutation.

The group S(2) is called the symmetric group of the set . If 2 consists of n elements
then we will use also the notation S, instead of S(§2) (if the meaning of {2 is of no matter).

4.6, Here we list a few convenient ways for representing permutations.
In a two-row table associated with g € S(£2) all elements of Q are presented in the first

row and the corresponding images in the second row. For example

1 2345678
37582416

is the permutation acting on {1,2,3,4,5,6,7, 8} which sends 1 to 3, 2 to 7, 3 to 5, and so

on.

The diagram D(g) of ¢ is a directed graph in which the vertices represent the elements
of £ and where an arc is drawn from each = € Q to its image 7% Figure 4.1 shows the
diagram of the permutation in the example above.

Figure 4.1.
Let @={1,2,...,n} and let M(g) be the adjacency matrix of the diagram D(g), i.e.

M(g) = (mihicijca



432,

where

1 =i
™i =10 otherwise.

The matrix M(g) is a so-called permutation matriz. It contains exactly one entry equal
to 1 in each row and in each column.

It can be easily seen that for every permutation g € S(2) the diagram D(g) is a union
of disjoint oriented cycles. This enables us to encode every permutation by means of
its cyclic representation (or equivalently, as we shall say, by its decomposition into a
product of disjoint cyeles). Thus, if D(g) consists of | cycles of lengths ki, ks, . . ., ky where
k1 + ka2 + ...k = n, then we shall write

g=(a,a2,...,0k) (b1, b2, .., byy) .. (un, p, - ).
Accordingly, the two-row representation of g is

sfon ay Az ... ag b by ... by ... owy Uz ... ug
a a3 ... a by by ... b ... u uz ... uy )

The cyclic representation of the permutation in the above example is (1, 3, 5, 2, 7) (4, 8,
6).

Usually cycles of length 1 are omitted. The notation of each cycle starts with its smallest
number, cycles are arranged according to increasing first numbers. If these conventions
are adopted then every permutation is represented by its unique canonical eycle decom-

position.

4.7. EXAMPLE:
Let n = 10 and

).
)
o)

ive a few different codes for g;, the

C=T = Ji=]
—
oo

—
(=]

4567
4567
4567
56 7 8
4567
9627

o w00 ©C® oo
—
oo =
=

Here, g; is the identity, g; is a cycle of length 10. We
last of them is canonical. Also M(gs) is presented.

g3 = (5,6,2,1,3)(7)(9,8,4)(10) = (7)(10)(8,4,9)(2,1,3,5,6) = (1,3,5,6,2)(4,9,8),
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0010000000
1000000000
0000100000
0000000010
D000DDO010000

Mgs)=1 9 100000000
0000001000
0001000000
0000000100
0000000001

4.8. Let G C S(12) be a subset of S(§2) which is closed with respect to multiplication of
permutations. Then according to 4.2 G is a group. In such a case G is called a permutation
group acting on ©. We shall use the notation (G, ) in order to stress that a permutation
group is a pair "group, set”, where the ”group” consists of permutations which act on the
"set”.

The routine way to prove that a given set G of permutations is a group is to check that
this set is closed with respect to multiplication.

4.9. EXAMPLE:
Let @ = {1,2,3,4}, and G = {91, 92, g3, 94} where

g =¢ g2=(1,2)(3,4), g5 = (1,3)(2.4), gs = (1,4)(2,3).

Since gogs = 9392 = 91, G294 = G2 = g3, 9a94 = gags = G2, 91 = 03 = g5 = g = e, the
set G is closed with respect to multiplication. Hence (G, {2) is a permutation group.

4.10. If G has many elements then it is practically impossible to check the group prop-
erty by direct computations. In such a case the following general principle can be used
instead. Let G consist of all permutations from S(2) which preserve a certain property
of the elements of 2. Then G is a permutation group. We do not give here a rigorous
explanation of the term ”property”. ! Instead, we restrict ourselves to the consideration
of a few examples. Later on, this general principle will be reformulated in terms of graphs,
which will be the most important case in our considerations.

4.11. EXAMPLE:

Let 2 = {1,2,3,4} and let G consist of all permutations from S() which preserve the
partition {{1,2},{3,4}} of @ (in other words: each g € G sends {1,2} onto itself or onto
{3,4}, and the same requirement is for {3,4}). Then we can certainly claim (even without
knowledge of all elements in G) that (G,Q) is a permutation group. We suggest to the
reader to check that

G={e, (1,2), (3,4), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (1.3,2,4), (1,4,2,3)}.

IThis can be done in the language of m-ary relations, see e.g. [KalK72], [KIiPR88].



4.12. EXAMPLE:
The following example may seem a little exotic. The property preserved here is a certain
polynomial. Let f(zy, 72, 23) = 2,23 + 2023 + 7327 and @ = {1,2,3}. For g € S(Q) define

@y, 22, 23) = f(219, Ta9, Ta0 ).
For example, with g = (1,2) we have
fO(z1, 22, 3) = T2} + 2173 + T35

Let G be the set of permutations in S(Q) which leave the polynomial f(z;,z2,z3) un-
changed. Then again, (G,() is a permutation group. We find G = {e, (1,2,3), (1,3,2)}.

4.13. Let (G, Q) be a permutation group. Let

X ={2),%2,..., 24} C R,

Gaypoa={0€CG i =g, =23,..., 3l =20a },

G{zl,,“,rk) &= {g €G: X?= X}|
where X¢ = {z{,j,...,z{ }. Then again it is easy to see that G;, ., and Gz, z,)
are subgroups of G which are called the pointwise stabilizer of X in G and the setwise
stabilizer of X in G, respectively. If X = {z} is a 1-element subset of Q then the notions
of G; and Gy coincide and usually only the first notation is used.

For example, G, z, is the set of all permutations that do not change the objects z; and
x5 while Gz, z,) is the set of all permutations that fix the set of objects {x;,z5}, that is
either do not change x; and z; or just interchange them.

4.14. Let (G,9) be a permutation group. We say that the elements z,y € Q2 belong to
the same orbit of (G, Q) if y = 29 for a suitable g¢ € G. This means, an orbit is the set of
all objects which are obtainable from one another by the actions of the permutations in
G. Obviously, the set of all different orbits of (G, ) forms a partition of (. This means
that different orbits have empty intersection and the union of all orbits is equal to 2. The
number of elements which belong to the orbit Orb, denoted by |Orb|, is called the length
of Orb. A permutation group (G, ) is called transitive if {1 is its only orbit, otherwise it is
called intransitive. Hence transitivity of (G, Q) means that for every pair (z,y), z,y € 2
there is a permutation g € G such that y = z9.

All permutation groups considered in 4.9, 4.11 and 4.12 are transitive.
4.15. Proposition. Let (G,§) be a permutation group. For r € Q let Orbg(z), or
simply Orb(z), be the orbit of (G,Q) which contains z. Then
1G]
Orb(z)| =[G : G)= —.
Orb(a)| =[G : Gl = 16,

Thus, in words, the number of elements in each orbit is a divisor of the group order.



Proof. To prove the proposition consider the partition of G into right cosets with re-
spect to the stabilizer G of z. These cosets are in one-to-one correspondence with the
elements of Orb{x). The second equation holds due to Lagrange’s Theorem. o

4,16. ExampLE: Let

0={1,2,345},

n=e g:=(1,2,3), g5=1(1,3,2),

9: = (1, 2)(4,5), g5 =(1,3)(4,5), go = (2,3)(4,5),

G = {01, 92, 93 94, 95, s }-
We challenge the reader to prove that with this definition of G' and € the pair (G,
is indeed a permutation group. This group is intransitive with two orbits X; = {1, 2,
and X, = {4,5}. We have G| = {g1,gs}, such that |X;| = |Orb(1)| = [G : G4] =
Furthermore, G4 = {g1, 92, g3} and | Xa| = |Orb(4)| =[G : G4 = 2.

Q)
3}

3.

4.17. The set 2 = {(a,b) : a,b € Q} of all possible pairs of elements in  is called
the Cartesian square of . Every subset R C Q2 is called a binary relation on . For a
binary relation R, let R* = {(b,a) : (a,b) € R}. A binary relation R is called symmetric
if R = R, it is called antiveflerive if {a,a) & R for all ¢ € Q.

The Cartesian square can be imagined literally as a square matrix of n x n elements (if
[ =n}, and a binary relation as a scattering of 1’s over this matrix which otherwise is
occupied by zeros.

Figure 4.2

A directed graph T = (2, R) is a pair which consists of a set  of vertices and of a set R of
arcs where R C 92 is a binary relation on Q. A graph I can be visualized by depicting its
diagram. Vertices are usually visualized by small bold circles, arcs by arrows (see Figure
4.2). The graph T is called undirected if R is a symmetric relation. Each pair {(a, ), (b, a)}
of opposite ares in an undirected graph I' can be identified with the 2-element set {a, b},
which is called an edge of I'. In this way, the edge set of an undirected graph is a subset
of {’;}, the set of all 2-element subsets of £2. We shall denote this edge set by E. Usually,

2
an edge is depicted on the diagram of I' as a line without arrows.
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4.18. EXAMPLE:
Let
Q= {lw 2,3,4, 5}7
R=1{(1,2), (1,3), (1,4), (2,3), (3,4), (4,5), (5, ) },
E =i { {112}’ {1'3}’ {1’4}) {273}7 {3’4}’ {4’5}) {1’5} }‘
The directed graph I'; = (Q, R) and the undirected graph I'; = (Q, E')} are depicted in
Figure 4.2.

4.19. Let g € S(Q). The action of g on  can be extended to an induced action on * in
the following manner: for (a,b) € Q2 we define (a, b)? = (a9, 7).

For R C Q2 define B9 = {(a,b) : (a,b) € R}. In general R? # R. If RY = R then we call
¢ an automorphism of the relation R. Hence, an automorphism of a graph I is a permu-
tation of its vertex set which preserves its arc set. The automorphisms of an undirected
graph I' = (Q, E) are exactly the automorphisms ¢ of the underlying symmetric relation
R=R%

Let G = Aut(l') be the set of all automorphisms of a graph I' = (©2, R). Application
of the general principle from 4.10 immediatly shows that (G,2) is a permutation group.
Automorphism groups of graphs (especially of chemical graphs) will be the main subject
of our planned series of papers.

1 4 8
3 5 7
2 6 9
Figure 4.3.

4.20. EXAMPLE:

Let = {1,2,3,4,5,6,7,8,9}. Let T be the undirected graph with vertex set £ which is
depicted in Figure 4.3. Let G = Aut(T'). It can be easily found "visually” that (G, Q) has
the following orbits:

X, =1{1,2,8,9}, X, = {3,7}, X3 ={4,6}, Xy = {5}.

We want to avoid listing all the automorphisms of I'. Instead we restrict ourselves to
finding the order |G|. Using a few times the formula in 4.15 we obtain:

IG| = |0rba(1)] - [Gi| = 4 |G,

IGi| = |0rbe, (8)] - |G| = 2 |Gl

|Gl = |Orbg, 4 (4)] - |Graal =2+ [Grgal,

Giga = {e}, hence |G| =4-2-2-1=16.



Note that |Orbe;, (8)] is the number of vertices in the orbit which contains vertex 8 in that
subgroup of G which does not change vertex 1. "Visual” arguments were also used for
finding the orbits of the subgroups of (G, ).

4,21. Let (G, Q) be a permutation group with g1, g2,...,gm € G and let every permuta-
tion g € G be representable as a product g;, gy, ... g;, where 21,%5,... 4 € {1,2,...,m}.
Then the set {g1, g2, ..., gm} is called a generating set of G. We say that G is generated
by g1, 92, - - - » gm. and use the notation G =< gy, g2, ..., gm > .

If, in particular, the group G is generated by a single permutation g then G is called a
cyclic group.

Assume that F = {g1,...,9m} C G is a generating set for G and take an arbitrary
z € §. Then, in general, there is no guarantee that G, is generated by some subset of F.
Therefore, it is sometimes very convenient to consider a special set F' of generators for
a permutation group (G,9), which in [Sim71], [Sim78] is called a strong generating set
with respect to some sequence (x),%s,...,Tg) of different elements in £). This sequence
is called a base of the group if G, ., ., = {€}. A strong generating set F' has the
property that the stabilizer G4, z,,..4,, | < k, of every initial subsequence of the sequence
(1,72, ...,T) is generated by a suitable subset of F.

The use of a strong generating set has many advantages. For example, it is easy to
compute the order of (G, (), every permutation in (G, §2) has a unique representation by
strong generators, etc.

4.22, To have an example, let us turn back to the group G from 4.11. Let g = (1, 3,2,4)
and h = (1,3)(2, 4). Check that the products g, g% ¢°, ¢ =e, h, gh, g°h, g°h are all the
permutations in (G, {2). All other products such as ghg, hgh etc. represent the same per-
mutations. Hence G = < g, h > . Nevertheless, the set {g, h} is not a strong generating
set, since it is impossible to find a base as required for such a set.

4.23. Let us return to the permutation group (G, ) in paragraph 4.20. Let 7y = 1,75 =
8,73 = 4. As shown in 4.20, G154 = {e}. Hence, the sequence 1,8, 4 is a base of (G,).
Let g = {1,2), g2 = (1,8)(2,9)(3,7), g5 = (8.9), ga = (4,6). Then

Giga=1{e}, Cla=<gs> C1=<g3,0: > G=<91,02,9 0 >,

so that {g1, g2, 93, 94} is a strong generating set for (G, ).}

4.24. In general, the problem of describing the automorphism group of a given graph
T = (£, A) with n = |Q2] can be solved by ezheustive search. Roughly speaking, at the be-
ginning of the search cach of the n! permutations in S(£2) will be considered as a possible

!Sometimes it is convenient to consider a special kind of a strong generating set which satisfies addi-
tional requirements. This leads to the definition of a standard system of generators with respect to a given
base (see [ZaiKF80] for a rigorous definition). This kind of generating set is quite useful in computer
recognition of graph symmetries.



automorphism, however, in the course of the procedure only correct "candidates” will be
selected. The history of the graph isomorphism problem, which is intimately connected
to the problem of finding the automorphism groups of graphs, is also a history of the
permanent struggle against the disadvantages of an exhaustive search. This question will
be considered in more detail in forthcoming publications of our planned series.

4.25. The traditional approach to the description of the symmetry of chemical compounds
is based on the use of transformation groups of the 2- or 3-dimensional space. This means
that certain automorphisms of molecular graphs are interpreted as the action of rotations
or reflections of space, restricted to a finite set of points which represent the atoms in
the structural formula of a molecule. In many cases, only some automorphisms can be
described in such a manner, so we can distinguish between *spatial” (or "geometrical”)
and ”combinatorial” symmetry of molecular graphs. Note also that for plane molecules
considered in 3D-space it can happen that the same permutation corresponds to a few
different geometrical symmetries (cf. [KIiPR88], Section 1.6)".

Let us consider the graph I' from 4.20 as a simple example. Let us associate with the
vertices of I' the set of points in the plane as depicted in Figure 4.3. Then only 4 of the 16
automorphisms of I' will obtain a natural geometric interpretation, these are (in the nota-
tion of 4.23): e, g2, 9194 and g1929s. The set H = {e, g2, 9194, §19294 } forms a subgroup
of Aut(I') which can be considered as ”the geometrical 2D-subgroup” of the group Aut(I').

Sometimes a combination of geometrical and combinatorial reasoning can be rather help-
ful for elaborating the automorphism group of a graph by hand.

4.26. EXAMPLE:

The graph I" depicted in Figure 4.4 is an abstract picture of the molecule known as
"cuneane”. It is a regular graph of degree 3. We can find its automorphism group
Aut(I') using a standard backtracking technique, see e.g. [McK81] or |[KIiPR88]. In
order to avoid long routine computations let us start using the rather evident information
about the ”geometrical part” of Aut(I'). That is, let us consider the permutations ¢ =
(1,8)(2,3)(6,7) and g, = (2,7)(3,6)(4,5) in S(Q) where Q = {1,2,3,4,5,6,7,8}. These
permutations represent two different reflections in 3D-space which are symmetries of the
spatial model of cuneane, while g, ¢, is a rotation around the axis eutting edges (1,8) and
(4,5). It is evident that H = {e, g1, g2, 192 } is closed with respect to multiplication.
Hence, H is the "geometrical subgroup” of Aut(T"). The sets

X, ={1,8}, X2 =1{2,3,6,7}, X5 ={4,5}

are the orbits of the permutation group (H,€). Now we shall describe the whole auto-
morphism group G = Aut(I'). Since H is a subgroup of G, the partition resulting from

!The notion of a permutation group can be generalized. Let G be an arbitrary group (sometimes we
speak of an "abstract” group if the nature of its elements is of no matter). For a suitable finite set Q a
permutation group (G, {2} can be defined by an isomorphism of G onto some subgroup of the symmetric
group S(f2). Let us consider homomorphisms into S(£2) instead of isomorphisms (for an explanation of
both notions see [Ker91] or [Hal59]). Then we obtain a more general notion of the action of G on the set
. In this way every permutation group G can be regarded as a faithful action on .
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H, X1 U Xy U X3, is either finer than or identical to the true partition resulting from
G, the automorphism partition. Now let us look at the structure and construct a very
coarse partition of vertices by inspection. It is easily seen that vertices 1 and 8 play a role
different from that of vertices 4 and 5 or the remaining vertices (1, 8 are the only ones
not involved in the two triangles, 4, 5 are the only ones connected by an edge between
different triangles). Therefore, the automorphism partition is equal to or finer than the
one with the three classes {1,8}, {4,5} and {2,3,6, 7}. Combining this observation with
the previous one about the orbits of H, we get finally that the orbits of H are identical
with the orbits of G. However, it is still possible that G is larger than H.
1

72
5 4

Figure 4.4.

Now in order to describe the whole automorphism group, let us first find a base of this
group. Let us fix an arbitrary representative in each orbit,say 1 € X, 2 € X, and 4 € Xj,
and consider the subgroup G 54. It is easily seen that every vertex of cuneane is uniquely
determined by its adjacency to the vertices 1, 2 and 4, hence G4 = {e}. Vertices 4 and
5 can be distinguished by their respective adjacency to 1 and 2, that is an automorphism
which fixes 1 and 2 will never move 4 to 5. So 1, 2 is also a base, G1o = {e}, in fact,
being shorter it is a preferable one. Now the order of the automorphism group can be
calculated:

|G| = |Orbs(2)] - |Ga| = 4+ |Ga,
|Ga| = |Orbg, (1)} - |Gaa| = 1+ |G| = |G| = 1,

so that |G| = 4 and therefore G = H.

We have proved that in this particular case every "combinatorial” automorphism of the
graph " has a geometrical meaning. As we know this is not true in general.

4.27. In chemistry, as well as in other areas of applied graph theory, graphs are used as
models for structured sets (sets of atoms in molecules or of some other kind of items),
the structure being defined by relations between the elements. As we have pointed out
already, the automorphism group of such sets describes the symmetries of the structure,
the geometrical as well as the purely combinatorial symmetries. Also some additional
features of the structure can be reflected by corresponding features of the automorphism
group. Thus, if a graph is made up of independent subgraphs, its automorphism group
will be some “combination” of the automorphism groups of the subgraphs.
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Figure 4.5.

Consider Figure 4.5a where a graph I' is depicted which consists of a triangle and a
square. Clearly, since a triangle and a square is a pair of non-isomorphic graphs, no
automorphism of I' can move a vertex of the triangle onto the square, and vice versa.
Hence each g € Aut(I') is composed of some permutation g’ of the vertex set {1,2,3,4}
and some permutation g” of the vertex set {5,6,7}. Therefore, if we know the action of
¢ on {1,2,3,4} and the action of ¢” on {5,6,7}, we can describe the action of g as

’ = if ze{l,23,4}
I’ =
v if z€{586,7}

Now, assume that we have two permutation groups (G',¥) and (G", Q") acting on the
disjoint sets Q" and Q”, respectively. Define

Q= ue’
G {g’+g":g’€G’,y"€G"}

where

¢ if zeQ"
The group G is called the direct sum of G' and G" and is denoted by G' + G". !

g ’
zg,ﬂ,,:{:c if e

As an example, denote the triangle in Figure 4.5a by Cj, the square by Cy. Let G' =
Aut(Cy) and G" = Aut(Cy). In T all vertices of Cj are equally related to all vertices of
Cy. This fact is reflected by the structure of Aut(I'), namely

Aut(T) = Aut(Cy) + Aut(Cy).

We will determine Aut(C,) for undirected cycles C, of arbitrary length n in subsection
4.32. It will turn out that the order of Aut(C,) is 2n. Then, knowing these groups for
n =3 and n = 4, we are able to write down the 48 automorphisms of [' immediately.

! The operation of direct sum is defined here as an operation over permutation groups. Note that in
group theory one usually considers the operation of direct product of groups. Here we as a rule avoid the
use of this term.
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4.28. Proposition. Let ' = (Q, R), IV = (¥, R') be two graphs with disjoint vertez sets.
Let

Tul’ =(QuUQ,RUR)
be the disjoint union of the graphs T and IV, If T and T' are non-isomorphic and both

connected, then
Aut(TUT') = Aut(T) + Aut(T).

The proof of this proposition is straightforward and uses the same arguments as we used
in the particular case of the example in 4.27. An automorphism which maps a vertex =
of T onto a vertex ' of I has to map the connected component of z {which is I" itself)
onto the connected component of 2’ (which is I''). Since I and I'" are supposed to be non-
isomorphic no such automorphism can exist. On the other hand, any automorphism of I"
can be combined with any automorphism of I to give an automorphism of the disjoint
union.

4.29. The notion of the direct sum of groups can be useful also for the description of
the automorphism group of a connected graph I'. Let I' = (£, ;) and I'y = (Qs, Rp) be
two graphs with ) N Qy = 0. The disjoint sum of these two graphs is the graph which
consists of [' and I'" and all edges with one end in Q; and the other end in Q,. We denote
it by I' + I'". More precicely,

F-PFI:(nlUQg,RlURzUR;;)

where R = £ x 0, U, x €. To have an example, consider Figure 4.5b which shows
the disjoint sum of Cy and Cj.

Let us show that Aut{Cy+C3) = Aut(C;)+ Aut(Cs). In spite of the fact that this equality
may be regarded as rather obvious we prefer to give a succinct proof for it.

Comparing valencies of vertices in Cy + C3 we see that each automorphism g of Cy + C3
preserves the subsets 0y = {1,2, 3,4} and 2, = {5, 6, 7}. Thus each automorphism belongs
to the direct product Sy x S3 of symmetric groups acting on ; and Q,, respectively. In
the next step we observe that g even preserves the subgraphs of Cy + C; generated by Q,
and by Q2. Therefore, g € Aut(Cy) + Aut(Cs). Finally, we check that Aut(Cy) + Aut(Cs)
is a subgroup of Aut(Cy + Cs). Now this implies

Aut(Cy + C3) = Aut(Cy) + Aut(Cy).

Arguments which are presented here to deal with a rather simple situation will be con-
sidered in more gencral context in Section 7.

4.30. A situation similar to the one in Figure 4.5 is shown in Figure 4.6. Here the graph
[ = (2, E) on the left side is depicted incompletely by only outlining some of its parts.
The dashed areas are meant to contain isomorphic connected graphs Iy, I'y, '3 and Ty,
all isomorphic to some graph Iy, (the notation is deduced from the word "inner”), where
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I'; = (S, E;) such that = Q; U, U Q3 U Q4. The bold edges connecting I'; and T
indicate the fact that each vertex in I'; is connected by an edge to each vertex in I';. In
this way the I';’s and the bold edges define a simplified picture of I" which is called the
outer graph, while the [';’s are called inner graphs. In our example the outer graph I'yy
has vertex set Qe = {1,2,3,4} and edge set E,; = {{1,2}, {L,4}, {2,3}, {3,4}}. For
the inner graphs the reader may take isomorphic copies of any graph I';,, he likes in order
to complete his own individual example.

Tou

Figure 4.6.

Now, assume that we know the automorphism groups Aut(I;) of the inner graphs I';.
Since the I';’s are isomorphic, their automorphism groups are isomorphic, too, hence we
shall denote them by Aut(Dny), independently of 2. Then to every g € (Aut(Ting), )
there is a corresponding automorphism § of I" defined by

¢ if zefl
¥ =
z if z€Q; j#i.

Let G" be the group of all automorphisms of this kind which we can get from the group
Aut(Tinn). Note that, while all groups Aut(I;), ¢ = 1,2, 3, 4, are isomorphic to Aut(I;pn)
as permutation groups, they act on different sets ;.

Since all the inner graphs I'; are isomorphic, as we assume, there are still more auto-
morphisms of I, which are to be described in a more complicated way. Assume that
O = {wiy, win,...,wik } and that for arbitrary i, j the mapping ¢;; : 2, — §; defined
by

(wis)® =wjs, 1S5 <k,
is an isomorphism from I'; onto I';. (We can always find orderings of the sets ; which
fulfill this assumption.)

Now, assume in addition that we also know the automorphism group of the outer graph
[out. Let b € Aut(lpy). We are prepared now to define a second kind of automorphism
for T', namely the mapping g defined by

(“Ji.s)g = Wik 5y 1<i<ne 1<s< k,
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where ny is the number of vertices in the outer graph (g, = 4 in our example). This
automorphism of [' moves the inner graphs as a whole according to the connections in the
outer graph. Let G’ be the group of automorphisms which we get in this way. Clearly, G'
is isomorphic to Aut(Lg,).

Now consider the following procedure for constructing a permutation of the whole vertex
set of . First choose i € Aut(L,,,) and permute the inner graphs ['; according to . Then
apply permutations g; € Aut(I';) to the vertex sets of the inner graphs [';, 1 <7 < ngy.
The result is an automorphism of I'. Let G be the group of automorphisms which are
constructed in this way. Each element of G is a combination of some element in G with
some elements in G”. For this reason, G is also considered as a certain product of G' and
G". 1t is called the wreath product of G’ and G” and denoted by

G=G"1G".
It follows from our description that
61 =161 16"
In many cases G coincides with Aut(I). In such cases we write
Aut(T) = Aut(Tour) L Aut(Tinn).

In our example of Figure 4.6 Aut(Ioy) is isomorphic to the group H = Aut(C4) which
has order 8 (see below). Take triangles to realize the graphs I';, 1 < i < 4. Then
Aut() = H 1S3, which is a group of order 20736.

In particular, we may reformulate Proposition 4.28 in terms of the wreath product in the
case, when the inner graph is connected and the outer graph is a graph without edges,
i. e. consists of isolated vertices only.

Proposition. The disjoint union T' of m isomorphic copies of a connected graph I'y has
automorphism group
Aut(l) =~ S 0 Aut(Ty).

For further details concerning the wreath product see for example [Hal59], [K1iPRS8|.

4.31. Let us turn back to the question of what is Aut(C,) where as before C,, is the
undirected cycle of length n. Let us consider first some particular cases. We shall assume
that the vertices of €, are numbered consecutively using 0,1,...,7 — 1.

(a) n = 3 : Here (3 = Kj, the complete graph on three vertices. Clearly, every per-
mutation of the vertex set is an automorphism. Hence, Aut(C3) = Ss, and we have
|Aut(C3)| = 6.
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The case n = 3 is not typical. Therefore we considere two more cases, one case in which
n is even and one in which n is odd.

(b) n =4 : In Figure 4.7.a. there are four "rotations” (0)(1)(2)(3), (0,1,2,3),(0,2)(1,3)
and (0,3,2,1). These four permutations are (combinatorial) automorphisms also when
the graph Cy is drawn as a polygone with different lengths of edges. Of course, in such a
case they are not rotations in a geometrical sense. Nevertheless, by analogy, we continue
to use the term "rotation”.

Next there are two "reflections” (0)(2)(L,3) and (0,2)(1)(3). The first reflection is with
respect to a line through the vertices 0 and 2. It fixes these two vertices. The second
reflection is with respect to a line through the vertices 1 and 3 and fixes these vertices, too.

Further, there are "reflections” (0,1)(2,3) and (0, 3)(1, 2) with respect to the vertical and
the horizontal axis, respectively (see Figure 4.7a). None of these two reflections has a
fixed point. As with rotations the term "reflection” has a geometrical meaning only when
the graph is represented by a regular polygon. However, we shall use this term also in
the general case.

20 ; 1
i-1 i+l
'3 E 2
! & iX.
] P &
a) b)

Figure 4.7.

(¢) n=>5: This case is similar to the case n = 4. However, besides the rotations
(0)(1)(2)(3)(4),(0,1,2,3,4),(0,2,4,1,3),(0,3,1,4,2),(0,4,3,2,1)
there are five reflections

(0)(1,4)(2,3), (0,2)(1)(3, 4, (0, 4)(1,3)(2), (0, 1)(2, 4)(3), (0, 3)(1, 2)(4)



(see Figure 4.7b, where one of these reflections is indicated). Each reflection has exactly
one fixed point. The corresponding reflection axis goes through the fixed point ¢ and the
midpoint z; of the edge which lies "opposite” to the fixpoint.

In both cases, n = 4 and n = 5, we have n rotations and n reflections. Thus we have at
least 2n automorphisms. In the next subsection we shall prove that there are no other
automorphisms than these.

4.32. The automorphism groups of undirected cycles C), form an important type of groups
for which reason they have got a special name by which we may refer to them. There is
even a special notation for them. Let

D, = Aut(C,), n € N.
The groups D, are called dihedral groups.

Proposition. For n € N we have |D,| = 2n. Each group D, acts transitively on the
vertex set of Cy, and comsists of n rotations and n reflections.

Proof. Our vertex set is 2, = {0,1,...,n — 1}. For ¢ € {2, the mapping g; defined for
z €, by
xg_:{z+i ifz+i<n,
z+i—n otherwise,

is a rotation of C,. Hence, we have n rotations. Further, again for ¢ € £2,,, the mapping
h; defined by

2i—xz+n if2i—x <0,

zh=¢ 2i—z f0<2—z<n,

2i —x —n otherwise,
is a reflection. If n is odd, then all h; are different, hence, in this case, we have n reflections.
If n is even, then h; = h1+v2¢. Thus, we have only § reflections of this kind. Each of them
has two fixed points. In addition, for n even, the mappings k; defined by

2i+1—z+n if2i4+1-2z <0,
¥ = 2413 if0<2+1—z<n,
2i+1—z—n otherwise

are reflections, too, not having any fixed point. Their number is again o

So far we have seen, that D, has at least 2n elements. To complete the proof we use
Proposition 4.15. Since D, acts transitively on §2,, we have only one orbit of cardinality
n. Therefore, |Dy| = n|(Dy)z|, where z € 2, is arbitrary and (D), is the stabilizer of =
in D,. Given z, there is only one non-trivial automorphism of C, which fixes z, namely
the reflection with respect to the axis through z. Hence |(D,)s| = 2, and we get finally
|Dy| = 21, ¢

For further details concerning the dihedral groups D, consult [Hal39], [KIiPR88].



5 Centralizer algebras of permutation groups

5.1. We start with a few elementary definitions. Let Q be an arbitrary set, ¢ € S(€2) and
R C 0? a binary relation on §. As in Section 4, for g € S(Q) let RY = {(2%,3?) : (z,v) €
0?}. If R = R then R is called invariant with respect to the permutation g. Moreover,
R is called invariant with respect to the permutation group (G,Q) if RY = R for every
g € (G,). If this happens, then also the graph I' = (2, R) is said to be invariant with
respect to (G, Q). Let us use the notation 2-rel(G, §2) for the set of all binary relations on
Q which are invariant with respect to (G, ). Clearly, R belongs to 2-rel(G, ) iff (G, Q)
is a subgroup of the automorphism group of R.

Let I' = (Q, R) and (G, Q) = Aut(T'). For every R' € 2-rel(G, Q) there is a corresponding
graph [V = (2, R'). Hence, 2-rel(G, ) provides us with a list of all graphs having vertex
set 2 which have the same (and possibly more) symmetries as T

For example, consider the graph I' in Figure 4.3 and the permutation group (H,2) as de-
fined in paragraph 4.25. It was shown that I" is invariant with respect to (H, ), however,
H is a group of order 4, whereas the group Aut(I) has order 16.

5.2. Consider again group (G,$2) in Example 4.11. In Figure 5.1 eight graphs are given,
all of which are invariant wih respect to (G, ), as the reader may check.

1 2 1 2 1 3 1 2
® [ ] *—=e
L ] o *——0
4 3 4 3 4 3 4 3
a) b) o d)
1 2 1 2 1 2 1 2
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4 3 4 3 4 3 4 3
) 1) 2 h)

Figure 5.1.
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Now, two guestions arise:
(1) Is this a complete list of all graphs having this property 7
(2) Is there a simple procedure to get them all in a simple notation 7

©
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2 2
.A )
3 1 1@ ®!
. ° — o
4 A 4 5
®, Dy
2 2.
: @g’ 1 ; 1
4 s 4 s
(1’5 d>6

Figure 5.2.
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5.3. To each permutation group (G, Q) we can associate a new permutation group (G, 0?)
by applying the following rule: (a,b)¢ = (a?,b9) for all (a,b) € Q2. ' We say that (G,0?)
is naturally induced on the set 2* by (G, ). The orbits of (G,$?) are called 2-orbits of
(G,82). Thus a 2-orbit contains a pair (a,b) together with all the pairs obtainable from
it by actions of permutations in &, just as an ordinary orbit (1-orbit) contains an object
together with all the objects obtainable from it.

Let 2-orb{G, ) be the set of all 2-orbits of (G, ). The set 2-orb(G, 2) forms a partition
of 02, i.e. each pair (a,b) € 2 belongs to exactly one member of 2-0rb(G, Q).

Note that each 2-orbit is a relation on Q. A set & € 2-0rb(G,Q) is called reflerive if
® C {(a,a) : a € Q}, otherwise ® is called irreflezive. ® is called symmetric if ' =
and @ is called antisymmetric if for e # b (a,b) € ® implies (b,a) ¢ ®. The 2-orbits ¢
and ®* are called paired, each symmetric 2-orbit is called self-paired.

5.4. EXAMPLE:
Let us reconsider the permutation group (G,€2) defined in paragraph 4.16. The set 2-
orb(G, Q) is presented in Figure 5.2.

Figure 5.2 is easily constructed by

(1) writing down all possible ordered pairs of objects in 2,

(2) writing down for each such pair those pairs which are obtained from it by the action
0fg17' <396y

(3) collecting the interchangeable pairs together into sets, the 2-orbits,

(4) drawing an arc for each pair.

In our example, ®, and ®, are reflexive, all other 2-orbits are irreflexive. ®3 and ®, are
symmetric, ®5 and &g are paired antisymmetric 2-orbits.

Q O 1 2 1 2
‘o C); 4 3 4 3
@) o, Dy

Figure 5.3.

!The two permutation groups (G,{) and (G,0?) are different since they act on different sets Q
and 02, respectively. Nevertheless, we denote both by the same letter G, since they are isomorphic as
abstract groups, i.e. their patterns of results of the group operation (" Cayley Tables”) are identical, the
permutation groups are said to be different realizations of the same abstract group.



5.5. In order to be prepared for the understanding of the crucial next statement, let us
reconsider group (¢7, ?) from 4.11. We are now able to construct the set of all 2-orbits of
this group, as given in Figure 5.3. We see immediately that each invariant relation from
Figure 5.1 is a union of suitable 2-orbits, e.g. the relation in Figure 5.1f is @, U @5, the
relation in Figure 5.1h is ¢, U ®5 U ®3. Since there are three 2-orbits, and each 2-orbit
can be selected or not selected for use in a particular union, there are eight different such
unions:
B, @1, By, Bgy By U Dy, Dy UDg, By UBg, Oy UDU Dy

(Here, § means the empty relation which defines the empty graph with 4 vertices.) Gen-
erally,
|2-rel{G, Q)| = 212-0THG]

5.6. As with the example in the preceding paragraph, for every permutation group (G, )
each invariant relation from 2-rel(G,?) can be obtained as the union of suitable 2-orbits
of (G, ). In other words, there exists a one-to-one correspondence between the elements
of 2-rel(G, Q1) and all subsets of 2-ord{G, ). This fact is briefly written as follows

2-rel(G, Q) = 22oTHG
where 2% stands for the set of all subsets of the set X. '

5.7. Let (G, ) be defined as in the example of paragraph 5.4. Since 2-0rb(G,§2) has 6
elements (see Figure 5.2), 2-rel(GG, Q) has exactly 64 elements. Remember that each of
these elements is a relation on 2, and, therefore, can be considered as the arc set of a
graph on §2. Only 8 of these elements of 2-rel(G, () represent undirected graphs without
loops (one of which is the empty graph).

5.8 Next we introduce a tool to represent 2-orbits conveniently. Define an n x n-matrix
A= A(2-0rb(G, ) = (ai;)

in the following way. For 1 < i,j < n let k be the number of the 2-orbit containing the
pair (¢,§). Define a;; = k. In this way A becomes a matrix with integer entries storing
the information which pair (4, 7) belongs to which 2-orbit ®,. This matrix is called the
adjacency matriz of 2-orb(G, ). For example, for cuneane we obtain eighteen 2-orbits
from the permutations given in 4.26 to which we assign the indices 1 through 18 in some

IThe formal proof of this statement requires some more new notations and is therefore omitted here.
However, let us demonstrate the idea of the proof reconsidering the above example. Take the invariant
relation 5.1f (denoted as f for short), of which pair (1,1) is an element. All pairs from the 2-orbit
Orbe((1,1)) belong to f. In other words, f 2 ®,. Now take the difference f* = f\®,. f* # @, e.g.
(1,2} € f*. Therefore the 2-orbit Orb((1,2)) belongs to f. In other words, f* O ®2. Now again take
the difference f** = f*\ &2, which turns out to be the empty set.

fAGr =0 = f7 = &,
ff=A® = =0, Ud:

So f is a union of suitable 2-orbits.



arbitrary order. If the reflexive 2-orbits are numbered first (1 — 3}, followed by the others
in their natural sequence (4 — 18), then the adjacency matrix will look like

1 4 5 6 6 5 4 7
8§ 2 9 10 11 12 13 14
14 9 2 10 11 13 12 8
15 16 16 3 17 18 18 15
15 18 18 17 3 16 16 15
14 12 13 11 10 2 9 8
8 13 12 11 10 9 2 14
7 5 4 6 6 4 5 1

Due to the existence of antisymmetric 2-orbits in 2-orb(G, ), this matrix is not sym-
metric. However, in chemistry we are mostly interested in symmetric 2-orbits, since e.g.
the relation of atom ¢ to atom j is considered as identical to that of atom j to atom 1.
Therefore, for each antisymmetric 2-orbit ® we simply identify paired 2-orbits ® and ®'.
This is equivalent to looking at each twin of entries (i,5) and (4,2) in A and replacing
the numerically higher entry by the lower one. The result is the adjacency matrix for
the so-called symmetrified 2-orbits or briefly {2}-orbits, A = A({2}-0rb(G,2)). In our
example

1 4 5 6 6 5 47 1 4 5 6 6 5 47
4 2 9 10 11 12 13 5 4 2 9 10 11 12 13 5
5 9 2 10 11 13 12 4 5 9 2 10 11 13 12 4
A= 6 10 10 3 17 11 11 6 A= 6 10 10 3 8 11 11 6
6 11 11 17 3 10 10 6 |’ 6 11 11 8 3 10 10 6
5 12 13 11 10 2 9 4 512 13 11 10 2 9 4
4 13 12 11 10 9 2 5 4 13 12 11 10 9 2 5
T 5 4 6 6 4 5 1 75 4 6 6 4 5 1

Matrix A contains only thirteen different entries, {1,2,3,4,5,6,7,9,10,11,12, 13,17}, and
since the numbering of 2-orbits (as well as of the vertices) already is arbitrary, it is natural
to renumber them in order to fill any gaps for the sake of beauty. In our example, the
17 may be replaced by 8, to obtain A’. The essential thing with these matrices ("class
matrices” [RueR91b]) is that, irrespective of the particular numbers, entries representing
the same {2}-orbit are identical and those representing different {2}-orbits are different.
So for a molecular graph (or more exactly its automorphism group) these matrices carry
the information, important to the chemist, of which atoms and which (unordered) pairs of
atoms are structurally alike (are in the same class) and which are different. Some of the 2-
relations also are chemically significant. Thus in the cuneane example @4, &, ®g, @9, and
&y (numbering of A') taken together constitute the set of all bonds, i.e. they represent
the relation "to be one another’s neighbor”, ®5 U ®g U ®; U &5 represents the relation



"to be second neighbor”. We will use the language of matrices in more detail later. !

5.9. Two permutation groups (G, 1) and (H, ) are said to be 2-equivalent, denoted by
(G.9) ~ (H,9Q),

if they produce the same 2-orbits, i.e. if 2-0rb{(G, Q) = 2-0rb(H,£2). Clearly, this equality
is satisfied if and only if 2-rel(G,§2) = 2-rel( H, Q).

5.10. Let R be a set of relations on a set €. For each relation R € R let Aut(R) be
its group of automorphisms. Clearly, the intersection of all these automorphism groups
is again a permutation group acting on £ (possibly the trivial group {e}). We call this
intersection the automorphism group of R and denote it by

Aut(R) = ) Aut(R).

ReR

Now, let R = 2-0rb(G, ) for some arbitrary permutation group (G, 2). In this case the
group Aut(2-0rb(G, ) is denoted by (G, Q) and named ” the 2-closure of (G,$2)". The
"2 briefly refers to the fact that it is the group of all permutations which preserve the
2-orbits of (G, ). We have by definition

(GD Q) = Aut(2-0rb(G, ) = N Aut(®).
ve2-0rb(a,a)

5.11. Consider again the example given in 4.9. The corresponding 2-orbits, constructed
in the routine manner, are shown in Figure 5.4 {top). All these 2-orbits together, each
depicted in a different color, form what we call a complete colored graph as shown in
Figure 5.4 (bottom).

The automorphism group of this complete colored graph, i.e. the group of permutations
of the vertex set §2 which preserve colors on vertices as well as edges, is just the 2-closure
(G®, ) of the initial group (G,). A simple calculation shows that |G'?| = 4. On the
other hand it is always true that (G,Q) < (G*¥, Q). Taken together this means that in
this case (G, Q) = (G, Q).

The proof of the following proposition is rather intricate. In a first reading it may be
omitted.

1The number of different entries in the matrices A and A can easily be obtained (without construction
of the 2-orbits) using the Cauchy-Frobenius-Burnside Lemma. For example, the number of 2-orbits is

rE.) = 20E. = 7 T Xl
gEG

where y(g) is the permutational chaeracter of permutation g, i.e. the number of elements in €t which are
not affected by g. In the cuneane example r(G,Q) = § - (8% + 222 4 0) = 18. (For more details see
[KliPR&8], [Ker91].)
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Figure 5.4.

5.12. Proposition.
(a) (G®,Q) is a permutation group;
(b) (G, Q) ~; (G, 9);
(c) if (H,2) ~; (G, Q) then H < G?,

Proof. (a) The intersection of any set of groups is again a group.

(b) We have G < G® < S(Q). This implies 2-rel(G®, Q) C 2-rel(G, Q). For arbitrary
g € (G®,Q) and arbitrary ® € 2-orb(G,2) we have g € Aut(®). From this it follows
that 2-0rb(G,Q) C 2-rel(G™®,€), and hence, 2-rel(G,Q) C 2-rel(G™®, ). This gives fi-
nally 2-rel(G, Q) = 2-rel(G?Q), whence, 2-0rb(G, Q) = 2-0rb(G?, Q).

(c) Let (H,8) ~2 (G,2). Then for every R € 2-orb(G, 1) and for every h € H we have
R" = R, hence h € Aut(R). This implies k € (G, Q). Thus we have H < G®. °

5.13. In 5.12 we have just proved the existence of the unique largest permutation
group (G™,Q) which is 2-equivalent to (G,£). A group (G,Q) is called 2-closed if
(G,9) = (G, Q).

We mention the following evident properties of 2-closures:

(i) (E®,Q) = (E,Q) where E = {e}, the trivial group consisting of the identity e only;
(ii) (S®(Q),9Q) = (S(),%);

(iit) (H,Q) < (G,9Q) = (H®,Q) < (G?,Q);

(iv) (G2 Q) = (6P, Q).

5.14. Let (G, Q) be the permutation group in the example of paragraph 4.16. This group
is not 2-closed, because for example the permutation (4, 5) is an automorphism of every 2-
orbit of (G, ), however (4,5) & G. It is easy to prove that G® = S({1,2,3})+5({4,5}) =
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83 + 5o, where Sy + Sy is the group of order 12 which consists of all permutations of £
which fix the sets {1,2,3} and {4,5}. (We have seen in 4.27 already that in the same
manner, for every partition of the n-element set € into two parts of size k and [, k+1=n,
the group Sy + S; can be defined. This group is the direct sum of the symmetric groups
Sy and Sp, which means that all permutations within the two subsets are acting indepen-
dently.)

We suggest the reader checks that in 5.11 the 2-closed permutation group (G, ) is not the
automorphism group of any usual (non-colored) graph. So this is the smallest example
showing that the term ' 2-closed permutation group” is more general than ”automorphism
group of a usual graph”. Every automorphism group of a graph is 2-closed, so from a
graph-theoretical point of view only 2-closed permutation groups are interesting.

5.15. Let v = r(G, Q) = |2-0rb(G, Q)| be the number of distinct 2-orbits of the group
(G,Q). This number 7 is called the rank of the permutation group (G, ). (Sometimes
the use of the term "rank” is restricted to transitive permutation groups only.) In what
follows we shall reformulate the notion of invariant relations in terms of matrix language.
Then, in particular, the rank of a permutation group will be interpreted as the dimension
of a certain vector space associated with the group.

Recall, see 4.6, that for every permutation g € S{?) there is a corresponding permutation
matrix M(g) of order n = [{)]. It follows from the definition of a permutation matrix that
det(M{g)) = +1. Permutations g for which det(M(g)) = 1 are called even, the others are
called odd. The set of all even permutations on € forms a group Alt(Q2) of order ¥ which
is called the alternating group of degree n.

5.16. Let [' = (2, R) be a graph with vertex set & = {1,2,...,n}. Remember that the
adjacency matrix A(I") is defined as follows:

A(l) = (@ij)1<ijen
where

L1 GieR,
%71 0 otherwise.

Obviously, the graph [' is undirected iff its adjacency matrix A(I') is symmetric.

The permutation matrix which corresponds to the identity permutation e on £ is the unit
matriz of order n, i.e. M{e) = I,,. Furthermore, M(g~') = (M(g))"* = (M{g))", where
Mt is the matrix transposed to M.

5.17. Let Dy; = 1J;;(n) be the matrix of order n in which the (3, j)-entry is equal to 1
and all other entries equal to 0. For example,

0
Da(4) =

oo o
o = W o e =
[ R o R R
oo oo
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Dy;(n) is the adjacency matrix of a graph with exactly one arc (i,j). Let g € S(Q2) be
such that ¢ = k, 79 = [ and let us calculate

M(g™")Dy;M(g).

Since there is only one non-zero entry in the column i of M(g~'), namely in row k, we get
M{g~")D;; = Dy;. Analogously, we find Dy;M(g) = Dy. Hence M(g~')D;;M(g) = Dy
Now consider I' = (£2, R). We have

AT)= ¥ Dy

(ij)eR
From this it follows

M{g™)A(T) M (g)

M ( ¥ Dy)M(g)
(i.7)eR

(; Mg~ )DyM(g) =

i,j)ER

Z D‘]J‘n IA(Fg)

(1g)ER

The final result is given in the following proposition.

5.18. Proposition. Let g € S(Q) and 'Y = (Q, RY). Then
A(l?) = M(g™)AD)M(g).
In particular g € Aut(T') if and only if
M(g~")A(T)M(g) = A(T)

or
A(T)M(g) = M(g)A(T).

In other words, the permutation g is an automorphism of I' if and only if A(') commutes

with M(g).

5.19. Now consider the group M(G,Q) = {M(g) : g € G} of all permutation matrices
associated to the group (G,2). Let Z be the set of integers and € the set of complex
numbers. According to what we have just observed in 5.18 a graph I' = (£2, R) is invariant
with respect to (G, Q) if and only if its adjacency matrix commutes with all permutation
matrices M(g), g € G. This fact motivates us to consider the set Vz(G, ) of all matrices
with entries from Z which commute with all matrices M(g), g € G :

Vz(G,Q) = (A€ Mo(Z) : AM(g) = M(g)A forall ge (G,Q)).

Here M,(Z) is the set of all matrices of order n the elements of which are in Z. Evidently,
Vz(G, Q) is a subset of

Ve(G. ) = {A € Mu(Q) : AM(9) = M(¢g)A forall g€ (G Q)}



where M, (@) is the set of all matrices of order n with complex-valued entries.

A set L of complex-valued matrices of order n is called a matriz algebra if L is closed
with respect to addition and multiplication of matrices and multiplication of matrices by
(complex-valued) scalars from the field € of complex numbers. Our set Vg(G, Q) meets
these criteria as shown below.

5.20. Proposition. For every permutation group (G,9) the set Vg(G,Q) is a matriz
algebra.

Proof. We have A, B € Vg(G, Q) iff AM(g) = M(g)A and BM(g) = M(g)B for all
g € (G,9). This implies

(A+ B)M(g) = AM{g) + BM(g) = M(g)A + M(g)B = M(g)(A + B),
(AB)M{g) = A(BM(g)) = A(M(g)B) = {AM(g))B = M(g)AB,
(AA)M(g) = MAM(g)) = MM (g}A) = M(g)(\4)
for all g € (G,9). Hence A+ B, AB, M € Vg(G, Q). o

If the same criteria are fulfilled for a set of integer matrices (multiplication restricted to
scalars from Z), then this set is called a matriz ring. In fact Vz(G, ) is a matrix ring
(as can be shown exactly as above). We call it the centralizer ring of (G, ).

5.21. The algebra Vg(G, ) is called the centralizer algebra of the permutation group
(G,£). The notation V(G, ) stems from the German word ” Vertauschungsring” (some-
thing like "ring of commutation”) which was created by I Schur and H. Wielandt (see

[Wieb4]).

The centralizer algebra Vg(G, £2) is useful when dealing with eigenvalues and eigenvectors
of matrices from Vz(G,€). If G is the automorphism group of a graph I' then the adja-
cency matrix of I belongs to Vz(G, 1) and then the centralizer algebra yields information
about the spectrum of I'. This is an important fact, since eigenvalues of molecular graphs
carry some chemical information. However, on the level of elementary combinatorial con-
siderations, which is adopted for the present paper, the use of matrices with integer entries
is sufficient. Moreover, some of these matrices have a nice graph-theoretical interpreta-
tion. !

LFor some part of Vz(G, §2) a convenient interpretation can be given in terms of directed multigraphs.
A direeted multigraph T = (Q,C) consists of the vertex set {2 and the function C : {3 — Z+ U {0}, where
the non-negative integer C(z, 7) is the multiplicity of the arc (7, 7). The multigraph T' can be represented
by its diagram or by its adjacency matrix A(T') = (a;;) where a;; = C{i, j).

In the same manner as for simple graphs the notion of invariance with respect to a given permutation
group (G, 1) can be introduced also for multigraphs. Let 2-Rel(G, ) be the set of all directed multigraphs
which are invariant with respect to (G,{1). In the same manner as in 5.6 every element of 2-Rel(G,Q2)
can be interpreted as a multi-subset of 2-0rb(G, Q). The adjacency matrices of invariant multigraphs



5.22. Proposition. Let V = Vg(G, Q) be the centralizer algebra of the permutation group
(G,Q). Then

(a) V is a vector space over the field @,

(b) let 2-0rb(G, Q) = {®1,Ps,..., 8.}, [\ = (, ), 4 = A(T;) fori € {1,2,...,7},
then the matrices Ay, As, ..., A, form a basis of the vector space V.

(¢) dim(V) = r = rank(G, ).

Proof. Part (a) is an immediate consequence of the definition of V in 5.19. It follows
from 5.18 and from the definition of 2-orbits that every matrix 4;, 1 <% < r, belongs to
V. These matrices are evidently linearly independent. Let us show that their linear span
equals V. Let A € V, A = (aj;), let (i,7) € Q* and let ®,; be the unique 2-orbit of (G, )
such that (3, j) € ®,. Moreover, let (s,t) € ®;. Then there exists a permutation g € (G, )
such that (¢,7)¢ = (s,£). Now use the equality M(g)A = AM(g). The (i, t)-entry of
M (g)A is a;;, whereas the (i,t)-entry of the matrix AM(g) is ay. We obtain a;; = ay.
This means that every 2-orbit of (G,{1) represents positions in A occupied by the same
value. From this it follows that A is a linear combination of the matrices A;, Ay, ..., A,.
Now, (c) is an evident consequence of (b). °

5.23. The basis Ay, Ay, ..., A, with which the above proposition was concerned is called
the standard basis of VG, 2). Thus for every permutation group (G,) there is a stan-
dard basis of the associated centralizer algebra. To stress this fact we shall write

Ve(G,Q) = <Ay, A, ..., Ar> .

The 2-orbits ®;, ®,,. .., P, are also called basic relations and the graphs [y, I'y,..., I, are
called basic graphs of V(G Q).

Each of these three basic items carries the same information. For instance, given the
basic graphs I';, we may find their adjacency matrices A; to get the standard basis, or
we may write down their arc sets as relations on the vertex set to get the orbits ®;. The
information carried by these items is which objects have symmetries realizable by action
of the group G. We consider also such strange objects as matrices with complex-valued
entries, because some combinatorial information is encoded even in their spectra.

5.24. Again, let (G,2) be a permutation group and assume Vg = < A;, Ay,..., A, >,
where the matrices A; are the matrices of the standard basis. We know that V¢(G, Q) is
closed with respect to matrix multiplication. In particular, this means that the product
AjAj € Ve(G,Q) for all 1 < 4,5 < r. Every element of Vg(G, 2) is uniquely expressable
as a linear combination of the basic matrices. Hence,

A;AI = Z p,-ijk
k=1

are just the matrices in Vz(G, Q) which have non-negative entries. Hence, the proof of Proposition 5.21
can be considered as a more refined and more rigorous version of the reasoning in 5.6. We shall see
from our further considerations that matrix and relational languages are exchangeable in the treatment
of centralizer rings. A suitable combination of these two languages will help us to realize more vividly
the basic ideas of centralizer ring theory.
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forall 1 < 2,7 < r. The 3-dimensional tensor (Pfj)isi.g,kg is called the tensor of structure
constants of the centralizer algebra Vg(G, Q). (Here k is not an exponent but an index,
written as a superscript for better legibility.)

Note that all structure constants are non-negative integers. Indeed, since every basic
matrix is a (0, 1)-matrix, each of the products A;4; has non-negative integral entries only.
For every (s,t)-entry of A, A; there is exactly one basic matrix, say Ay, the (s,t)-entry of
which is non-zero (and therefore equals 1). This implies that

Pl = (Aid)ar.
Hence, pfj is a non-negative integer.

5.25. Let us switch back from matrix language to the language of relations in order to
obtain a combinatorial interpretation of the structure constants.

First, let us introduce a compact description of centralizer algebras. Let I'y,T'y,..., T, be
the basic graphs of Vg{@, Q). The arc sets of these graphs form a partition of 2. Let us
color the arcs of I'; with color i, 1 < 4 < r, Then, instead of [';,['5, ..., [, we can speak
of the complete colored graph T’ = I'(Vg(G, ). Each arc of this complete graph is colored
by exactly one of the colorsin {1,2,....,r}. In addition, we associate to I its generalized
adjacency matriz

A= AVelG, Q) EkAk,

where each (s, t)-entry of A is equal to the color of the arc (s,t) in I". The matrix A is per-
haps the most compact way for the description of Vg(G, §2). Note that A is independent of
what we use as the underlying set of scalars, @ or Z. Hence, A(V¢{G, Q) = A(Vz(G, Q).
For this reason, we often suppress the subscripts and denote this matrix more simply by
AV(G, Q).

5.26. Let (s,t) be an arc of color & in . This means in other words,
(Ar)se =1, (A =0 for 4#k.

Let us select two colors i and j and let us consider the number 'y,"] of walks (s,z,t) of
length 2 from s to t which use an arc (s, z) of color 7 followed by an arc (x,1) of color
j- It follows immediately from the rules for matrix multlpllcatlon that 'y|_,, is equal to the
(s,t)-entry in A;A;. As shown in 5.24, this entry is p,_, Hence, 'yi] = p,_,, and we see that
the structure constant p” is equal to the number of triangles (s,z,t) wh1ch occur in the
colored graph I having a fixed "basic” arc (s, ) of color & and having ares (s, z) and (x,t)
of color 1 and color j, respectively. This number is independent of how we select the arc
(s,1) of color k, therefore, it is an invariant of the set of arcs of color k in I,

The combinatorial interpretation of the structure constants given here is sometimes very
helpful for the computation of the tensor (pi-“]) which belongs to a given centralizer algebra
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5.27. If (G,%?) is a transitive permutation group then, by convention, the relations
in 2-0rb(G, Q1) are numbered using the index set {0,1,...,7 — 1}. Also by convention,
@, = {(4,4)]i € Q}, the diagonal of Q* which is the only reflezive 2-orbit in 2-orb(G, ).
The arc set of the corresponding basic graph consists of loops attached to all the vertices
in €. According to this convention the entries of the adjacency matrix A of the colored
graph I' range from 0 to r — 1.

Figure 5.5.

5.28. EXAMPLE:
Let us consider the regular pentagonal prism (see Figure 5.5). The corresponding hydro-
carbon was synthesized [EatOBS81]. It is well-known that its complete symmetry group is
Dy, (see, e.g. [Ham62]) and has order 20. This point group has an isomorphic represen-
tation as a transitive permutation group of order 20 acting on a set of cardinality 10. It
is the automorphism group of the graph associated with the pentagonal prism Pyg. Let

0 ={1,2,3,4,5,6,7,8,9,10},

G =< g1, 92, g3 > where

g1 = (11 2,3,4, 5)(6! 78,9, 10)7 2= (27 5)(3$ 4)(77 10) (Bv 9)»

g3 = (1,6)(2,7)(3,8)(4,9)(5,10).
The reader will be able to check that

2-0rb(G, ) = {Dg, B, B2, 3, Py, B5}

where all relations ®;, 0 < ¢ < 5, are depicted in Figure 5.6.
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Figure 5.6.
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The graph Py, is invariant with respect to (G, (), hence its arc set is a union of 2-orbits,
@, U ®;. The adjacency matrix A = A(V(G,Q)) can be immediately obtained from the
2-orbits in Figure 5.5:

R RS O ks U1 O W
B B OO O s QO
(SR R IS B N JC R S
k=l - I T N U R R
O = b0 bo ke O R O OT

BT U L= RN = O
L N e L =
O s W b OV 0 = O = o
W R OO = O NN
Wb OO s O = DN

The structure constants pfj are obtained by a simple two-step operation. First each
product of two basic matrices is written as a linear combination of basic matrices, using
Figure 5.6. Thus applying A; two times is equivalent to walking from vertex 1 to vertex
2 and thence to vertex 3 or back to 1 (@), or from 1 to 5 and thence to 4 or back to 1.
So 1 is arrived at from 1 twice (®p), 3 and 4 are reached once (®,). This is written as

A? =24, + Ay
Similarly,
AjA; = AxA; = A + A,
AlAs; = AzA; = Ay,
A1As = AA) =243+ A4;,
AlAg, = AsAz = Aq <k Aﬁs

A4y = AgAd = A, etc

Second, by definition the pf;’s are the coefficients in this system of equations, i.e.

=2 p}; =0, P?l =1, Pgl :qu =ph =0,
sz =0, P:g =P?z =1, P?z =P1112 = P?Q =0,
pho=pk, for 0<E<5, et

In the same manner all other constants can be calculated. (We shall return to this example
in Section 9). !

1The notions of centralizer algebra and centralizer ring of a transitive permutation group can be
introduced using double cosets of the group G with respect to its stabilizer G, of an arbitrary element
z € Q. In this representation the centralizer algebra is well-known in algebraic combinatorics as the
Hecke algebra. For more details see [FarKM94].
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6 Cellular algebras

6.1. Let W C M, (@) be a matrix algebra over € such that the following requirements
are fulfilled:

(CAl) Considered as a linear space over (' the algebra W has some basis
Ay, Ay, ... Apy where A;, 1 <1<, is aset of (0,1)-matrices;

(CA2) "1 Ai = Jy, where Jy, is the matrix of order n all entries of which are

equal to 1;
(CA3) Foreveryi€ {1,2,...,r} thereis an ¢ € {1,2,...,7} such that A! = A,.

Then W is called a celiuler algebra of rank v and order n with standard basis A;, Ay, ..., A,
and we shall indicate this fact by writing

W= Sl A .

Most frequently only the case of cellular algebras with unit element is considered, i.e.
algebras that fulfill the additional requirement:

(CA4) The unit matrix I belongs to W.

However, we stress that cellular algebras which do not satisfy (CA4) are also important
for describing and analyzing combinatorial structures.

A ring of matrices which is closed with respect to multiplying matrices by scalars from Z
is called a Z-module. If W is a cellular algebra then its intersection with M,(Z) (the set
of all matrices of order n with entries from Z) is a Z-module. Since this ring contains the
standard basis A, A,, ..., A,, it also fulfils the axioms (CA1) - (CA4), provided that in
(CA1) the field € is replaced by the ring Z. A matrix ring with this property is called a
cellular ring with or without unit element, depending on the validity of (CA4). We shall
use the same notation
W= <A, Ag... A >

for the cellular algebra and for the cellular ring with the same standard basis. As men-
tioned in the previous section, if we restrict ourselves to a combinatorial point of view
(and spectral properties of matrices from W are not required) then it is sufficient to con-
sider cellular rings only.

Double cosets (without reference to Hecke algebras) and their use in group-theoretical models are also
known in mathematical chemistry, see e.g. [BroHM74], [RucK83], [BroGW83], [DugKMU84|, [Has85).
An excellent presentation of the double coset approach within the framework of algebraic combinatories
can be found in [Ker91].

We intend to discuss the interrelations between 2-orbits of permutation groups and double cosets in
one of the subsequent papers in this series.

In a purely combinatorial approach like here the use of double cosets does not give any essential
advantages. For this reason we avoid their use in the current presentation.
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A cellular algebra W is called a cell if there exist numbers ny,...,n, such that in each
basic matrix 4, 1 < ¢ < r, the number of ones in each row is n;. In the case of cells with
unit, by convention, we set Ag = I,, and use the index set {0,1,...,r — 1} for numbering

the basic matrices.

6.2. Let (G,Q) be an arbitrary permutation group. The centralizer algebra (ring) of
(G,12) is an example for a cellular algebra (ring), respectively. Certainly, (CA1) - (CA4)
are satisfied for any centralizer algebra (ring). However, it is not true that every cellular
algebra coincides with the algebra Vg(G,2) for a suitable group (G, Q). A few examples
will be considered in the course of our presentation.

6.3. The term "cellular algebra” goes back to the Soviet School of algebraic combina-
torics. It was introduced by B. Ju. Weisfeiler and A. A. Leman in [Weil.68], see also
[Wei76]. One of the pioneers in the application of centralizer rings of permutation groups
was D.G. Higman, see his classical paper [Hig64]. Higman called matrix algebras which
satisfy (CA1) - (CA4) coherent algebras (see [Hig87] or [BanI84] for a more modern pre-
sentation). Nowadays, in western literature the term coherent algebra is widely adopted.
The particular case of coherent algebras which are equivalent to cells with unit is well-
known in the literature as BM-algebras (Bose-Mesner algebras) of association schemes
(see e.g. [Banl84]).

The main lines of the historical development of all these and other notions will be dis-
cussed in Section 10.

6.4. In this paragraph we consider a non-standard matrix multiplication which is called
Schur-Hadamard multiplication. Let A = (a;;) and B = (b;;) be two square matrices of
order . and define

Ciy = (I"jbij, 1 S Z,] S n.
The matrix €' = (¢y) is called the Schur-Hadamard produet of A and B and is denoted
by C = Ao B.

It turns out that every cellular algebra (ring) is closed with respect to this componentwise
multiplication of matrices. To see this let us look at the Schur-Hadamard products (S-H
product for short) of basic matrices. Let W = < A, Ay, ..., A, >. It follows immediately
from (CAl) and (CA2) that 4;0 4; = A;forall 1 < i < rand 4;04; = O for all
1 <1i4# j <r, where O denotes the matrix of order n all of whose entries are equal to 0.
Now, taking into account that every element of W is representable as a linear combination
of the matrices A, Ao, ..., A,, we immediately see that W is indeed closed with respect
to o.

The closedness of W with respect to S-H-multiplication is, in our opinion, the most es-
sential additional property by which cellular algebras are distinguished from ordinary
matrix algebras. All advantages of using the two kinds of multiplications within one al-
gebraic structure become apparent in the so-called duality theory for commutative cells
(see [BanI84]). Within the frame of our elementary exposition we shall demonstrate only
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a certain simple combinatorial application of the S-H-multiplication which is nevertheless
rather impressive.

6.5. Schur - Wielandt principle. Let W = <A}, Ay,..., A, > be a cellular algebra of
order n and let X = (x;;) € W. For arbitrary v € @ define Y = Y (v, X) (cross-section
of X by ) by
v if my=v,
Y97 0 otherwise.
We have Y{v, X) e W for all v € @

Proof. If v = 0 or if v is not equal to some entry of X then Y (v, X) = O € W. Therefore,
let us consider the case where v # 0 equals some entry of X. Assume v = =z, Let k;
be such that the basic matrix Ay, satisfies (A, )y = 1. Define Z; = X o A;,. We have
Z; € W. Since Z; has non-zero entries only on those places where Ay, has 1’s, we must
have Z; = vAy,.

Now, continue with the matrix T} = X — Z; which also belongs to W. T} has the same
entries as X on all positions except those which are occupied by 1's in Ag,. If at least
one entry in T equals v then we apply the same procedure to 77 instead of X thereby
obtaining matrices Z, = vAg, and T, = T} — Z,. This process will terminate after some
finite number g > 1 of steps, and we obtain finally

Y(U,X) = Z]+Zz+...+Zq=
= U(Akl +Ak2+...+Akq).

<

6.6. Corollary. Under the same assumptions as in 6.5 the following assertion holds for
allv e @, v # 0: For every matriz X € W there exists a subset K = {ky, ka,....k,} of
{L,2,...,rv} such that

1
2YmX) = 3 A
b KEK

6.7. Let Q@ be aset and R = { Ry, Ry,..., R, } and 8§ = {5, 5,..., S, } be two parti-
tions of 2. R is called finer than S if every class of S is a union of some classes of R. In
this case & is also called coarser than R.

The join T = RV S of two partitions R and § of a set () is defined as the finest partition
of  which is coarser than R and coarser than §. It is obvious from the definition of T
that if R; N.S; is non-empty then R, U S; must be completely contained in some class
Ti of T. Hence, for finding the classes of 7 we may use the following auxiliary graph
Il =(V,E) where V = {2, ..., 2, }U{y1,...,y;} and where F is a set of undirected edges
{z;,5;} defined by {z;,3;} € £ if and only if B;N S; # 0. The vertices z, in I correspond
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to the classes R;, the vertices y; correspond to the classes S;. Now, let IT,, ..., II, be the
connected components of [I. Then 7 has classes Tj, 1 < k < ¢, where

o= U = U S

zi€l v5EN

To have an example, consider the two

T T, I3 T4 Ty partitions
R = {E}’ {b!c}| {d#e}’ {flg}r {h}
and

§ = {a,b}, {c,h}, {d, f}, {e, g}

of {a,b,c,d,e, f, g, h}. The correspond-
ing graph IT is depicted in Figure 6.1.
IT contains two connected components.
Figure 6.1. Hence, R V S consists of two classes T}
and 75 where

£ Y2 Ys Ya

Ty = {a,b,c,h} and T, = {de,f, g}

6.8. For A € M, (@) define the relation supp(A) on the set Q@ = {1,2,...,n} by
(2,7) € supp(A) & a;; # 0.

The relation supp(A) is usually called the support of the matrix A. For the cellular algebra
W= <Ay, Ay, ..., A > let R; = supp(A;), 1 < ¢ < 7. The relations R; are called basic
relations for W, the graphs ({1,2,...,n}, R;) are called basic graphs. Due to (CA2), the
basic relations define a partition of 2.

Let W) = <Ay, Ay, ..., A, > and W, = < By, By, ..., B> be two cellular algebras of the
same order n. Then we may consider their usual set-theoretical intersection Wy N W;,. To
find out what Wy N W, is like consider the following procedure:

(i) construct the basic relations Ry, Ry, ..., R, and 53,53, ...,5, for W, and W, respec-
tively;

(il) construct the join T = {T},T%,..., Ty} of the partitions R = {R(, Ry,..., R,} and
S = {51, 55,..., 5.} of (2.

(iii) find the adjacency matrices C; = A([';), [ = (L, T;), 1 <1< ¢;

(iv) construct the linear subspace <Cy,Cs,...,Cy> of M, ().

6.9. Proposition. Let W, = <Ay, Ay, ..., A.> and Wy = < By, By, ..., By> be cellular
algebras of the same order n. Then W, N'W, is also a cellular algebra, and we have
W NW, = (Cl.CZ,”,,C¢> .

Proof. The first part of the statement is rather evident. Indeed, the proof is absolutely
trivial if the following fact is considered: a subspace W of M, (@) is a cellular algebra if



W is closed with respect to usual matrix multiplication as well as to Schur-Hadamard
multiplication, if it is closed with respect to taking the conjugate transposed of its matri-
ces, and finally if it contains the matrices J,, and T, (in the case of (CA4)). Since each of
the algebras W, and W, has these properties, clearly, W), N W, possesses them, too.

To complete the proof we have to check that W, N W, equals the linear span of the
matrices C, Cs, ..., Cy. This follows from the definition of the join of the two partitions

R and §. By definition, for each k, 1 < k < ¢, there are subsets Uy C {1,2,...,r} and

Vi €{1,2,...,s} with
Tkz U R;: U SJ‘.

ety JEVR
Hence
G=% A= B,
i€l i€V

This implies C, € Wi NWs, 1 <k < t. Hence <Cy,...,Ci>C Wi N W,
On the other hand, if A € W) N'W,, then there exist coefficients A;, u; € @ such that
L
A= ZA;A;‘ = ijﬂj.
i=1 i=1

Because of A = Ao J and J =31 A; = i, B; we find

T s $ r

A=33 N(AioBy) =3

i=15=1 =14

(A 0 By).
1

Obviously, A; o B; # O implies A; = p;. Let us use once more the auxiliary graph
Il = (V, E) defined in subsection 6.7 for the partitions R and S. Note that B; N S; # @
if and only if 4; o B; # 0. Therefore, it is clear that A; = p; whenever x; and y; belong
to the same component T of II. Hence, A; = g, for all (i, ) € Uy x V.. Write v for this
common value of A; and p;, which depends on & only. Then

A=Y ¥ )\,-(A,—oB,):Z’:VkC,,.

=1 )eUrx Ty k=1
This proves Wy N W, C <Cy,...,Cy> . o

6.10. EXAMPLE:

Consider the graph I in Figure 6.2, which consists of the vertices and edges of an octa-
hedron. The permutations g = (2,3,4,5) and h = (1,2, 3)(4, 5,6) are automorphisms of
T. Let us consider the cyelic groups G =< g >= {g,¢%,¢%,g' = ¢} and H =< h >=
{h k. h® = e} acting as permutation groups on the same set Q = {1,2,3,4,5,6}. Let
Wy = Ve(G,Q), Wa = Vg(H, Q). These two cellular algebras (which are also centralizer
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algebras) are represented by the following two adjacency matrices of the corresponding
colored graphs:

1 4 4 4 4 5 123 4 5 6
6 2 7 8 9 10 3126 4 5
A1=6927810 4,231 5 6 4
6 8 9 2 7 10| 789 12 10 11
6 7 8 9 2 10 9 7 8 11 12 10
11 12 12 12 12 3 8 9 7 10 11 12

Here we use the agreements about notation which were established in 5.8, by coincidence
both algebras have rank equal to 12. Using the procedure described in 6.8 we obtain the
adjacency matrix A of the intersection Wy NW; :

2

L BB BD
BN W R =

B OB B BN
B B = B WO B
B =R W N
RN N W

It is well known that |Aut(T')| = 48 (see also Example 7.4), and it is easy to see that
W[ n WQ = Vw(Aut(F), Q)

6
Figure 6.2,

Note that, according to the convention in 6.1, we have to use finally the index set 0, 1,2
instead of 1,2,3. This final step of the procedure is here omitted.

In our opinion, the result just obtained is rather impressive because the partition of Q2
into the 2-orbits of the relatively large permutation group Aut(T') is obtained by a purely
combinatorial procedure based on "local” information about the symmetry of the graph
I'. We shall return to this example later.

6.11. Let Wy and W, be cellular algebras of order n, and let W; € W,. Then W), is
called a cellular subalgebra of Ws.



Let A € M,(€) be arbitrary. The minimal cellular algebra which contains A as an element
is called the celiular algebra generated by A and will be denoted by << 4 >>. This
definition makes sense since due to Proposition 6.9 the intersection of cellular algebras is
again a cellular algebra and << A >> can be thought as the intersection of all cellular
subalgebras of M,,(€) which contain 4. The set C(A4) of all such subalgebras is non-empty,
because M, (@) = Ve({e}, {1.2,...,n}) € C(A). Since the set of all cellular algebras of a
given order n is finite, the set C(A) is finite. Hence,

<<d>>= [ W
WeC(A)

indeed determines a unique cellular algebra.

At the moment we do not want to introduce and discuss algorithms for constructing
<< A >> for any given matrix A. There is such an algorithm which is well-known as
Weisfeiler-Leman stabilization (WL-stabilization for short), see [Weil.68], [Wei76]. A
careful discussion of this stabilization procedure will be the subject of a forthcoming pa-
per in our series. Here we will only demonstrate some examples where << A>> can be
found using certain tricks mainly based on the Schur - Wielandt principle.}

6.12. EXAMPLE:
Let T' be the graph in Figure 6.3 and let A = A(') be its adjacency matrix. Find
W=<<A>>.

2 3 4
Figure 6.3.
We have
g1 %1
1000
e 1000
1000

'The definition of << 4 >> can be interpreted to include validity of axiom (CA4) or not. Here we
always assume that (CA4) is satisfied.

In the same manner as for a single matrix A a cellular algebra << Ay, Az,..., Ax >> generated by
matrices Ay, Az, ..., Ag is defined. Clearly, if the matrices Ay, A3, ..., A, form a standard basis of W,
then << Ay, Az,..., A, >> =< A5, 4s,..., 4, >=W.
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All we know at the beginning is that 4, Iy, J; € << A>> . Since << A>> is a vector
space also

A=g-L-A=

oo oo
—_——0 O
-0 O
O == O

must belong to << A>> . Now, since << A >> is closed with respect to matrix multi-
plication also

0000
02 X 1
0121
0112

are members of << A>>. Applying the Schur - Wielandt principle we find the following
two elements of << A >>:

1000 0000
1., 0000 s Y
Bi=3%lA) =g g g | 2d B=ghld)=|( ;1
0000 000 1

Redefining By = A, By = A we get a set of four (0,1)-matrices By, By, B; and B, with
mutually disjoint support which sum up to J;. However, this set is still not a basis for
<< A>>, since << A>> has to contain products B;B; and B;B; for all i, = 1,2,3,4.
In particular,

B\B; = B3B, =

(== — -}

0
1
1
1

cCoeo
cocoo

i e 0
000 0
000 {’ 0
000 0

have to be members of << A >>, resulting in a "desymmetrization” of the matrix A.
This gives a new set of five matrices

C, = By,
Cy = By,
Cy = B4,
Cy = AB,,
Cs = By,
which is the desired basis for <<A>> . Indeed, all matrix products of the form C;C; are
in <C,...,C5> as can be seen from the following table of products:
Ci |G Cy Cy Cs
G |G| O Cy O 0O
Cz O Cg 0 C.| 05
Gy | O | Cy o] 3C, 2C,
Ci||Ci| O|Ca+Cs o] 0]
Ci || O|Cs (0] 2C | 2C, +Cs
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This proves already that <Cj,...,Cs> is a matrix algebra in the usual sense. Moreover,
the C; have mutually disjoint support. Thus <C}, ..., Cs> is closed with respect to S-H-
multiplication. Since Cf = C), C} = Cy, C§ = Cy, C} = C3, C! = Cs this space is also
closed with respect to taking the transpose. Finally, J; = C1+Cy+C3+Cy+Cs. Therefore,
<Cy,...,Cs > is a cellular algebra. By construction, A € <Cy,...,Cs > C << A >>.
Hence, <Cj,...,Cs> = <<A>>, We have also I, = C1 + C3 € << A>> .

This simple example was inserted in order to demonstrate that application of the Schur—
Wielandt principle can simplify the computations for finding << A >> . Moreover, the
example shows that << A >> may contain antisymmetric basis elements even if A itself
is a symmetric matrix. Indeed, in our case the subset of all symmetrical matrices from
<< A >> does not form a cellular algebra. As we shall see in one of the next papers
one of the advantages of the WL-stabilization is that from the beginning this procedure
automatically performs steps equivalent to ”desymmetrization” and application of the
Schur-Wielandt principle, thus reducing the number of necessary iterations.

6.13. Let W= < A}, Ap,..., A, > and W = < By, By,..., B, > be cellular algebras of
order n. Let W' be a cellular subalgebra of W. In this case s < r, and there exists a
partition @ = {Qy, Qa, ..., Qs} of the set {1,2,...,r} such that

forall j € {1,2,...,s}.

For a given cellular algebra W and a cellular subalgebra W' the partition @ will be called
the basis partition. A "naive” approach to the description of all cellular subalgebras of a
given cellular algebra W (see [FarK91], [FarKM94)) is based on a preliminary selection
of subsets of {1,2,...,7} (so-called "good” subsets) which satisfy certain necessary con-
ditions to be a member of a basis partition. Then all possible partitions of {1,2,...,r}
consisting of " good” subsets only are produced and examined. A program implementation
COCO of this approach which was realized in [FarK91] shows good efficiency for cellular
algebras of rank up to 30.

6.14. A cellular algebra W =< Ag, Ay,..., Ag > is called commutative if the matrix
multiplication in W is commutative, i.e. if for all 4,8 € W we have AB = BA. It is
easy to see that if all basis matrices 4;, 0 < ¢ < d, are symmetric then W is commutative.

6.15. EXAMPLE:

Let @3 be the graph of the 3-dimensional cube which is depicted in Figure 6.4. Tt is
well-known (see e.g. [KILiPR88]) that Aut(Q3) ~ Sy % S, where S; x S, is the direct
product of the symmetric groups of degrees 4 and 2, |y x S;| = 48.* Every automorphism
of @; has an interpretation as rotation or reflection of the 3-dimensional space, such that
in case of (3 the sets of "geometrical” and of ”combinatorial” symmetries coincide.

1~ is the sign for the isomorphism of groups, see {Hal69}, [Bis73].



Let = {0,1,2,3,4,5,6,7}, G = Aut(Q3), then 2-orb(G, ) = {Rq, Ri, Ry, R3} where
for two vertices z,y € §2 the pair (z,y) € R; iff d(z,y) = i. Here d(z,y) is the distance
between z and y in the natural metric of the graph @3, i.e. the length of the shortest
path between = and y.

We find Wy = Vg(G, ) = < Ag, Ay, As, A3 > where A; = A([Y), [ = (QR;), i €
{0,1,2,3}. In particular, Iy = Q3. One can easily check the following part of the multi-
plication table for the commutative centralizer algebra W (the trivial information on the
matrix Ag = Iy is omitted):
Al = 3Ag+2A4,,
AjA; = 24, +34;,

AIAS = A?:

Ag = 3A+2 Az,
A4y = A,

AL = A,

Let us examine all three non-trivial partitions of {1, 2, 3} as candidates for basis partitions
of cellular subalgebras of Wy. Let W, = <Ay, A, As + A3> . This subspace does not form
a subring because A? cannot be represented as linear combination of Ag, 4; and A, + Aj.

0 1
Figure 6.4.
Let W, = < Ay, A1 + Aa, A2 >. Here every test is successful, including
(A) + A3)? = 4A5+44,,
(A} G- Aa) Ay = 3A+3A4;
This means that W is a cellular subalgebra of W;. In the same manner we check that
Wy = < Ag, A1 + Ay, A3 > is a cellular subalgebra of W,. Altogether there are exactly 4
cellular subalgebras of W :
Wh, W, Wy and Wy = < Ay, 41 + Ay + A3> .
The subalgebras W, and W are called trivial or improper subalgebras.

!For commutative cellular algebras W there is a more efficient method for finding all cellular subalge-
bras which is based on a certain duality theorem which involves spectral properties of the matrices in W



7 Galois correspondence between permutation groups
and cellular algebras

7.1. Let I = (€, R) be a graph with adjacency matrix A. The cellular algebra << A4>>
generated by A is also called the cellular algebra generated by ', or more simply, just the
cellular algebra of I Sometimes we shall denote it also by W(I'). In this notation no
reference is made to A.

In this section we want to discuss how one can find Aué(I") if W(I') is known. In general,
W(T) does not allow to determine Aut(I") efficiently, i.e. with only a few computational
steps. However, there are many favorable cases where the knowledge of W/(T') leads more
or less immediatly to Aué(I). In particular, this is the case when W(T') contains the ad-
jacency matrices of other graphs the automorphism group of which is known or is easier
to determine, or when W(T') is even generated by one or more of such graphs. Note that
W([) may have many different generators. In order to be able to exploit the information
given by W(T"} exhaustively we must be able to compare cellular algebras and to find al-
ternative generators, and sometimes we must even simultanously look at cellular algebras
which are not generated by a single graph but only by two or even more graphs.

7.2, Let us start with a very simple case. Given an undirected graph I' = (2, R) its
complementary graph T' = (Q, R) is defined by the complementary edge set

R={{zy} : z#yr{z,y} €R},

ie. [ is loopless and has an edge exactly where I' has no edge. To have an example
look at Figure 7.1. The right part of this figure, consisting of two components, is the
complementary graph of the connected graph on the left side. Instead of complementary
graph we say also shortly the complement of I'.

If A is the adjacency matrix of I" then we get the adjacency matrix A of [’ by exchanging
0 and 1 in the non-diagonal positions of A. More precisely, assuming [ = n, we have
A=J,~ I, — A. This shows that A e<<A>> . Clearly, 4 = A.

It follows from the definition of an automorphism that Aut(T") = Aut(T). Since A € W(D),
we have W(I') C W(T). Since A € W(T), also W(T') € W(T) is true. Hence, W(I') =
W(I), ie. Aand A are different generating elements of W(I').

It may happen that replacing a graph I by its complement T will simplify the task of de-
termining Aut(I') substantially. We are going to illustrate this by the next two examples.

and the so-called second standard basis {see e.g. [Banl84]). The discussion of this method lies beyond
the purpose of this paper. For the main criterion for the existence of a cellular subalgebra in a given
commutative cell, the Bannai-Muzychuk criterion, we refer to the papers [Ban91] and {FarKM94].



7.3. EXAMPLE:
Let T be the graph in the left part of of Figure 7.1. Find Aut(T).

[ is a regular graph of valency 4 with 7 vertices. [ is also a regular graph of smaller va-

lency 2. It is depicted in the right part of Figure 7.1. Evidently, I' = C3 U Cy. (Remember
that C,, denotes the undirected cycle on n vertices.)

Figure 7.1.

In 4.32 we have found that Aut(C,) = D,, the dihedral group of order 2n, acting as a
transitive permutation group of degree n. (Note that the notation is different from the
traditional notation in chemistry or crystallography). I’ consists of two non-isomorphic
connected components. We may therefore apply Proposition 4.28 with the result that

Aut(T") = Aut(F') = D3 + D,.
Hence, Aut(T') is an intransitive permutation group of degree 7 and order 48.

7.4 EXAMPLE:
Let T be the graph in Figure 7.2. Find Aut(T').

<]

Figure 7.2.



Here the complemcnt_f‘ is a disjoint union of edges. Hence, we may use Proposition 4.30
in order to find Aut(T'). Thus,

Aut(T) = Aut(T) = 552 5s.

This is a transitive permutation group of degree 6 and order 48.

3 5 e o 3 5
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2 8 2@ @3 2 8
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‘e P 3 s 3 5
1 7 1 7 1 7
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Figure 7.3

7.5. EXAMPLE:

Let ' = (2, R) be the cubic graph shown as graph 'y in Figure 2.3 and let G = Aut(l')
be its automorphism group. We would like to describe (G, ) in its action on the vertex
set Q={1,2,3,4,5,6,7,8} of I. We can do this conveniently by using some information
available from the cellular algebra W = W(I') generated by .



Let us classify the edges (z,y) of I’ according to the number of joint neighbors of the
endpoints z and y in ['. We get

R, = {(z,y) € R: z and y have no joint neighbor },

R, = {(z,y) € R: z and y have exactly one joint neighbor },
Ry = {(r,y) € R: = and y have exactly two joint neighbors }.

The same classification for non-edges of I' gives three more relations
Ri={(z,y) ¢ R : = and y have no joint neighbor },

Rs = {(z,y) ¢ R: z and y have exactly one joint neighbor },
R = {(x,y) € R: z and y have exactly two joint neighbor }.

Each relation Ry, Ry, ..., Rg is a symmetric binary relation on . Let I'; = (2, R;) be the
graph with vertex set {2 and edge set R;, 1 <1 < 6, and let A; = A([';) and A = A(T)
be the adjacency matrices of I'; and I, respectively. In subsection 7.6 we shall prove that
A; € W. The graphs T’ and I';, 1 <1 < 6 are depicted in Figure 7.3.

In Figure 7.3 some automorphisms of I' are immediately visible as ” geometric” symmetries
of T, for instance, g, = (1,7)(2,8)(3,5)(4,6) and g = (1,2)(3,4)(5,6)(7,8). It is easy to
check that g1g; = g201. Thus G' =< gy, g2 >= {e, g1, 92, 192}, is a group of order 4, and
G'<G.

Each automorphism of I evidently has to preserve each of the relations R, ..., Rs. There-
fore, G < G, where G = N&_, Aut(T;). For this reason we temporarily will aim at a new
goal: to find the permutation group (G,). After that we will try to discover the group
(G, Q) itself. Considering I';, for example, we see that Aut(I';), and hence G, preserves
the subsets ' = {1,2,7,8} and Q" = {3,4,5,6}. Taking into account that already G'
acts transitively on €’ and Q" we get that ' and " are orbits of (G, Q).

Consider the subgraphs of 'y, T'y, T's which are generated by the subset Q". To find these
subgraphs easily, in Figure 7.3 the vertices of 2" in these graphs are marked by empty
circles. Since G has to preserve these subgraphs, the action of G on " may include only
permutations from the permutation group (H", ) where

H" = {e", (3,4)(5,6), (3,5)(4,6), (3,6)(4,5)}

(compare with Example 5.11).

In the same manner we see that the action of G on Q' may include only permutations
of (H', ) where H' =< (1,2),(7,8),(1,7)(2,8) > . (H' is a group of order 8 which is
isomorphic to the dihedral group Dy.)

Combining the above two informations we get that G < H = H' + H". H is an intransi-
tive permutation group of order 4 - 8 = 32 acting on (2.



On the next step of our reasoning we observe that in fact k" = (3,5)(4,6) € H” is not
an automorphism of 'y (more exactly, ¢’ + A" = (1)(2)(3,5)(4,6)(7)(8) does not belong
to Aut(T';)). Therefore, G is a proper subgroup of H. This 1mphes |H : G| > 1, such that
due to the Lagrange Theorem (see 4.2) we get |G| < 16.

Just now we are rather close to the description of the desired group G. The remaining
part we do by counting arguments. Consider the permutations

hy=1(1,2), hy=(7,8), hs=(3,4)(5,6), hs=(1,8)(2,7)(3,5)(4,6).
It is easily checked that all of them are automorphisms of I'. Hence,
G =<hy, hy, hy, by >< G

Further, <hi, h, by > is a group of order 8 which does not contain hy, hence, by the same
argament, as before, we have |G| > 16. Now together with |G| < 16, since G < G < G,
we have |G| = |G| = |G| = 16. Therefore G = G = G. Thus, G is a permutation group of
order 16, which acts transitively on each of the sets £’ and Q.

7.6. Cellular Ezpressibility

Let us have another look onto the strategy which was used in Example 7.5 in order to
get the automorphism group G of a given graph I'. We started with the relation R which
describes the edge set of I'. From R we derived more and different relations R,,..., Rs
which are preserved by every automorphism of T'. The corresponding adjacency matrices
Ay, ..., Ag belong to W. We suggest the reader to check that all of them can be obtained
from A by means of the operations introduced in Section 6. Indeed,

A = Y(0,4%)0

Ay = Y(1, A’) A
A3 = Y(2,4% 04,
A, = Y(0,4%)0 4,
A; = V(1,40 4,
As = Y(2,A%) 0 A

In acase like this, when A; €<< A>>, we say that the matrices 4;, 1 < i <, are cellularly
expressible via the matrix A. Likewise we say that the graphs I'; = (£, R;) are cellularly
ezpressible via the graph I

Cellular expressibility of graphs I';, 2 € {1,...,s} via a graph " implies that each auto-
morphism of I is also an automorphism of each of the Ty, i.e.

Aut(T) C ﬂ Aut(Ty).

=1



Suppose that we are able to show that also I' is cellularly expressible via I';, 1 < i <3,
which means that 4 €<< A,,..., 4, >>. Then each joint automorphism of the I';’s is
also an automorphism of ', and therefore

() Aut(T;) € Aut(T).
i=1

In this case we finally get
Aut(D) = (] Aut(T;).
i=1

This situation happens in the above example, where A = A; + A; + A;. Hence, we could
have known in advance that in fact G = G. The analysis of the group G is therefore
sufficient for getting the desired group G. This observation motivates the definition of
the automorphism group of a cellular algebra which is given in the next subsection.

7.7. To every cellular algebra W = < A4,, Ay, ..., A, > we associate its automorphism
group Aut(W) which acts on the set Q = {1,2,...,n}. We define

Aut(W) = [ Aut(R;),
i=1
where {Ry, Ry, ..., R, } is the set of basic relations (see 6.8) of W.

According to this definition, an automorphism of W is a permutation of £ which pre-
serves all the basic relations, i.e. g is an automorphism of W if and only if g is an
automorphism of each basis graph I'; = (2, R;), 1 < i < r, Therefore, it is evident that
Aut(W) € Aut(T;). It may happen that equality holds in some of these inclusions, i.e.
that Aut(W) = Aut(T;) for some [';. It may happen also that the inclusion is strict for
all basic graphs I';. Let us illustrate this fact by looking at some simple examples.

S s S5
Figure 7.4

7.8 EXAMPLE:
Consider the undirected cycle Cs in Figure 7.4. This is an undirected graph consisting of
the vertex set £ = {1,2,3,4,5,6} and the symmetric relation S = RU R' where

R=1{(1,2),(2,3),(3,4),(4,5),(5,6),(6,1)}.



Let P denote the adjacency matrix of the graph (2, R). Then, evidently, the adjacency
matrix of C is A = A(Cs) = P + P Consider also the symmetric relations S* and §" in
Figure 7.4. It is easy to find by inspection, that each of them is invariant with respect to
Ds, the automorphism group of C. Just remember that this group consists of 6 rotations
and 6 reflections (discussed in 4.31 and 4.32). The adjacency matrices of S' and S” are

B=A(S) =P+ (P, C=A(S") = P*+ (P".

Using this and the fact that PP* = P® = J¢, we can easily check the following "table of
products”:

I A B C
111 A B C
A|A|21+B | A+2C | B
B|B|A+2C | 2I4B [ A
Cc|C B A I

Here the letter I stands for Js. Note that I is the adjacency matrix of the identity relation
idg on the set 2.

We have 1 + A+ B + C = Jg. No two of the matrices I, A, B and C have a joint positive
entry. According to the above table the product of any two of them is a linear combina-
tion of I, A, B and C. This proves that {I, 4, B, C} is the standard basis of some cellular
algebra W (see 6.1). Since A € W, we have W(A) C W. However, B = A% — 2] and
C = A* — 3A. This implies B € W(A) and C' € W(A). Therefore, W C W(A). Hence,
W = W(A) and idg, 5,5, 5" are the basic relations of the cellular algebra W, which is
generated by A.

We have,
Aut(idg) = S, Aut(S) = D, Aut(S") 2 Ds, Aut(S") 2 D,

Therefore,
Aut(W) = Aut(idg) N Aut(S) N Aut(S") N Aut(S") = Aut(S) = Ds.

The relation S’ is invariant with respect to ¢’ = (1)(2)(3,5)(4,6), the relation S" is in-
variant with respect to g" = (1,4)(2,5)(3)(6). Neither g' nor g” belongs to Dg. Hence,
we have the strict inclusions Aut(W) C Aut(S’) and Aut(W) C Aut(S").

7.9 EXAMPLE:

Let us look again at Example 5.11 which was started already in 4.9. Consider Figure 5.4.
In the upper part of this figure 4 graphs T;, 1 < i < 4, on the vertex set = {1,2,3,4}
are depicted. Assume that I, = (2, R,), where the relations R, Ry, R3, R4, which are the
2-orbits of the group G in 4.9, are numbered in the same order as they appear in the
figure. Their adjacency matrices A; = A(R;) are



1000 0100 0010 0001
0100 1000 0001 0010
A=loorol®™=|ooo1|" 1000 %0100
0001 0010 0100 1000

Hence, V(G,Q) =< A, A;, A3, Ay >, and the four relations R;, R,, R3, R4 are the basic
relations of this cellular algebra, the centralizer algebra of G acting on .

We see immediately that A? = I;, 1 < i < 4. Further, denoting by A, the adjacency
matrix of the complement of (2, R;), we have

Q1 % 1 0011 0101 0110
- 1011 < 0011 . T, 0: 1 0 = 1001
A=l1ro1 =11 00** o101 |*%" 1001
1110 1100 1010 0110

A simple computation gives
.‘ig =2+ 2A2, Agjz = AQAZ = jg‘

Therefore, the cellular algebra << A; >> generated by A, has standard basis I, A;, A,
and is therefore a strict subalgebra of V(G, Q). A similar computation easily shows that
<< A3 >> has standard basis Ij, A3, A3, and << Ay >> has standard basis Iy, A4, As.
We therefore have to conclude that V(G, ) is not generated by a single basis graph T'.
However, some more simple computation would demonstrate that any two of the graphs
I';, 3,4 do the job, i.e.

Ve(G,Q) = << Ay, A3>> = << A, Ay >> = << A3, A4 >> .

Evidently, Aut(I'y) = Sy, Aut(T;) D G for ¢ = 2,3,4. The groups Aut(l;), i = 2,3, 4, are
isomorphic, However, their action on §2 is different. We have

(Aut(T2), ) = {e, (1, 2),(1,2)(3,4), (3,4), (1, 3)(2,4), (L, 4)(2,3), (1,3,2,4),(1,4,2,3)},

(Aut(T3), Q) = {e,(1,2)(3,4),(1,3),(1,3)(2,4),(2,4),(1,4)(2,3), (1, 2,3,4),(1,4,3,2)},
(Aut(Dy), ) = {e,(2,3),(1,2)(3,4), (1,3)(2,4), (1,4), (1,4)(2,3),(1,2,4,3),(1,3,4,2) }.
This shows that

ﬁ Aut(T;,Q) = [j] Aut(T;, Q) = {e, (1,2)(3,4),(1,4)(2,3),(1,3)(2,4)} = G.
i=2

i=1

7.10 The two foregoing examples differ in one crucial point:
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In Example 7.8 the cellular algebra W is generated by a single graph I = (Q, S) (which,
by the way, is a basic graph). The two other basic graphs I'" = (2, §') and T = (2, 5")
are cellularly expressible via I'. The automorphism group of W is (therefore) identical
with the automorphism group of .

In Example 7.9 W is not generated by a single graph. It is generated only by two graphs
out of {T's,I'3,'s}. Hence, the automorphism group of W is the intersection of any two
of the groups Aut(I'y), Aut(Ts), Aut(Ts), t.e.

Aut(W) = Aut(T')) N Aut(Ty) = Aut(Ty) N Aut(L3) = Aut(Ty) N Aut(T3.
One can easily prove that if W is generated by a set of graphs {I';,...,T',} then

Aut(W) = () Aut(r).

7.11 At this point we want once more, and now very decidedly, to call the readers atten-
tion that in this and in the previous sections we kept talking about two very particular
types of objects - "categories” of objects one would say to use a philosophical term. On
one hand we consider cellular algebras, these are collections of matrices, namely the ad-
jacency matrices of certain binary relations and their linear combinations over the field
€. We think of these adjacency matrices as representatives of combinatorial objects, i.e.
graphs, molecules, etc. On the other hand we consider permutation groups, the elements
of which make the symmetries of combinatorial objects evident. So we speak of ”combi-
natorial objects” and their "symmetries”.

For each relation R there is a group of automorphisms, i.e. a group of permutations
which leave R unchanged. For each permutation g there is a set of relations which are
left unchanged by g, i.e. for which g is an automorphism.

In Section 5 we started with a permutation group (G, Q) and looked for the set of all rela-
tions R with Aut(R) = G. We found that we may represent any such relation as a union
of certain basic relations invariant under G. These basic relations were called 2-orbits of
(G,§). After representing them by adjacency matrices and taking their linear combina-
tions with arbitrary coefficients from € we ended up with the notion of the centralizer
algebra V(G, Q), which turned out to be a cellular algebra. Hence, for each permutation
group (G, ) there is a corresponding cellular algebra V(G, Q).

In Section 6 we introduced the notion of a cellular algebra W, which is an algebra of
matrices the basic matrices of which correspond to a set of binary relations on a set §).
These relations we call the basic relations of W. Therefore, in Subsection 7.7, we naturally
came to the definition of the automorphism group of W as the group of permutations of
Q which leave all basic relations invariant. Hence, for every cellular algebra W on €2 there
is a corresponding group of permutations of £, the automorphism group Aut(W).

In fact we have two mappings
W — Aut(W),
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G — V(G,9Q),

one (denoted as Aut) which leads from a cellular algebra W to its automorphism group
Aut(W), and one (denoted as V) which leads from a permutation group (G, ) to its
centralizer algebra V(G, Q).

It is good to know the automorphism group Aut(W) of a cellular algebra W, because
knowing this group means to have quite a deal of information about the symmetry of the
relations which are encoded by the matrices of W. It is good to know the centralizer alge-
bra V(G,2) of a permutation group (G, ), because knowing this cellular algebra means
to have quite a lot of information about the action of (G, ) on the set 2.

Qur goal is now to manipulate skillfully with the above two mappings Aut and V. We
may think of the world in which we work as divided into two working places. On one
of them we work with cellular algebras, on the other place we work with permutation
groups. We may start with a cellular algebra W on one place and move to the other
place to find (G,Q) = (Aut(W),Q?). Having found this group perhaps we have forgot-
ten where we came from and may in turn ask which cellular algebra has (G, ) as its
group of automorphisms. So we may go back again to the first working place and find
V(G,§Y) = V(Aut{(W), ). Naturally, we will ask ”Is V(G,02) = W 7 The answer is ” Very
often, but not always.” Similarly, we may start with a permutation group (G,{?) and
move to its centralizer algebra V(G,(2). Having found this cellular algebra we may ask
"What is its automorphism group ? Is it the group (G, Q) 7 ” Again, the answer is ” Very
often, but not always.”

For our goal, the description of the symmetries of combinatorial objects, those cases are
the most important ones, in which the above questions are to be answered with ”Yes".
We will explain this carefully in the following subsections.

7.12. We start our explanations with a collection of statements which describe the most
important features of the two mappings Aut and V considered in the last subsection. In
this and in the following two subsections we shall assume that the set @ = {1,2,...,n}
is fixed. All groups we are talking about will be permutation groups acting on €. All
cellular algebras which appear in the discussion are supposed to be of order n. To simplify
the notation, we shall write G instead of (G, ), however, we shall keep thinking of G as
a permutation group acting on Q.

Proposition. Let W), W, be two cellular algebras of order n, and let G, H be permuta-
tion groups acting on 0 = {1,2,...,n}. Then:

(1) Wi © Wy = Aut(Wy) < Aut(Wr);

(i) H < G = V(G) € V(H);

(ii) G < Aut(V(G));
Moreover, for every cellular algebra W we have

(i) W C V{Aut(W));

(v) W = V(Aut(W)) <= W is the centralizer algebra of a suitable permutation group;
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(vi) G = Aut(V(G)) <= G@ =@,

7.13 The first statement of the above Proposition can be proved very easily. Let g €
Aut(Ws). Wy € W, means that every basic relation of W; is a union of certain basic
relations of W,. Since g leaves the basic relations of W, invariant, it leaves also all unions
of them invariant. Hence ¢ is an automorphism of each basic relation of W,. Therefore,
g € Aut(Wy). This proves Aut(Ws) C Aut(W,).

The second statement is proved similarly. By definition, the basic relations of V(H) are
the 2-orbits of H, while the basic relations of V() are the 2-orbits of G. Each 2-orbit of
G is a relation which is invariant with respect to H. Hence, it is a union of 2-orbits of
H. This shows that the basic relations of V(&) are unions of the basic relations of V(H),
which means that V(G) C V(H).

In general, when we move between working places forth and back according to the above
mappings Aut and V, then the following inclusions hold. If we start with W an one side,
then

V(Aut(W)) 2 W.

This is clear, because, by definition, the basic relations of V(Aut(W)) are the 2-orbits of
Aut(W), and since the basis relations of W are invariant with respect to Aut(W), they are
unions of these 2-orbits. Hence, W C V(Aut(W)) ((3:i) of Proposition 7.12). However, in
general, W does not contain every union of 2-orbits of Aut(W). Therfore, it may happen,
that W has less elements than V(Aut(W)) (see 7.16 for an example).

Similarly, if we start with G on the other side, then
Aut(V(G)) 2 G.

This is also clear, since the basic relations of V(G) are the 2-orbits of G. Therefore they
are invariant with respect to G. Thus, every g € G is an automorphism of V(G) ({iv) of
Proposition 7.12). However, in general, there can be additional automorphism of V(G)
which do not belong to G (see 7.15 for an example).

Now, assume that W = V(Aut(W)) for some cellular algebra Y. Then W is the centralizer
algebra of the group Aut(W). Hence, assume that W = V(G) for some permutation group
G. Then the basic relations of W are the 2-orbits of G which implies that G < Aut(W).
The 2-orbits of any overgroup of G are unions of 2-orbits of (. Hence, the basic relations
of V(Aut(W)) are unions of 2-orbits of G, which means that V(Aut(W)) C V(G) = W.
Together with statement (iv) this gives W = V(Aut(W)).

Similarly, if G = Aut(V(G)) for some permutation group G, then there is no permutation
of 2 outside G which preserves all the 2-orbits of G, i.e. the basic relations of V(G). This
means, that no strict overgroup of G has the same 2-orbits as G. By definition, this is
the case if and only if G = G® (see 5.12).



CELLULAR ALGEBRAS PERMUTATION GROUPS

V(Au(W))

Galois-closed object

Aut(V(G))

e

2-closed group

Figure 7.5

7.14. The mappings Aut and V which we have considered in the last subsections are
called Gelois correspondences (between the two types of objects, namely cellular algebras
and permutation groups). Cellular algebras W which fulfill W = V(Aut(W)) and permu-
tation groups G which fulfill G = Aut(V(G)) are called Galois-closed objects. Clearly, for
permutation groups Galois-closed means the same as 2-closed. A Galois-closed cellular
algebra is also called a Schurian cellular algebra.

Figure 7.5 illustrates what happens when we change our working place several times. The
first picture explains that we can get larger cellular algebras, if we start with a cellular
algebra, compute its automorphism group, and then compute the centralizer algebra of
this group. The second picture explains the case when a cellular algebra is Schurian.
The third and the fourth pictures explain the analoguous cases which appear when we
start with a permutation group, compute its centralizer algebra, and then compute the
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automorphism group of this algebra.

: 7.15. Let us consider a simple example of the fact that
Aut(V(G, ) is strictly larger than (G, Q). Consider the
symmetric group Sy acting on €y = {1,2,3,4} and its
subgroup

(Alty, Q) = {e, (1)(2,4, 3)# (1)(2r 3,4), (1,3,4)(2),
(1,4,3)(2),(1,2,4)(3), (1,4,2)(3), (1, 2,3)(4),
(1,3,2)(4),(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)},

consisting of 12 permutations which can be considered
as the group of rotations of a regular tetrahedron (see
Figure 7.6.)

Figure 7.6

The 2-orbits of {Alts,(24) are
R={(1,1),(2,2),(3,3), (4,4)}, Ry =04 x Qy — Ry
However, these are also the 2-orbits of (S, §2,). Hence, (Alts, Q) # (Al Q) = (S, 0y).

The example given here is only one member of an infinite series of examples. Let
g € (Alty, Q) be given. A pair (7, j),7,7 € Q is called an nversion of g, if i < j and
# > 9 holds. The reader may convince himself by investigation that (Alts, ) consists
exactly of all permutations g in (Sy, @4) which have an even number of inversions.

Consider (Sn,2,), where n € N,n > 4, is arbitrary and Q, = {1,2,...,n}. The subset
(Alty, ) of (Sn, ) consisting of all permutations in (S, £),,) which have an even num-
ber of inversions is a subgroup of S,. This subgroup is called the alternating group of
permutations of £, whence the notation Alt, (cf 5.15). One can show that its 2-orbits
are
Ry ={(1,1),...,(n,n)} (the diagonal of 2, x £2,),
Ry =Qn x Q, — Ry

Again, these are also the 2-orbits of (S,,£2,). Thus we have {Alt,, Q) # (Al Q) =
(8n, €2} for every natural number n > 3. However, (Alt;, Q) = (Alt(az),ﬂa). Thus, the

example with n = 4 we started with is just the first one in an infinite series of examples
of groups which are not 2-closed.

7.16. Next we shall demonstrate by an example that graphs can exist, the cellular algebra
of which (in contrast to naive expectation) does not fully reflect the true symmetry.
Consider a so-called Latin square ¥, which is an n x n table the n? cells of which are
occupied by n copies of the numbers 0,1,2,...,n — 1. Repetition of a number within a
row or within a colummn is not allowed. An example for n = 4 is given in Figure 7.7a.
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Figure 7.7

Let us construct the graph I'(£) of this Latin square as follows: Vertices of the graph
are the 16 cells of the square, labelled sequentially as in Figure 7.7b. An edge is drawn
between any two vertices that are either in the same row, or in the same column, or are
occupied by the same number in X. Thus in our example vertex 0 is connected by an
edge to vertices 1,2,3,4,7,8,10,12, 13. The adjacency matrix of I can be easily written,
though the corresponding diagram looks somewhat complicated.

In order to get a nicer diagram, we now consider the complementary graph to the above,
I'(Z), which is called the Shrikhande graph and denoted by Sh. Sh has edges where T has
non-edges and vice versa, e.g. vertex 0 is connected to vertices 5,6,9, 11,14, 15. Sh is still
a nonplanar graph, but it can be drawn without crossing of edges on the surface of a torus.
The plane diagram of Sh given in Figure 7.8 with vertex labels is to be understood such
that the vertices situated on the periphery of the solid-line figure are further connected
as indicated by dotted lines.

Shrikhande graph Sh N2~

WA

/\/\/\/
RVAVAWAY

A AN

AN

Figure 7.8.

The full information about the connections in Sh is given by the adjacency matrix
A = A(Sh) which is



000001100101 00T11
00000DCO0D1T 110101001
0000100101011 100
00001100101 00110
0011000001100101
1001000000111 010
1100000010010101
s |01 10000011001010
710101001 100000110
1010100100000011
01011100000010001
10100110¢00001100
011001010011 0000
00111010100100¢060
1001010111000000
11900101001 % 000600
The following observations on I are easily made by inspection of Figure 7.7.

- T is a regular graph of valency 9.

- For each edge of I' the number of neighbors common to its vertices is the same,
namely 4. For example, vertices 0 and 1 (connected by an edge) have 2, 3, 4 13 as
common neighbors.

- For each non-edge of I' the number of neighbors common to its vertices is the same,
namely 6. For example, vertices 0 and 5 (not connected by an edge) have 1, 2, 4, 7,
8, 13 as common neighbors.

Corresponding statements are valid for Sh, as seen by inspection of Figure 7.8 and of the
adjacency matrix A. It is a regular graph of valency 6, the number of neighbors common
to the vertices of any edge is 2, and the number of neighbors common to any two non-
connected vertices is also 2.

Now it is easy to show that I' generates a cellular algebra of rank 3. For this purpose,
a few matrix products are calculated. Let A = A(T') be the adjacency matrix of I, then
A= A(Sh) = J— I — A. A? and A? are easily obtained by using a well-known result of
graph theory: The entries in the square of an adjacency matrix are the numbers of walks
of length 2, that is, the numbers of neighbors common to two connected or non-connected
vertices in the respective graph (see [Har69], compare Section 5.26):

A? =91 +4A + 64,
A* =61 +24+24.
Further,
AA=A(J T = A)=AJ - AT — A2=9J — A — (9] + 44 + 6A)
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=9I +A+A) - A— (9] +4A4+6A4) =4A + 3A.
Finally, we can see that )
AAd = AA
Thus, all products of tl}e matrices I, 4, A are linear combinations of these matrices, and
therefore W =< [, A, A >=<<I'>>=<< Sh>> is a matrix algebra (see 5.19). More-
over, it is a cellular algebra of rank 3 (see axioms in Section 6.1). In other words, W is
the cellular algebra generated by I'. We have obviously Aut(W) = Aut(T).

Now the question arises whether W is Galois-closed, in other words, whether the equa-
tion W = V(Aut(W)) is true. If it is, then G = Aut(T') has exactly three 2-orbits: one
(described by I) for vertices, another one (described by A) for edges, and the last one
(described by A) for non-edges. In particular, all edges are equivalent in this case, which
means that all edges should have identical values for each possible numerical edge char-
acteristic.

A useful characteristic of an edge is the number @ of 4-vertex complete subgraphs (4-
cliques) in which this edge is involved. Let us determine ¢ of edge {0,1} and of edge
{0,10} in I'. These numbers are easily read from Figure 7.9a and 7.9b, respectively. There
the labeling scheme of vertices is the same as in Figure 7.7b, and the numbers given are
those from Figure 7.7a (the numbers by which the cells of the Latin square are occupied).
A 4-clique involving edge {0,1} is found whenever two common neighbors of 0 and 1 are
connected by an edge. Common neighbors of 0 and 1 are 2,3, 4,13, and of these only 2
and 3 are connected by an edge. Hence, a({0,1}) = 1. Common neighbors of 0 and 10 are
2,7,8,13, and of these both 2 and 8 and 7 and 13 are connected by edges, which means
that ({0, 10}) = 2.

*—e o—0

a) b)
Figure 7.9.
Therefore, there are at least two different types of edges in I', the cellular algebra W

does not adequately describe the symmetry of I', and thus W is not Galois-closed, i.e.
V(Aut(W)) has more basic relations than W.
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8 S-rings over cyclic groups

8.1. (Arithmetic operations modulo n). Let n be a natural number and consider the cycle
(0,1,...,n = 1). Its graph is shown in Figure 8.1 (with n = 16).

0
n-1= 15 1

Figure 8.1

If we let the cycle rotate clockwise around an axis through the center M and perpendicular
to the plane, then the small square which is currently in position 0 will wander clockwise
step by step into position 1,2,..., and after performing z steps it will be situated in
position z. Each single step corresponds to a rotation by the angle %"

Now, what will be the position of the square after a sequence of z steps followed by a
sequence of y steps ? If x +y < n, then the position will be just z +y. If z + y = n, then
the position will be 0, the square has made a full cycle and has reached its start position
again. If z + y > n, then, clearly, the square has started a second time and has reached
position z + y — n. This observation leads us to the definition of a certain operation on
the set Z, which is usually called addition of integers modulo n. The operator symbol is
@, it is defined by

T4y fo<z+y<n

I@y={1+y—[%¥j-n if z4y>2norz+y<0,

where for any rational number z the notation |z| means the largest integer less or equal
to z. In a similar way, the multiplication of integers modulo n is defined.

We shall write z © y instead of z @ (n — y). The operation & is inverse to &.

if we restrict z and y to the set {0,1,...,n — 1}, then & becomes an associative and
commutative binary operation on this set, 0 acts as neutral element, and each element
1 has its inverse element, namely —z = n — 2. Thus, {0,1,...,n — 1} is a commutative
group under the operation &, the group of residue classes modulo n, usually denoted by
Zy.

For any © € Z, the element —x can be interpreted as an anti-clockwise rotation of the
z2m

cycle in Figure 8.1 by the angle #7* which brings the square, when being in position z,
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back to the start position 0. Note that, if we start the rotation anti-clockwise going as
far as z steps, then we reach the same position as when we go clockwise as far as n—x steps.

8.2. (Cyclic groups). Each i € Z,, defines a permutation of Z, which maps z € Z, onto

z @ i. For instance, if n = 7 and i = 3, we get the permutation (0, 3,6,2,5,1,4) of Z; =
{0,1,2,3,4,5,6}. Forn = 12 and i = 4 we get the permutation (0, 4, 8)(1,5,9)(2, 6,10)(3,7,11)
of Z; = {0,1,...,10,11}.

Let 7 be the permutation of Z, which is defined using i =1, i.e.
"=z®1, € Z,

It generates a group <7 > the elements of which are the powers 7* of m, where the action
of m* on Z, is equal to the i-fold application of m, i.e.

2
z*

= @) =@zal)el=282
= (@) ) =@z02)0l=203

3
P

and in general, )
o .
& =x®d;

for which reason we introduce the notation
;=7
In particular, m; = 7 and 7, = e, the neutral element. Further
<m>={e, 7, May. ., Tn-1}

A group which is generated by a single element is called a cyclic group.

Evidently, (<m >, Z,) is a transitive permutation group of order n and degree n. Transi-
tive permutation groups of order equal to the degree are called regular groups. Since the
elements of <, > are in 1-to-1 correspondence with the elements of Z,,, we use for <m; >
also the notation Z, (thus ; identifying with ¢ € Z,,). In particular we shall consider the
pair (Z,, Z,), where the group Z, is considered to act on itself via the shifts

T+ @i, T € Z,.

This is the action of 1 € Z, on Z,.
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8.3. Consider once more a cycle like in Figure 8.1, however, this time with directed edges,
such that we get a directed graph with vertex set V = Z, and arcset &, = {(z,z® 1) :
z € Z, }. Its adjacency matrix is (for n = 6 as an example)

010000
0010060
000100
P_OO(][]IU
000D0DO0T1
100000

Now, each power P* of P is also a permutation matrix and defines an arc set (a binary
relation) ®; = {(z,2 @) : v € Z,} on Z,. Figure 8.2 shows the six different graphs
Ti=(Z @), 0< 1 <5,

0 1 o 1 0 [
E 2 5 2 s 2
4 3 4 3 4 3
r T
| 2 L
0 1 0 1 o (g 9!
5 2 s 2 509 [ 3%}
4 3 4 3 46 b;
5 T h
Figure 8.2.

In general, i.e. for n € N arbitrary, P is a matrix representation of the permutation ;
of Z,. Thus we have three different representations for one and the same object. ; is
a mapping from Z, onto Z,, i € Z, is just a number the knowledge of which allows to
perform the mapping m; via the formula ™ = z@i. Finally, P is a permutation matriz of
order n which again by its non-zero entries determines the mapping =;, i.e. z™ =y if and
only if P;_y = 1. Accordingly, we have three different representations for the group <m >.
The first representation is <y > itself, where the group elements are mappings and the
group operation is the consecutive performing of mappings. The second representation is
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Z,,, where the group elements are integers and the group operation is addition modulo n.
The third representation is < P >= { P% P! ... P!} where the group elements are
matrices and the group operation is multiplication of matrices. Clearly, P" = P? = [,
the identity matrix of order n.

All three representations are groups which are obviously isomorphic. Hence, all of them
are cyclic groups. Since addition modulo n has more or less similar features like the usual
addition of integers and since multiplication of matrices has similar features like the usual
multiplication of numbers, we call Z, a group in additive notation whereas < P > and
<> are said to be a group in multiplicative notation.

8.4. Each relation ®; on Z, is invariant wih respect to (Z,, Z,). Moreover, each &;
is minimal with respect to this property, i.e. no strict subset of ®; is also an invariant
relation. Hence,

2-0rb(Z,, 2,) = {®; 1 i€ Z, }.
In the language of matrices, invariance of ®; means that its adjacency matrix P* com-
mutes with every power P7 of P, a trivial observation, since in fact, P*P7 = P1pt = p'®i,
which is equivalent to the equality mm; = mig;-

Again, assume for example n = 6. Figure 8.2 shows the graphs of the relations @y, ..., ®s,
which are the six elements in 2-orb(Zs, Zs). In addition, below all the corresponding 6
adjacency matrices are listed:

100000 010000 001000
010000 001000 000100
o |0 01000 . looo1o00 ., _|oooo0o10
P=looo100]| * vooo10f P looooo0n
000010 000001 100000
000001 100000 010000
000100 000010 000001
000010 000001 100000
p_|000001 pi_|100000 pr_|0 10000
100000]| 010000 001000
010000 001000 000100
001000 000100 000010

Throughout this Section 8, P will denote the adjacency matrix of the cycle ['y = (Z,, ®,).
The order n of P will be clear from the context. Hence, P* will be the adjacency matrix
of I; = (Z,,,d;). Note that according to our current notation the initial row (and column)
of any P* has index 0. Note once more that due to the definition of the ®,’s each P'isa
permutation matrix, i.e. P* = M(m;). Each row and each column of P* contains exactly
one entry equal to 1, all other entries being 0. More exactly,

s 1 j=kei
(P = { 0 otherwise.
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Since the relations ®; are the 2-orbits of (Z,, Z,) they are at the same time the basis re-
lations of the centralizer ring (centralizer algebra) V(Z,, Z,). Hence, {P°, P!,... P""'}
is the standard basis of V(Z,, Z,).

8.5. (Circulant graphs). Now, having at hand the relations ®;, 0 < i < n—1, let us
combine some of them to get a new relation ® on Z, and let us consider it as the arc set
of a new graph I'. To be precise, for arbitrary X C Z,, define

®=&(X) = | @ and [(X) = (Z,, §).

kEX

[(X) is a graph with vertex set Z, and arc set ® which is invariant with respect to
(Zn; Z,). Graphs I" with this property are called circulant graphs or cyclic graphs. The
set X is called the connection set of T, ?

Figure 8.3 gives an example of a circulant graph on Zg with X = {1,3,5}. Its adjacency
matrix A = A(I') reads

0 1

010101
$ 2 101010
_|oLro101}_ ., 3 5
A= 101010 =P + P+ P°.
4 5 010101
101010
Figure 8.3.

In general, the adjacency matrix A of a circulant graph I'(X) is

A=AX)= 3 P~

kEX

It is a so-called circulani matriz, i.e. it has the property agijer = 0. for any | € Z,.
On the other hand, if the adjacency matrix of a graph I is a circulant matrix 4 = A(X),
then I' is a circulant graph with connection set X.

8.6. It follows from the definition that a graph T = (Z,, ®) is a circulant graph if and
only if its automorphism group Au¢(I') contains the group (Z,, Z,). In general, however,
this automorphism group may be much larger than (Z,, Z,). Circulant graphs play an
important role also in mathematical chemistry. In order to study the symmetries of such
a graph we have to find its automorphism group, or at least to find the system of 2-orbits
of this group. As we saw in previous chapters, the set of basis relations of the cellular

UIf (H, H) is a regular permutation group and [ is a graph which is invariant with respect to H (a
condition which implies that H is the vertex set of T'), then I is called Cayley graph over H. In the case
considered here H = Z,,. Thus, circulant graphs are Cayley graphs over Z,.
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ring <<A>> generated by the adjacency matrix A are unions of 2-orbits and, therefore,
are invariant with respect to (Z,, Z,). In order to find the basis relations of << A>> we
have to start with 4; = A, A, = I, and A3 = J, — I, — A, we have to compute their usual
products and their S-H products in order to get more and more elements from << A>>
until we end up with the standard basis of this cellular algebra (see Section 6 and 7).
Each of the matrices involved is a certain weighted sum of powers of P. For instance,

A=Y P A4=P, 4= Y P-
keX k€Zp--X—{0}

Further, take n = 7 and X = {1,4} for example, then A = 4, = P! + P, and

A} = P+ P*42P%,
A} = 3P%+ P4 P° 43Pt
Alo A} = 3P4 2P,
and so on. In general, assume
Bs b P*
keXp
with integers & and some subset Xp of Z,. If we define by = 0 for k ¢ Xp, then we get
B= % P~
k€Zn

This is a polynomial in P of degree less than or equal to n — 1. Clearly, we know B
if we know the vector b = (bo, by,...,bs-1). Further, assume ¢ = (cg,cy,...,Cnq) and
C = Tiez, cxP*. Then
BoC = Z bkckPk,
kEZy
Thus the S-H product of B and C is defined by the vector of its coefficients, which in
turn is found by multiplying b and ¢ componentwise. But what is BC' 7 We have

BC = Z Z bkC;PkH = 2 ( Z bkC()Pj.

kEZnlcZn JEZn kel=j

Thus the coefficient 3; of P in the polynomial for BC is given by
Bi= 3 bcjor.

kEZn

We see therefore, that multiplying two matrices B and C' each of which is a polynomial
in P with coefficient vectors b and ¢, respectively, can be done by performing some simple
operations applied to b and c¢. This fact offers an option for an alternative and com-
putationally much more convenient way to compute the cellular ring associated with a
circulant graph I, or in fact, to compute a certain algebraic structure equivalent to this
cellular ring which is called S-ring and which we are going now to discuss in the following
subsections of this section.
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8.7. Let Z(Z,,) (this is new notation) denote the set of all formal combinations of elements
of Z, with integral coefficients, i.e. all formal sums of the form

Y Ni, hez

1€Za

Note the similarity of this expression with the polynomials considered in 8.4 which we
get if we replace ¢ by P%. Note also that there is no multiplication sign ™' between the
coefficients A; and the number ¢ at the right of them, i.e. you are not meant to multiply
) by @ and sum up really. A formal sum is merely a different notation for a sequence of
integers A;, i.e. for

[CTIP NI A M S

(which, for instance, can be used to build up a polynomial in P). When we want to
operate in a particular way with objects of this kind the notation as formal sums is very
convenient.

A=Yz Aitand K = {i : A\; # 0} then we shall write also A = T Aid.

Let us introduce the following operations on Z(Z,). Given

A= Z Ait, = Z,u..-z'

1€Zn 1€Zn
and given p € Z we define
pr o= Y (ph)i

i€Zn

Adp = Z(/\,+,u.,-)i
1€Zn

Aop = I ()i
i€Zn

Axp o= 3 S (au)i@i= 3 (Y Mg
i€Zn jEZn i€2n j€Zn

Supplied with these operations, the set Z(Z,) is called integer group ring over Z,.

There are very special elements in Z(Z,) for which we want to have a slightly more
simple notation. Assume X C Z,, X = {z|,%2,...,%, }. The formal sum ;. z AXi
where A¥ = 1if i € X and A\ = 0if i X can be thought as a representative of the
subset X. Therefore, we use also the notation

X
A =BT = Z N,
1€Zn

Formal sums of the form X are called simple guantities of Z(Z,). A simple quantity is a
list in which every entry has multiplicity 1. If X is a set, then X is a list of the elements
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of X which can be subjected to the operations +, o, x introduced above.

Simple quantities enable us to simplify calculations. First of all, a 1-element subset i = {i}
of Z, may be identified with i, hence in any formal sum } ;.7 A;i the group elements ¢

may be replaced by i, i.e.
3 ohi= 3 A

i€2n i€Zn
Now, for example, assume n = 6 and

A=30+31+22+23+34+35=
=30,1,4,5+22,3

The first expression for A means that we have a list of elements of Zg, with multiple en-
tries, where the elements 0, 1, 4 and 5 appear thrice, whereas 2 and 3 appear only twice,
the second expression tells us that this list is made up by two different sublists {0, 1, 4, 5}
and {2, 3}, the first being used three times, the second only twice.

As seen in this example, the elements of Z(Z,) can be considered as lists of elements
of Z, with multiple entries. The operations in the group ring have an interpretation as
list operations. Ring addition reflects taking the union of lists, multiplication with an
element of z € Z reflects taking the union of z identical copies of a list. Multiplication
of ring elements has a not so obvious meaning, however, this operation is very useful as
well. It is just what we have to do if we want to find the coefficients and the exponents
for the matrix product of two polynomials in the matrix P.

Clearly, the opposite element of a ring element A = ¥;.7 Aiiis the element 3, 5 (—A)i
We denote it by —\. Note also, that 0 is the neutral element with respect to the group
ring multiplication *, as can be easily seen from the definition of this operation.

8.8. EXAMPLE: In order to become acquainted with the operations in the group ring
Z(Z,) and with the notation used here the reader should perform the following exercise.
We still assume n = 6. Let

then
20 = 40+61+22+64
cor = 31422
o+7 = 20+41+32+34-35
oxT = 21+42-65+32+63-90+3
+24-31+35+60-93
==-30-1+72—-23+24-35.



Let X = {1,2,3}, Y = {1,4,5}. Then

X*Y =123+1,45=20,1,2+3,4,5.

In order to find X % ¥ we have to calculate all sums z @y, z € X,y € Y, and to list
them. For X and Y as in the last calculation above this list is 2,5,0,3,0,1,4,1,2. Then
we look at the different entries of this list and note how often they appear. Since 0, 1 and
2 appear 2 times each we get the term 20,1,2. The remaining entries appear just once
each. This is expressed by the term 3,4, 5.

8.9. Proposition. The centralizer ring V(Z,,, Z,,) is isomorphic to the group ring Z(Z,).
Por A= Tiez, NP: € V(Zn, B,) define

=5 i
1€2n
Then ¢ is an isomorphism from V{Z,, Z,) onto Z(Z,).

Proof. Being an isomorphism means that ¢ is bijective and that for A, B € V(Z,, Z,)
and p € Z we have

#{A+B) = ¢(A) +¢(B), $(AB) = 6(A)*$(B), ¢(pA) = pd(A), p(A0 B) = ¢(A}od(B).

These properties of ¢ follow directly from the definitions of the ring operations in V(Z,, Z,))
and in Z(Z,). °

Once more, note that for A = ¥;.; Py, B = ¥,y piP: we get
$(A0 B) Z (Mipi) 2.

ielng

Therefore, as already mentioned in subsection 8.4, the operation o in Z(Z,,) which corre-
sponds to the S-H-multiplication in V(Z,, Z,,) is

Z’\l ZW)— D0 (A i

i€l i€d iejnJ

In particular, for X C Z, and ¥ C Z,,

Xo¥ =X N¥.

8.10. Let ' be a circulant graph with adjacency matrix 4. We want to find << A>>.
Proposition 8.9 tells us that this cellular ring will be isomorphic to some subring & of
Z(Z,). S must reflect all properties of << A >>, in particular, it must be closed with
respect to the operation o in Z(Z,). This requirements lead us to the following definition.

A subring § of a group ring Z(Z,,) is called Schur ring or briefly S-ring over Z,, if

® (S1) S is closed with respect to addition and to multiplication with elements from
Z (these are the conditions for § being a so-called Z-module);



e (S2) There are simple quantities T, T, ..., T4 in S such that every element o € §
has a unique representation

d
g = E o L
i=1
(in which case this set of simple quantities is called a basis of §);
* (S3) Ty, =0, T, T; = Z,,;

® (S4) For each i € {1,2,...,d} thereis a j € {1,2,...,d} such that T; = —T
(={n-z:z€Ti})

By definition of a subring, S satisfies also

e (50) Fori,j € {0,1,...,d} there exist non-negative integers p; such that
d
LinT;= Z pf,Ik
k=0

Indeed, for a subset S of Z(Z,) satisfying (S0) is equivalent to being closed with respect
to the operation *. Hence, a subring & must satisfy this condition. It means that, if we

write down a list of all possible sums z &y with z € T and y € T, then for every k each

element of T, appears in this list with the same multiplicity pf;.

The basis Ty, T4,...,Ty is called a standard basis of S, the sets T; are called basic sets.
To relate an S-ring to its basic sets we shall write

S = <I—UII].1"'!L> *
The circulant graphs ['; = ['(T}), 0 < i < d, are called basic circulant graphs of S.

Z(Z,) itself and <0, Z, — {0} > are S-rings over Z,. Both of them are trivial S-rings.
Clearly, we are mostly interested in non-trivial S-rings.

By definition, the automorphism group of an S-ring & = <T,T,..., T4 > is the inter-
section of the automorphism groups of the basic circulant graphs of S, i.e.

Aut(S) = ﬁ Aut(T,).

i=0
8.11. Cellular subrings of the centralizer ring V = V(Z,, Z,) and S-rings over Z, are

equivalent notions, as we are going to demonstrate in this paragraph.

Let W= < By, By,..., B4> be a cellular subring of V = V(Z,, Z,,). Assume

Bi=Y P T.C2Z,0<i<n-1

leTy
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where the sets T; form a partition of Z,. Consider the set
4
M={3NI;: eZ for 0<i<d}

Since W is closed with respect to multiplication, for each pair i,; there are integers
Pk 0 <k < d, such that

BB, 72"1.73’“ ZPWZP('

k=0 k=0 LETy

On the other hand

-(57)(zr)-gErr-gz

TET; s€T, reT; s€T; reTy s€T;

Hence,

d
IS
reT; s€T; k=0 1eTy
Now compare the entries in the first row of the matrices on both sides of this equality.
The matrix P™®* has a single entry equal to 1 at the position ¢t = r @ s in its first row.
This entry appears on the left side as often as ¢ appears in T; * T;. On the other hand,
the first row of the matrix 3¢y, P* has entry 1 in exactly those posltlons which appear
in the formal sum for the simple quantity T. Hence from the equality above it follows
that
Z Z r®s= Z pu—*
r€T; s€T;
or

d
T+ T =3 phiTy.
k=0

Hence, M fulfills (S0). In a similar way, starting with (CA1) - (CA3), we find that M
satisfies also (S1) - (S4). This shows that M is an S-ring over Z, i.e.

M=E i T By

Going back the way we just went, we can associate to each S-ring over Z, a cellular
subring of V(Z,, Z,). Hence, there exists a 1-to-1 correspondence between the set of all
S-rings over Z, and the set of all cellular subrings of V(Z,, Z,,). Thus, and this is very
important, we may replace all operations in V(Z,, Z,) by less cumbersome operations in
Z(Z,).

8.12 Let us reformulate cellular expressibility (see 7.6) in terms of S-rings over Z,.

For circulant graphs ['y = ['(X,) and I'; = ['(X;) we have T'; = ', iff X, belongs to the
S-ring << X, >> generated by X, (<< X, >> is the smallest S-ring containing X,).



If this happens then Aut(I'y) < Aut(I';). We shall also use the notation X, k= X, in this
case. In the next two paragraphs we mention two simple but important situations which
will be met later again.

8.13. Lemma. Let X C Z,,. If X =1 then Aut(['(X)) = Z,.

Proof. Let V = Z(Z,). X E 1 means 1 €<< X >> . However, <<1>> =V, hence
V C << X >> . Since V is the largest S-ring over Z,, this implies << X >> = V.
Furthermore, Aut(I'(Z,, X)) = Aut(<< X >>) = Aut(V) = Z,. °

8.14. Let X C Z,. If X = —X 1e if 7 € X implies —i =n —1 € X, then I['(X) isan
undirected graph. Remember that (z, j) is an edge of I' iff j — ¢ € X. Hence, if both (1, ;)
and (j,7) are edges and if ¢ = j — 7, then i — j = —z € X.

Lemma. Let X C Z,, X = —-X and I =T[(X). If X | 1,n — 1 then Aut(I') = D,, the
dihedral group, which is transitive and has order 2n and degree n.

Proof. Recall that D, includes the "rotations” i — i @ h (h € Z, fixed) and the "re-
flections” k©i +> ki (again k € Z, fixed), and if n is even, k©i +» kD1&: (see also 4.32).

Start with the undirected circulant graph C,, = I'({1, n—1}) which is a closed polygon with
vertices 0,1,...,n—1. C,, is certainly invariant with respect to D, in fact D,, = Aut(C,).

Now, let X) = {k,n — k}, 0 < k < §. By definition of << X; >> we have 0, X, € <<
Xy >> . It follows X, + X, € << X; >> . However, for arbitrary k < % — 1 we have
Xpx X =X+ X, yor X, =X, X, — Xy ;. Therefore, if X4, X;,..., X, € <<
X, >> then X, ,; € << X, >> . From these arguments it follows X, € << X, >> for
every k < 5. A little more reflection shows that this is true also for k = 3.

Now let us consider the graph I'(X). By assumption, X = —X, hence X is a union of
some appropriate Xy, or equivalently, X is a (ring) sum of some appropriate X;. This
implies X € << X, >> = <<1,n—1>> . Thus 1,n — 1 = X and therefore, since by
assumption also X = 1,7 — 1 is true, we get

Aut(l) = Aut(<< X >>) = Aut(<<1,n — 1>>) = Aut(C,) = Dn.

8.15. EXAMPLE. Assume n =11 and let I = I'({1,2,3,4}). Find Aut(I).
In Z(2Zy;) we find

1,2,3,4+1,2,3,4=2,8+23,7+34,6 +45.

Application of Schur-Wielandt’s principle gives

1,234 2.8 3,7, 4,6, 5
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Figure 8.4.

8.16. ExAMPLE. Describe the automorphism groups of all undirected 8-vertex circulant
graphs.

which are subrings of Sy:
S <
S =<

S =<01,2,35,6,74
2,3,4,5

Sy =<0,1,2,3,4,
Analysing this list we get

S=<<,T>>, 8§ = <<2,6>>, § = <<2,4,6>>, §3 = <<4>>, § = <<0>>.
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Hence, for € {0,1,2,3,4} we have Aut(S;) = Aut(l';), where Iy, = F({1,7}), I =
I({2,6}), T2 =T({2,4,6}), ['s = ['({4}), I'y = ['({0}), see Figure 8.4.

Finally, we establish a complete list of the automorphism groups of these graphs:

Go
G
G
Gy
Gy

Aut(To) = Ds, |Gol = 16,
Aut(Ty) = S2 1Dy, |Gu| = 128,
Aut(Ty) = 83184, |Ga| = 1152,
Aut(Ts) = S4 182, |G| = 384,
Aut(Ty) = Sa, |Ga| = 40320.

If I' = [(X) is any undirected circulant graph then first compute << X >>, next

find 7 such that << X >> =

S; and finally get Aut(T') = Aut(T;). For example,

<<1,4,7>> = &, hence Aut(I'({1,4,7}) = Ds.

8.17. S-rings over cyclic groups were introduced by the German algebraist I. Schur in his
classical paper [Sch33]. S-rings can be considered in more general context over arbitrary
groups. This extension was developed by disciples and followers of Schur, see [Wie64],
[Koc66)], [PosK79], [Sco64], [Tam70]. At the beginning, S-rings were used only for purely
group-theoretical goals. Investigation of circulant graphs by means of S-rings started in

[PosK79], [KIiP81].
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9 Automorphism groups of certain chemical graphs

9.1. In this section we shall demonstrate on a few examples how the techniques devel-
aped in the previous sections can be applied in order to find the automorphism groups of
chemical graphs of different kinds. We shall restrict ourself to so-called vertex transitive
graphs, i.e. to graphs with automorphism groups which act transitively on the vertex set
of the graphs.

In each of our examples we consider an infinite series of graphs, the first members of the
series being discussed in the chemical literature. In a first step we take an arbitrary graph
I of the considered series and set up a certain "evident” subgroup H of G = Aut(I'). In
the next step we then examine the conjecture : Is it true that G = H ? Using rather
simple computations in S-rings related to the considered series of graphs we prove that
for most of the graphs in the series this conjecture is true. It may happen however, that
we find also exceptional graphs for which the conjecture is not true. These graphs we
have to investigate more carefully, thereby eventually finding additional automorphisms
for them. In this way we finally describe their complete automorphism group.

9.2, Consider the graph representing the structural formula of a hydrocarbon. This
graph contains a subgraph which consists of all carbon atoms of the molecule and of the
bonds between them. In organic chemistry, this subgraph is called the skeleton of the hy-
drocarbon. A similar substructure appears in all heteroatomic organic compounds. For
example, consider the structural formula I of the cyclopropane molecule which is depicted
in Figure 9.1a. Its skeleton T is shown in Figure 8.1b.

a) b) <)
Figure 9.1.

The automorphism group of I is intransitive (since no hydrogen atom can change place
with a carbon atom). Each automorphism of I' can be thought of as two processes: First
perform an arbitrary permutation of the carbon atoms (this is an automorphism of r),
after this, permute the two hydrogen atoms, independently at each carbon atom. Hence,
G = Aut(T") is isomorphic to the wreath product S32.5; which is of order 3!2% = 48.
The automorphism group G of I' equals S;. Hence, here the automorphism group of
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the skeleton serves as the "active” factor (outer group) in the wreath product. At this
point, for a mathematician, the problem of finding the automorphism group of I is solved.

However, chemists usually do not use the notion of the wreath product for the description
of automorphism groups of chemical graphs. Perhaps this is the reason why A. T. Bala-
ban in [Bal78] introduced an artificial graph (which has no chemical meaning) in order to
discuss the group G in question. This graph (we denote it by Bj) is shown in Figure 9.1c.
There is no problem to find Aut(By). Since Aut(B;) = Aut(B;) and since B; (the graph
complementary to Bj) is a disjoint union of three isolated edges (each edge representing
a copy of the 2-vertex complete graph K3), we have again Aut(B;) = Sz 1 S,.

9.3. In fact, Balaban investigated the automorphism groups of the structural formulas for
all members of the homological series of cycloalkanes C,Hy,. The graph I in the previous
subsection represents the first member of this series, two other members will be considered
below.

In [Bal78] an infinite series of graphs B, was defined. For n € N, n > 3, B, is a regular
2n-vertex graph of valency 4. Actually, it is the circulant graph I'Zs,,{1,n — 1,n +
1,2n—1}). This observation makes evident, that the automorphism group G, of the Bala-
ban graph B, contains the subgroup Do, (the dihedral group of order 4n and degree 2n).
The edge set of By, is a union of two 2-orbits of the group D,, which correspond to the
simple quantities 1,2n — 1 and n — 1,n + 1 of Z(Z,,).

0 1 0
[ ]
9 2
7K N
® 9 6 [ ]
8 3 ® [ ]
7 4 R'.a 7.@
6 5 o, < ;e
a) b)

Figure 9.2.

9.4. Proposition. Let n > 3 and G,, = Aut(B,). Then

G [ DulSs if m#4
L 52354 1f n=4.

Proof. Let us start with the case n = 4. Again, we use Aut(B,) = Aut(B,). By is
the disjoint union of two copies of the complete 4-vertex graph Ky. This shows that
Aut(B4) = 32 ¢ 54.
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Now assume 7 # 4. Let us start with the graph B; which is depicted in Figure 9.2.a.
Figure 9.2.b shows the same graph represented by a different diagram. Here each double
arrow <=> denotes four edges between two pairs of vertices. For example, the double ar-
row between {0,5} and {1, 6} denotes the edge set {{0,1}, {0,6}, {1,5}, {5,6}}. Figure
9.2.b makes evident that Gy > Dg 1 Ss.

In the same manner the inclusion G, > D, 1 S is justified for each n > 3,n # 4.

In order to prove the inverse inclusion let us consider X = {1,n—1,n+1,2n—1}. Forn > 5
weget X * X =4044n+22,n~2 n+2 2n— 2. Using Schur-Wielandt’s principle, we
find X | n. Hence, for n > 5, each automorphism of B, preserves the graph I'(Za,,, {n}),
or in other words, preserves the "supervertices {{#,i+n} : 0 < < n— 1} of the diagram
analogous to the diagram in Figure 9.2b. Changing "supervertices” to ordinary vertices
and "superedges” (= double arrows) to simple edges in these diagrams we get an n-
gon whose automorphism group is Dy,. Let K be the subgroup of G, which leaves each
*supervertex” of B, invariant. Then |G,| = |K| - |Dy|. The subgroup K consists of 2"
permutations which independently transpose or do not transpose the two vertices in each
supervertex. Hence |G| = 2" - 2n. Taking into account that |D, { S;| = 2" - 2n, too, for
n> 5, we get Gp, = D, 1 S;. The case n = 3 was considered in 9.2. °

a) b)
Figure 9.3

9.5. REMARKS. 1. The cyclopentane molecule CsH;o and its skeleton are depicted in
Figure 9.3.a and 9.3.b. Labelling of atoms is omitted. Graph Bj; in Figure 9.2.a,b serves
as an artificial graph which has to describe the action of the automorphism group of the
structural formula on the set of hydrogen atoms.

2. Forn=4, we have X + X = 40,2,4 6, hence, X |= 4 is not true. For this reason the
automorphism group of By is strictly larger than Dyl .S,

3. In [Bal78] Proposition 9.4 was claimed without proof and without exception for n = 4.
Balaban when discovering this interesting rule did not recognize the existence of an ex-
ception for n = 4. In fact, the exception for cyclobutane (n = 4) is an artefact originating
from the use of the Balaban graphs B,. It is avoided when the usual constitutional for-
mula and the notion of the generalized wreath product (in the sense of [ZefTK85]) are
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used.

4. A rigorous formulation of Proposition 9.4 first appeared (without proof) in [ZefTK85]
with reference to private communication to M.H. Klin. It was also announced in [KLiKZ90].

5. The proof for Proposition 9.4 can be considered as an example for the usefulness of
S-ring techniques. The wreath product and its generalizations, see e.g. [KerL77), [Bal84],
[ZefTK85], are rather useful tools in the investigation of the symmetry of chemical graphs.

6. A rigorous proof of the claim |G,| = | K| - |Dy| involves the notion of homomorphisms
of groups. (In fact, Dy is the image of a homomorphism from G, where K = (Z;)" is its

kernel.)
] Ca
a2
b a3 cg 3
2 4
raret
by A‘ C7 Ca
by
cg cs

a) b)
Figure 9.4

9.6. The graph of Figure 9.4.a is known as the four-rung-Mébius-ledder. This graph
is nonplanar. It describes the structural formula of a representative of a new class of
chemical compounds which were synthesized by D.M. Walba and his collaborators, see
[WalRH82] and the references given in [WalSH88).

In fact, the synthesis of the first organic M6bius ladders was an important event in the
development of modern theoretical stereochemistry, see e.g. [Wal87].

Because of some interesting chemical implications we would like to know the full automor-
phism group Aut(My) of the graph M} in Figure 9.4.a. Again, as in the case of Balaban
graphs, it is convenient to consider ancther isomorphic representation of My;. The graph
M} in Figure 9.4b is isomorphic to My, an isomorphism is given by the mapping

@ ay az ag by by by by
€ C €3 €4 C5 Cg C7 Cg

M, is evidently a circulant graph. Replace each label ¢; by the new label i — 1 in order to
recognize M} as I'y = I'(Zg, {1,4,7}). I'y is undirected, hence Aut(I'y) > Ds. We want to
know the whole group Aut(l'y). It turns out that the answer can be obtained within the
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framework of a more general discussion.
L €2

4

;‘ . N
by TN

Cs Cq

Figure 9.5.

9.7. Following [GuyH67], we define a Mébius ladder with n rungs to be a graph M, =
(V,E)withV = {a1,...,an,b1,...,ba}, E = {{a1,a2}, {@2.03},..., {an-1,an}, {an, b1}, {1, :},
oor{bact,bn ). {bn,ar}, {a1, b1}, {@2, b2}, . .., {an, b, }}. The graph M,, has 2n vertices, each

vertex has valency 3. M, was considered above, Mj is depicted in Figure 9.5.

Now, let us compare M, with the graph M}, = (V', E') where V' = {c, ¢z, ..., Cn; Casis- - - » C2n )
and {c;,¢;} € E' if and only if

(j — i) (mod?2n) € {1,n,2n — 1}.
Here, (j — 2)(mod 2n) means j —iif j —4 > 0, and means 2n+j — i if j —i < 0.

9.8. Lemma.
{a) The graphs M,, and M}, are isomorphic;
(b) M, is isomorphic to the circulant graph I'y = T'(Z3,, {1, 1, 2n — 1}).

Proof. (a}) Define

#la;) = ci, (b)) = Cign, 1 1< 0.
It is easily checked that ¢ : V' — V"’ is an isomorphism of M, and M],.
(b) Define the mapping ¢ : V' — Z,, by

_Jiif 1<i<2n-1
‘”("')*{o if i = 2n,

¥ is an isomorphism of M}, and [,. o

9.9, Consider the dihedral group D,, as a group acting on Z;,. We know that the
centralizer ring V' = V/(Ds,, Z,,) is isomorphic to the S-ring

S§=<0,1,2n-1,2,2n-2,...,n—-1,n+1,n>
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over Z,,. Hence, each of the three isomorphic graphs M, M, and T,, can be associated
with the simple quantity X =1,n,2n — 1.

9.10. Proposition. Forn > 3
[ Dy if n>3,
Aut{ L= { S8 if n=3.

Proof. Assume n = 3. The complement graph I's is the disjoint union of two triangles.
Hence, Aut(T'3) = Aut(['3) = S31Ss. The order of Sy 53 is 2- (31)% = 72.

Now assume n > 3. Because of X = —X we can use Lemma 8.14. Due to this Lemma,
to prove the present proposition it suffices to prove that X = 1,2n — 1. We have

X+«X=30+2,2n-242n—-1,n+1.

According to Schur-Wielandt’s principle we get X |= 2,2n — 2. Now

X*22n-2=12n-1+3,2n~34+n-2,n+4+2

and
(X*x2,2n—2)o X =1,2n—1.

Hence, 1,2n — 1 €<< X >> which is the same as X = 1,2n — 1. o

9.11. Corollary. For n > 3 the group Aut(M,) has one orbit on the set of vertices of
M, (a 1-orbit) and two orbits on the set of edges of this graph (one 2-orbit consits of the
rungs and the second 2-orbit consists of the uprights of M,,). Aut(Ms) has one orbit for
vertices and one orbit for edges.

9.12. COMMENTS and REMARKS.
1. For n = 3 we have X 2,4 = 2.X, hence we cannot prove X = 1,5. For this reason
Aut(T'3) is larger than Ds.

2. Proposition 9.10 was first proved using ad hoc arguments in [Sim86], see also [WalSH88].
The present idea of a proof was previously announced in [KliKZ90] and [FarKM94].

3. In [Sim86] and [Fla89] finding Aut(M,) was considered as introduction to the more
intriguing problem of determining the topological symmetries of a given molecule (here
the attribute "topological” is correct, compare with the remark in section 3.2). The
topological symmetry of a molecule is closely related to its topological equivalences and
topological chirality. It reveals deep and natural links between mathematics and theoret-
ical stereochemistry.

In fact, in [Sim8&6] each automorphism of M,, was examined with respect to the possibility
of the representation of it by a suitable isotopy of the 3-sphere 53. By inspection of all
such isotopies it was possible to prove that for n > 4 there is no isotopy of S* which maps



M, onto its mirror image, i.e. M, is chiral for n > 4.

4, Corollary 9.11 states an important fact. Let us consider a real Mébius ladder molecule
including in each edge of M,,, n > 4, the same number of additional carbon atoms. Then,
as discussed in [WalSH88|, the additional carbon atoms will be distinguishable, e.g. by
means of *C NMR. Here one signal will correspond to the atoms situated in the rungs
while a second signal is expected for the atoms situated on the uprights of the Mébius
ladder. Note that according to Corollary 9.11 in the case n > 4 the rungs form a 2-orbit
of Aut(M,) different from the 2-orbit of the uprights.

{An excellent survey [Bal95b] provides the reader an opportunity to get acquaintance with
various other interrelations between combinatorics and spectroscopy.)

5. The graph Mj is isomorphic to the famous Kuratowski graph K33, one of the two
graphs which are responsible for the non-planarity of a graph, see [Har69].

9.13. Let us return to example 5.27 where we considered the pentagonal prism Ps. We
have found that Aut(Ps) > G, where G is a certain group of order 20. Chemists denote
this group by Dsp. In mathematical notation we have G =2 D x Sy, D5 = <gy, 92>, S =
<g3> . Let us find the whole group Aut(F;).

Let A be the adjacency matrix of Ps and A; the adjacency matrices of the graphs I, =
(Q,®;),0 < i < 5. It is evident that {I';,T3} = P;. We shall demonstrate that also
Ps = {I';, T3} is true. Check that

A% =340+ Ay + 24,

Hence, due to Schur-Wielandt’s principle, Ag, A3, A4 are cellularly expressible by A. Now
we obtain

AAy =243+ A + As.
Again using Schur-Wielandt’s principle we get A3 € << A >> . Finally, 4, = A — A;.
Thus, £; = {I',T's}.

Now, since << A >> = << Ay, A3 >>, we have Aut(Ps) = Aut(T'y) N Aut(Ls). Aut(Ps)
is transitive, because its subgroup G is transitive. Let g € Aut(Ps), g # e, such that
19 = 1. This implies 6* = 6 {because I'; is regular with valency 1). In turn from this it
easily follows that g = g,, hence the stabilizer of vertex 1 in Auf(F;) has order 2. Finally,
we get |Aut(Ps)| = 10+ 2 = 20, and therefore Aut(Ps;) =G.

9.14. For n > 3 let P, be the graph which is made up by the skeleton of an n-gonal
prism. This graph has vertex set Q = {1,2,...,2n} and edge set

E=EUEUE;
where

E = {{1,2},{2,3}, ..., {n=1,n}, {L,n}}
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Ex={{n+1,n+2},...,{2n—-1,2n}, {(n+1,2n}}
Es={{l,n+1}, {2,n+2}, ..., {n,2n} }.

9.15. Proposition. Forn > 3

D, xSy if n#4,

Aut(Py) =
e {.5'4><.5‘2 if n=d.

The group D, x S,, as an abstract group, is isomorphic to Dpy. Its order is 4n. Sy x 53
has order 48, see subsection 6.15.

The proof of the proposition for n # 4 can be given by a reasoning completely analogous
to the one in the previous subsection.
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10 Concluding Remarks

10.1. We conclude the paper with a brief historical review of the development of the
ideas explained here. We shall call the reader’s attention to the most important events,
we do not attempt to deliver a complete picture. Additional details can be found in other
surveys, see references below. Also some reminiscences related to personal experiences of
the authors will be included.

10.2. Forerunners.

Certainly, the origin of coherent algebras is found in the classical paper [Sch33]. There
Schur introduced a new notion which later by his students was called an S-ring. Schur used
S-rings for the solution of an important group-theoretical problem posed by W. Burnside.
During some decades this purely group-theoretical line was the only source of interest in
S-rings.

The paper by Schur stimulated the development of an alternative approach using double
coset classes. In [Man39] Schur’s results were arrived at by this approach once more (this
was one of the last papers by W.A. Manning, a classic of permutation group theory). In
a series of papers, see for example [Fra41], [Fra48), J.S. Frame showed how the basis of a
centralizer algebra of a prescribed permutation group (transitive or intransitive) can be
constructed by means of double coset classes. In [Fra48] the reader can find as an example
the adjacency matrix of a centralizer algebra of rank 17 for an intransitive permutation
group of degree 18. The author’s interest in the subject stems from the study of molecular
structures. Frame mentions that

"the potential energy of the molecule is approximated by a quadratic form whose ma-
trix V' must commute with all the matrices of the symmetry group of the molecule.
Its characteristic roots are closely related to the molecular spectrum.”

In fact, a common use of the commuting matrices is one of the important tools in the
classical quantum theory, cf [Wig59].

10.3. Invention of association schemes.

The theory of association schemes was born in India, at the Statistical Laboratory at
Calcutta (now the Indian Statistical Institute). This laboratory was involved in mathe-
matical modelling in agricultural field experimentation. The theory of randomised and
Latin square block designs created by R.A. Fisher and F. Yates (see e.g. [Fis35], [Yat37))
makes it possible to study arrangements of v varieties of treatments in & blocks of k dif-
ferent varieties each. In a classical balanced incomplete block design (BIBD) each variety
oceurs in the same number r of blocks, and also every pair of varieties occurs in the
same number A of blocks. BIBID's are ideal models for statistical experiments, nowadays
they are used universally, including in chemistry (see [KagS83], [Kag88]). Unfortunately,
BIBD'’s exist for rather specific sets of parameters (v, b, k,r, A) only. This causes severe
restrictions for their use. As an alternative, partially balanced incomplete block designs
(PBIBD) were introduced by R.C. Bose and K.R. Nair in 1939 in [BosN39]. A PBIBD
has also the above mentioned parameters v, b, k, 7, however all pairs of different varieties
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are classified into m classes, called associates, such that each pair from the i-th associate
occurs together A; times, 1 < i < m. Thus, the necessary conditions for the existence of
PBIBD's are weaker than those for BIBD's. This fact creates more opportunities for their
use.

The axioms for PBIBD’s are divided into two parts, one part being responsible for the re-
quirements of the associate classes. They define a class of combinatorial structures which
are called association schemes. Although these axioms first appeared in [BosN39], the
term itself was introduced by R.C. Bose and T. Shimamoto in [BosS52|.

In fact, Bose and Nair have also suggested, and illustrated with illuminating examples,
the most important methods for the construction of association schemes and PBIBD’s,
which are classified by them as:

» use of simple geometrical configurations,

o application of finite geometry

» methods of differences

» application of the duality principle between blocks and varieties.

A reader acquainted with modern mathematical ideas will certainly be surprised to find
at the very origin of the theory of association schemes the main principles of almost all
important methods for constructing these combinatorial objects. Naturally, the papers
[BosN39] and [BosS52] have stimulated numerous publications, most of them devoted to
the construction of new PBIBD’s, in particular with m = 2 classes. Results of these
activities were summarised in [BosCS54] and [Cla56].

The final step in the invention of association schemes was their ”algebraisation.” Graphs
were considered which have treatments as vertices and pairs from the i-th associate class
as arcs (1 € i €< m). The adjacency matrices of these graphs generate a matrix al-
gebra of order v and rank m + 1 which later became known as Bose-Mesner-algebra
(BM-algebra) of an association scheme. This algebra turns out to be isomorphic (in the
commutative case) to a smaller algebra of order m + 1 (the latter fact is outside our
exposition, see for details [BanI84]). This algebraic reformulation was independently dis-
covered by W.A. Thompson in 1954 in his doctoral thesis (see also [Tho58]), by R.C. Bose
in 1955 and by D.M. Mesner in 1956. In 1959 the two latter authors have published the
joint paper [BosM59], which now is considered as one of the classical sources of Algebraic
Combinatorics. Bose and Mesner have developed the foundations of character theory of
BM-algebras as a partial case of linear associative algebras. Let us add the remark that
the term “association” originally referred to ”associate” = "partner, colleague, compan-
ion” etc., but by no means to "associative” in its well-known mathematical meaning.

10.4. Centralizer algebras.
We have already mentioned that centralizer algebras of permutation groups were first
used by L. Schur, W.A. Manning and J. S. Frame (in rather different terminology). Their
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investigations were continued, on a more general base, by H. Wielandt, a student of Schur.
Wielandt’s first publication on this subject [Wie36] was already mentioned by Manning
in [Man39] as "remarkable for its brevity”. A detailed introduction into the theory of
centralizer algebras first appeared in Wielandt’s well-known book [Wie64] (its prelimi-
nary rotaprint version was available earlier and is based on lectures delivered in 1954/55).
This book is still one of the hest sources for the theory of finite permutation groups.

We believe that Wielandt was not acquainted with the papers on association schemes.
However, in his book he introduced (in terms of S-rings) a class of structures which
can be interpreted as association schemes, but which cannot be described as sets of 2-
orbits of a suitable permutation group. In terms of cellular algebras his examples can
be interpreted as examples of such algebras which are not centralizer algebras. We call
such algebras non-Sehurian cellular algebras, because Schur believed that each S-ring im-
plies a suitable centralizer ring (in fact, Schur himself dealt only with S-rings over cyclic
groups, and for this particular case his conjecture seems to be true). Within the frames
of association schemes theory first examples of non-Schurian BM-algebras were given by
L.G. Chang, A.J. Hoffman, D.L. Mesner and S.S. Shrikhande in 1956-1960, see [Cha59],
[Shr59], [Hof60], [Cha60] (the example of D.L. Mesner appeared in his unpublished thesis,
1956).

10.5. Rank 3 groups.

A group is called simple if it has no non-trivial invariant normal subgroups. The first
examples of simple groups were given by E. Galois. The efforts of several mathematicians
during more than one century resulted in the discovery of certain infinite families of simple
groups and of five sporadic simple groups. New examples of sporadic simple groups were
discovered rather recently, in 1965-1975. One of these examples by D.G. Higman and Ch.
Sims, a simple group of order 44 352 000, was found as a rank 3 subgroup of index 2 in
the automorphism group of a 100-vertex graph [HigS68]. Thus, this group was found by
construction of a new rank 3 coherent algebra. In the same manner a few other examples
of new simple groups were found.

The success of Higman and Sims was based on their previous experience in the investi-
gation of permutation groups. In particular, Higman’s papers [Hig64] and [Hig67] had a
profound impact on the development of modern permutation group theory.

10.6. Strongly regular graphs.
Let W =< Ay, Ay, A2 > be a symmetric cellular algebra of rank 3. The matrices A;, 4,
are the adjacency matrices of two graphs I';, [, which in this case are called strongly
reqular graphs. They are complementary to each other. In other words, an undirected
n-vertex graph I is called strongly regular if and only if its adjacency matrix A = A(I)
satisfies

A® = kI, + MA+ ;A
for suitable parameters k, A and g (A is the adjacency matrix of the complementary graph
r)
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A strongly regular graph is called a rank 3 graph if Aut(I') is a rank 3 permutation group.
Strongly regular graphs which are not rank 3 graphs serve as examples for non-Schurian
coherent algebras. In fact, the above mentioned examples by Mesner-Shrikhande and
Chang-Hoffman are strongly regular graphs with 16 and 28 vertices, respectively.

The term ”strongly regular graph” was introduced by R.C. Bose in [Bos63]. In this pa-
per Bose considered links between strongly regular graphs and partial geometries (special
classes of finite incidence structures).

The detection of simple groups by investigating automorphism groups of graphs initiated
an explosive growth of interest in rank 3-graphs and in strongly regular graphs as their
natural generalization. Several different new techniques related to strongly regular graphs
were introduced by J.J. Seidel and his collaborators, see e.g. [Sei67], [Sei68], [GoeS70],
[BerLS73], [Sei76], [CamGS78]. For getting deeper acquaintance with the subject we rec-
ommend the survey papers [Sei69], [HesH71], [Hub75], [BroL84].

10.7. Coherent configurations.

At the end of the 60’s the independently developed theories of association schemes and
centralizer algebras had reached so high a level that it became inevitable to merge them
as well as to create generalizations of association schemes which could serve as ” combina-
torial approximations” to the set of 2-orbits of arbitrary permutation groups (transitive
or intransitive). This mission was fullfilled by D.G. Higman.

In his paper [Hig70] Higman introduced the notion of coherent configurations on a set
X as a pair (X, P) where P is a partition of X x X which satisfies certain axioms. To
each configuration there is a corresponding matrix algebra, in fact this correspondence is
a bijection. At the beginning, Higman termed this algebra the centralizer ring of a coher-
ent configuration, later, in [Hig75], an adjacency algebra (ring), and finally, in [Hig87], a
coherent algebra. In our paper the last term is adopted, together with the term cellular
algebra with unit. In Higman’s terminology, cells (= BM-algebras of association schemes)
correspond to homogeneous coherent configurations. In other words, homogeneous co-
herent configurations are equivalent to association schemes. Higman published several
papers, in particular lecture notes of two courses [Hig72] and [Hig77], which helped a
rather wide part of the mathematical community to adopt and to use the notion of co-
herent configuration. The origin of Higman's interest in coherent configurations is to be
found in group theory, representation theory of semisimple algebras and finite geometries.
However, in his more recent publications he also expressed interest in computational prob-
lems and in particular in WL-stabilization (see e.g. [Hig90]).

10.8. Cellular algebras.

One of the origins for the Weisfeiler-Leman approach to cellular algebras were papers on
centralizer algebras of permutation groups (in particular [Hig67]). Surprisingly, at the
beginning, Weisfeiler and Leman did not realize the existence of non-Schurian cellular
algebras. We stress that [WeiL68] was published before Higman’s axiomatization, so that
at the beginning the notions of cellular and coherent algebras were developed quite inde-
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pendently.

In [Lem70] all ccllular algebras of order n < 7 and all cells of order n < 9, as well as
their automorphism groups (in terms of generators) were described, all necessary com-
putations were made by hand. The first example of a (non-Schurian) strongly regular
graph having intransitive automorphism group (n = 26) was found using a computer and
reported in [AdeWLF69]. Impressive results of a method for constructive enumeration
of strongly regular graphs were represented in [ArILR75]. The method was based on a
computer program for canonization of graphs which was elaborated by I.A. Faradzev and
his coworkers (see [ArlZUF74]). These and other results of the booming Moscow school
were summarised in [Wei76].

Unfortunately, for some while all the absurdities and humiliations of Soviet life were a se-
rious obstacle for the development of this promising scientific research group. As a result,
Leman gave up the subject and started a career as an expert in system programming.
Weisfeiler emigrated from the USSR. He never returned to Algebraic Combinatorics.

10.9. Kaluznin’s school.

L. A. Kaluznin (1914-1990) was born in Moscow but spent more than 30 years in Germany
and in France. He was one of the last students of Schur. In 1955 Kaluznin returned to
the USSR and founded the Department of Algebra and Mathematical Logic at Kiev State
University.

As already mentioned a few times, the late 60’s were a surprisingly fruitful and creative
time for interdisciplinary influences and interrelations. Just at this time KaluZnin organ-
ised a seminar on ”Galois theory of relational algebras.” Starting from the old paper by
M. Krasner (Kra38], the participants of this seminar became successful in the uniform
treatment of Post algebras, transformation semigroups and permutation groups, having a
given set of invariant relations, see [BodKKR69] (and [PosK79] for further developments).
As part of this activity great attention was paid to the description of maximal subgroups
of symmetric and alternating groups as automorphism groups of suitable relations (prefer-
ably graphs). The first papers in this area are mentioned in Section 1. A detailed survey
of the results in permutation group theory achieved by Kaluznin’s school can be found in
[FarKM94], [Ust94] (see also [FarIK90], [SusKLPUV98]).

In (KalK72] and in subsequent papers each permutation group (G,) was considered as
the automorphism group of a suitable set K of k-ary relations with suitable k € N. This
set K is closed with respect to certain set-theoretical operations and is called a Krasner
algebra (sec [KalK72], [KIiPR88] for details). If (G, Q) is 2-closed then the corresponding
Krasner algebra K is generated by binary relations, however, in general this is not the
case. It turns out that the occurence of a non-Schurian cellular ring can be explained
in terms of Krasner algebras. Roughly speaking, such rings are closed with respect to
the usual binary operations on matrices, but they are not closed with respect to suitable
multiary operations (which can be associated with so-called high stabilization). Simple
versions of such k-ary operations (k > 2) were discussed by Wielandt in [Wie64], [Wie69),
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and in papers related to strongly regular graphs, see e.g. [HesH71], [BrolK89]. A detailed
exposition of all these questions and of their interrelations with results from [Fur87) and
[CaiF192] will be the subject of the third paper of our series.

At the beginning, the members of Kaluznin’s school were not well-acquainted with the
Weisfeiler-Leman approach. They used the term V-ring, which in [K1i78] was first changed
to cellular subring of a centralizer ring. At the same time (in 1978) I. A. Faradzev and
several of his students together with M. Klin began a long and fruitful collaboration of
the Kiev and Moscow schools.

10.10. Association schemes: an explosion of interest.

The paper [Del73] (P. Delsartes’s doctoral thesis) is considered as one of the best mono-
graphs on association scheme theory. This important link between combinatorics and
algebraic coding theory has widely enlarged the use of association schemes.

Almost at the same time N. Biggs (see [Big74], [Big76]) posed certain problems related
to the notion of distance regular graphs (a generalization of strongly regular graphs). The
existence of a distance regular graph of diameter d implies the existence of a so-called
p-polynomial association scheme with d classes.

The notion of 2-orbits (proposed by Wielandt in [Wie69] and adopted in [KalK72]) as well
as the equivalent notion of an orbital graph of a transitive permutation group (introduced
by Sims) became rather popular due to such papers as e.g. [Sim67-68], (Qui71], [Kna73),
[Cam74], [Neu77].

Within a few years the interest in association schemes grew explosively. The results of
the initial period of their development have been summarised by E. Bannai and T. Ito in
[BanI84]. Their bibliography includes 404 items (not including the results of the Soviet
school which were absolutely unknown to mathematicians in the West till the appear-
ance of the paper [Iva83] by A. A. Ivanov). An additional 163 references will be found
in two supplements to the Russian translation of [Banl84] which was published in 1987.
Nowadays association scheme theory is a well-developed part of algebraic combinatorics.
A significant amount of its results are reflected in [BroCN89|, [God93], (Zie96).

10.11. Algebraic combinatorics.

The reader without mathematical training certainly has become confused by the stream
of new notions and references to be encountered in the previous subsections. In fact,
this is only a minor part of the available information. We believe that this part will
help to realize the existence of a new wide area of mathematics and of its links with
numerous subjects in mathematical chemistry. To our knowledge the name ”algebraic
combinatorics” for this area was used first in [BanlI84]. During recent years it has almost
completely replaced the older term "algebraic graph theory”.

In fact, algebraic combinatorics (as it is used, say by Math. Reviews), covers a wider
part of mathematics, including such subjects as formal power series, incidence algebras



of partially ordered sets, Mabius inversion, symmetric functions, Burnside rings etc. The
books [Sta86], [Ker91] are recommended as excellent guides to these areas. However, here
we conceive the term "algebraic combinatorics” in a restricted sense, i.e. in the sense of
Bannai and Ito.

Besides the above mentioned monographs association schemes have been discussed also
with respect to various other topics. In particular, chapters on association scheme theory
can be found in [Demé68], [CveDS80], [MacS78), [LinW92].

Computational aspects of coherent algebras are discussed in [Fri89], [Pon93], [FarKM94].

10.12. Due to the elementary level of our presentation it is not possible to submit here
a detailed and deep survey of algebraic combinatorics. Much interesting information will
be found in [Banl84]. Additional historical details are mentioned in [KIi85], [KLF86],
[FarlK90] and [FarKM94]. In a few lines only we add some examples of questions which
are not touched otherwise in this section.

Finite geometries play a significant role for the establishment of association scheme the-
ory. We prove this by two illustrations:

(A) F. Levi, one of the founders of modern discrete geometry (see [Lev29]), after his
emigration from Germany worked at the University in Calcutta. His six public lectures
[Lev42] delivered at this university helped researchers in design of experiments to become
acquainted with literature which was not available in India.

(B) For many mathematicians the book {Dem68] by P. Dembowski was the first source
for getting acquainted with association schemes. In particular, it was cited by Higman in
[Hig70].

Modern spectral and structural theory of BM-algebras (it is out of our scope here) in its
main features has been developed many years ago by O. Tamaschke for the case of S-rings,
see e.g. [Tam64], [Tam68], [Tam70]. A more general approach is developed in [Zie96].

Classification of finite simple groups has been achieved as a result of 25 years collective
effort of hundreds of mathematicians (the size of all papers related to the complete proof
is of about 10000 pages), see [Gor82]. This classification implied numerous important
consequences in modern mathematics, in particular, in algebraic combinatorics.

Certain other questions which are closely related to the main line of the present paper
will be briefly discussed in the final subsections.

10.13. Double cosets.
Let G be a group and F, K two of its subgroups. For each g € G define

FgK ={fek|feF ke K}.
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This set is called a double coset of G with respect to F, K. If F = K then FgF is called
a double coset with respect to F.

The set of all different double cosets of G with respect to F' forms a partition of G.
Moreover, simple quantities coresponding to double cosets generate a Schur subring of
the group ring Z(G) which is denoted by H(G, F). This ring is called a Hecke ring (Hecke
algebra, if the coefficients are taken from ).

Let (G,Q) be a transitive permutation group, a € €, F' = G, the stabilizer of the point
a. It turns out that the centralizer algebra V/(G,) is isomorphic as an abstract algebra
(anti-isomorphic in the non-commutative case) to the Hecke algebra H(G, F), for details
see [BanI84], [FarKM94].

In more sophisticated terms analogous anti-isomorphisms can be established for central
izer algebras of intransitive permutation groups.

Thus, in principle, all information related to centralizer rings of permutation groups (in-
cluding structure constants and generalised adjacency matrices) can be described in terms
of double cosets.

Double cosets themselves are well-known in group theory from the time of A.L. Cauchy
onwards, see [(Cau846]. The notion of Hecke algebras goes back to E. Hecke [Hec37.
Hecke algebras in evident form but in different terminology were used first by Manning
and Frame (see above). To our knowledge Frame was the first to use double cosets in
chemistry.

Nowadays, double coset techniques give examples of deep and wide applications of group-
theoretical methods in chemistry. Below we mention only a small selection from the
related bibliography: [HasR73], [BroHM74], [HasRKS79], [Fra79], [BroGW83], [RucK83),
[Has85), [Bro86] (the titles give also a list of several important lines of applications).

The papers [KIiTZ91], [K1iZ91), [L10J98] and [Bro94] are examples for the discussion of
reaction graphs of degenerate rearrangements of chemical compounds in terms of 2-orbits
and double cosets, respectively. The use of 2-orbits for this purpose goes back to [JonL83].

Enumeration (constructive and analytical) of chemical isomers is perhaps the best illus-
tration of the fitness of double cosets in theoretical chemistry, see [KerL98] for a clear
description of all necessary concepts.

We intend to discuss the interrelations between relational and double coset approaches
for the application of centralizer algebras in combinatorics in a future paper. Roughly
speaking, the enumeration of strongly regular graphs and the enumeration of all graphs
illustrate the advantages of the first and the second approach, respectively. The auto-
morphism group of a graph is usually determined in terms of the first approach. Double
cosets seem to be very effective in constructive enumeration of substituted isomers (which



appear via coloring of ligands of a prescribed molecular graph).

10.14. The main subject of this paper can now be reformulated as the problem of clas-
sifying pairs of vertices in a given graph I'. The set of 2-orbits of Aui(I') gives a solution
to this problem. This set can be found by efficient algorithms which are presented in
[FarK91], [FarKM94]. However, there is no proof of a polynomial time bound for the
complexity of these algorithms.

The notion of a cellular ring (coherent configuration) serves as a rather good combina-
torial approximation of the centralizer ring (the set of 2-orbits). The minimal cellular
ring W(A4) which includes the adjacency matrix A = A(T) can certainly be constructed
in polynomial time.

As was mentioned in Section 3, during more than 20 years chemists were not aware of the
Weisfeiler-Leman approach or its analogs. The first attempts of classification of pairs of
vertices in chemical graphs were done in terms of distances between vertices [CarSV85).
The notion of 2-orbits stayed unused by chemists. However, G. Riicker and Ch. Riicker
elaborated for use in the chemical world an algorithm for the classification of pairs of
vertices which is based on the computation of powers of the adjacency matrix. This work
is similar to the Weisfeiler-Leman approach.

Starting in September 1990, the four authors of the present paper tried to create a com-
mon understanding of the subject. We believe that the level of explanation of our paper
can be considered as a convenient compromise between different standards traditionally
adopted in mathematics and chemistry. Moreover, we hope that this paper will serve as
a background for future interdisciplinary investigations and applications.

We have tried in this paper to overcome not only the evident difficulties of communica-
tion between mathematicians and chemists but also to smoothen the differences between
the terminology used in celiular algebras and the theory of coherent configurations (as
was already mentioned, during almost 20 years the Soviet school worked in complete
isolation). In our opinion, the relational terminology of coherent configurations can be
naturally combined with the matrix terminology of cellular algebras. Certain patterns of
this combination can be observed in the previous sections.

10.15. Graph stabilization as it was suggested by Morgan [Mor65] is the common starting
point of all origins of this paper (see e.g. [Weil68], [Tin76], (HinT77], [RueR90b|). We
were not able to explain this technique thoroughly within the framework of the present
paper (Part I). However, it is the main subject of two subsequent papers of the series.
Part IT (which is written by L. Babel, M. Klin, LV. Chuvaeva and D.V. Pasechnik)
is devoted to detailed considerations of the Weisfeiler-Leman stabilization procedure, its
theoretical complexity and its program implementation. In a more general context sev-
eral different stabilization procedures are considered in Part 111 In particular, we shall
consider stabilization of depth k (deep stabilization in terms of [Wei76]). For k = 2 it
coincides with the so-called total degree partition. An algebraic interpretation of the total
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degree partition in terms of doubly stochastic matrices was first achieved by G. Tinhofer
in [Tin86] and [Tin91]). An information about the preliminary versions of the parts II, 1II
is now available from the home page of G.Tinhofer.

WL-stabilization coincides with stabilization of depth 3. It was a long-standing question
whether there exist cellular algebras which are stable with respect to stabilization of depth
k, k > 4, but which are not centralizer algebras of suitable permutation groups. Finally,
examples of such algebras for k£ = 4 and k = 5 have been given in [Iva87], [Iva89] and
[BroIK89]. Examples for arbitary values of k have been given in [Fur87] and [CaiF192],
however, the presentation in the latter papers is very sophisticated and difficult to un-
derstand. We plan to give a revised and friendly interpretation of Fiirer’s examples in
further parts of this series.

10.16. We hope that our series of papers will help to create new standards in mathemati-
cal chemistry and, first of all, will help to bridge the gap between the current achievements
in algebraic combinatorics and the actual level of treatment of the graph isomorphism
problem in mathematical chemistry.

There is one more point which deserves steady attention: the relationship between geo-
metrical and combinatorial symmetry of molecular graphs. The legitimity of using the
whole automorphism group in chemical informatics is, of course, beyond every question.
However, for "internal” purposes chemists still prefer to give a convenient geometrical
interpretation to each symmetry of a molecular graph. The first attempt of an extension
of the traditional geometrical vision of symmetry was done by H. C. Longuet-Higgins
in [Lon63). Other attempts were done in [Hin79] and, in particular, in [Dre79]. A very
detailed discussion of the symmetry properties of molecules can be found in [Ezr82] and
[UgiDKM84]. Nevertheless, the use of "honest” combinatorial symmetry is still a very rare
event in chemical papers. We hope to investigate this phenomenon in all its consequences.
The final goal of this activity is to create a rigorous and clear mathematical description of
what a chemist does when trying to identify or differentiate similar arrangements of atoms
(in mathematical terms, the goal is to create suitable equivalence relations on the set of
spatial arrangements of the atoms which describe a given molecule). The first attempt
to do this, which can be found in [TraZ87], [KIiTZ90], is not yet very well developed and
can serve as a preliminary hint only. Moreover, graph-theoretical models are not suffi-
cient for an adequate mathematical description of molecules. Impressive examples of the
limitations of purely graph-theoretical ideas have been known to chemists since the early
development of the structural approach to organic chemistry. For example, Crum Brown
in [Cru864] was not able to explain (in the terms of constitutional formulae) the difference
between maleic acid and fumaric acid, or between optically active and inactive malic acid,
etc. Only the interplay between graph theory and discrete geometry will give sufficient
mathematical background for a suitable description of all organic molecules. The elabo-
ration of a convenient rigorous mathematical model for chemical stereoconfigurations is
still one of the most challenging problems in mathematical chemistry.
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10.17. This paper is a revised version of the technical report which was published in
1995 as a preprint TUM-M9510 of the Mathematical Institut, Technical University Mu-
nich. During the last few years a number of new important publications related to the
subject of our series, appeared, for example [LaiCI97], [Fau98]. Unfortunately, we were
not able to survey these publications in Part 1.

Unless more convenient otherwise M. Klin should be regarded as the corresponding anthor.
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