communications in mathematical

[IFLL no. 40, October 1999

and in computer chemistry

ISSN 0340-6253 MATCDY (40) 265-272 (1999)

Computing equitable partitions of graphs

Oliver Bastert®
Zentrum Mathematik, Technische Universitat Miinchen, Germany

Abstract

In this paper, we discuss a new algorithm for computing the coarsest equitable partition
of a graph. The algorithm presented here is space optimal and fulfills the best known
time bound of O(m log(n)).

1 Introduction

In this paper, we discuss a new algorithm for computing the coarsest equitable partition
of the vertex set of a graph. Equitable partitions were first introduced in [Sac66, Sac67,
Sch74]). They play a crucial role in attacking the graph automorphism and the graph
isomorphism problem (see [McK81]). For a general reference on equitable partitions see
[CG97, CRS97, God93] and the contribution [ST99] in this volume.

The preferred way to illustrate our algorithm is to think of vertex-colored graphs, two
vertices having the same color iff they lie in the same set of the partition. Hence, we will
deal with vertex-colored graphs instead of graphs and vertex partitions.

The coarsest equitable partition, which is the most important one, is also known as
the total degree partition This term indicates the idea of the algorithm presented in the
following. It starts by coloring the vertices by their degrees, i.e., two vertices obtain the
same color iff they have the same degree. In the next step, two vertices obtain the same
color iff they had the same color before and, for each color occurring in the graph, they
have the same number of neighbors of this color. In general, the number of colors will
increase during this step. It is repeated until the number of colors does not increase
anymore.

An efficient implementation of a higher dimensional variant of this algorithm, known
as Weisfeiler-Lehman algorithm, has been discussed in [Bas98].

After introducing the basic notation, we present the ideas which allow the new algo-
rithm to compute the coarsest equitable partition to require linear space and fulfill the

*Email: bastert@mathematik.tu-muenchen.de
Supported by the Deutsche Forschungsgemeinschaft through the graduate program Angewandte Algo-
rithmische Mathematik, Technische Universitdt Miinchen.

266 —

best known time bound of O(mlog(n)). Finally, we discuss an implementation based on
the presented ideas.

2 Basic notation

Let G = (V, E, f) be a vertex-colored graph, i.e., G consists of a vertez set V := {1,2,...,n},
an edge set E C P¥(V), m = |E|, and a vertez-coloring, f : V — {1,2,...,n}. To
simplify the discussion, we deal only with connected undirected graphs, but all results
presented here are valid for directed graphs as well. Two vertices v and w are called
adjacent iff {v,w} € E. w is called a neighbor of v.

By v and w, we always denote vertices, b and ¢ denote colors, and we assume w.l.o.g. that
a vertex-coloring f maps onto F := {1,2,...,ns}, ny:= |f(V)].

Vertices with the same color ¢ are collected in a color class

C(e) ={v| flv) =<}

and we define C(v) := C(f(v)).
The integers
gt 1= [{w € V| f(w) = c and {v,w} € E}|

are called the structure values of G. pf is the number of neighbors of v with color c.
Let

L(v) := {(¢,p) | c € F, p§ # 0}
be the structure set of v and

L{c) ={(v,}) | v € V,pj # 0}

be the siruciure set of ¢. In L(v), the numbers of neighbors of the vertex v distinguished
by their colors are collected. L{c) collects vertices and their number of neighbors with
color c.

A partition P = {P, Ps,..., P}, Ui, P; = V, of the vertex set is called equitable iff

v,w€ P, & L{v) = L(w).
A vertex-coloring is called equitable iff
fw) = f(w) & L(v) = L(w).
Let § C V be a set of vertices. We define
N(S)={weV|weS:{vw}eE}

We write N(v) instead of N({v}). Observe that this definition differs from the standard
definition of the neighborhood of a set of vertices.

The standard algorithm for computing the coarsest equitable coloring can be stated
as follows.

— 267

Algorithm 1 Equitable Coloring
Input: G = (V,E, f)
Output: A equitable coloring f of G

repeat
compute L{v), Vo € V' _
splitcolor, i.e., f(v) = f(w) 1 L{v) = L(w) and f(v) = f(w), v,w € V
recolor, ie., f=f

until ny did not change

LT N O

One iteration of Algorithm 1 is called a step (lines 2-4) and will be denoted by (step).
We refer to f as pseudo coloring of the vertices. f is needed to define the set of new colors
N. N is initially defined as the set f(V) and will be recomputed directly prior to every
{recolor) operation as N := f(V)\ f(V).

A straightforward analysis yields a worst-case running time of O(n®log(n)) since the
best known bound on the number of steps is n. Examples with 7 steps can easily be
constructed.

Aho et al. [AHU74] have shown that one can avoid to compute all the structure sets
in each step. Moreover, they suggest that if a color class is split into several classes, the
largest new color class keeps the old color and the other new classes obtain new colors.
Using the fact that the structure set of a vertex has to be taken into account only if one
of its neighbors obtained a new color during the last recoloring, each vertex has to be
recolored at most log(n) times.

Taking this into account, they are able to proof a worst-case time bound of O(m log(n)).
The major disadvantage of this procedure is that it could happen that the sum of the
sizes of the computed structure sets in some steps are in £2(m) and thus, the splitcolor
procedure becomes costly. It would suffice to compute only the structure sets belonging
to one color class at a time. But still, the sum of the sizes of these sets could still be in
Q(m).

3 The new approach

The main idea of our approach is to compute only parts of the structure sets of the vertices
but for all vertices at a time. Le., we compute the sets L(c) instead of L(v). So (step)
can be reformulated as follows.

Here, the graph is stored using adjacency lists, i.e., for every vertex, we store a list of
its neighbors, and the vertices are stored in an array of size n. This algorithm (Algorithm
1 with the procedure {step)) requires only linear (in m) space. We are now going to prove
the time bound of O(mlog(n)).

For this, it is necessary to apply the results of Aho et al. to the new algorithm. It
will be shown that (compute L(c)) can be implemented in O(|N(C(c))| + |C(c)|) time,
(splitcolor) can be implemented in time O(|N(C(c))|), and (recolor) can be implemented
in O(n) time.

— 268 —

Procedure 2 (step)
1% fE If
2: for all ¢ € N do
3: compute L{c)
4: spliteolor(c), i.e., split the colors in the following way:
o) = f(w) &> f(v) = f(w) and pS =35, Vw,we V.
5: end for
6: recolor

To see this, it is necessary to describe the data structure in more detail. The color
classes are stored in an array. Each class consists of a doubly linked list between its
members. Furthermore, every vertex knows its color. The structure sets L{c) are stored
as doubly linked lists, similar to the color classes. This makes it possible to carry out
append, delete and update operations in O{1).

vertices .

foinE - Ii- +1 -

color classes

Figure 1: The color class ¢ consists of the elements 1,3, ...,4%,...n, and 7 has the neighbors
3.k, 1L

To present a fast version of (splitcolor), we need some more notation. A vertex v is
called hit by ¢ if pf > 0, a color class C(b) is called hit by ¢ if some v € C(b) is hit by e.
C(b).hit denotes the number of hit elements of C(b). This number is needed in {splitcolor)
and can easily be computed in Procedure 3 (which is done in lines 3-5).

Procedure 3 (compute L(c))
1: for all w € C(c) do
2. for all v € N(w) do
3: if p; == 0 then
4 C(f(v)).hit + +

5: append (v, p$) to L(c)
6: end if

7 5+ +

8:

update the entry of (v,pS) in L(c)
9: end for
10: end for

— 269 —

Obviously, the time for computing the structure set L(c), needed in line 3 of Proce-
dure 2 is bounded by O(|N(C(c))| + [C(c)]) (see Procedure 3 for details). Since each
vertex is recolored at most log(n) times, the sum over the computing times of all structure
sets computed during the execution of the algorithm is bounded by O(m log(n)).

We now turn to the analysis of Procedure 4 (splitcolor). Using bucket sort, the
sorting of L(c) by the values pS (line 1) can be bounded by O(|L(c)|).

Procedure 4 (splitcolor(c))
1: sort L(e) by the values pS
2: for all v is first vertex in L(c) with color f(v) do
& b= f(v)

4: if C(b).hit < C(b).size then
5: C(b).current p:=0

6: else

7: C(b).current_p := pf,

8: end if

g:

C(b).current.color := b

10: C(b).hat :=0

11: end for

12: for all v € L(c) do

13 if C(j_:(v)).current_p # pS then

14: C(f(v)).current p := p5
15: C(f(v)).current_color := nj+1
16: end if

17: C:(f(v)).siz:z - =

18 f(v) := C(f(v)).current_color
19: C(f(v)).size + +

20: end for

In {splitcolor}, the pseudo recoloring will be done in the following way. New pseudo
colors are assigned according to an increasing ordering of the values pf.

In Procedure 4, we determine the smallest p{ of each color class C(b) hit by ¢ (stored
in C(b).current_p). Observe that if some vertices of C(b) are not hit by ¢, i.e., pS = 0,
they do not appear in L(c). It is not possible to find the smallest pS by scanning through
all elements of C(b) because C(b) or at least the sum of the sizes of all hit color classes
might be too large. We want vertices with the smallest p to keep their old (pseudo) color
and the other ones obtain new (pseudo) colors. These temporary (pseudo) colors will be
reassigned in (recolor). One possible solution for computing the smallest p¢ is shown in
lines 2 — 11. These lines need the sizes of the of the (pseudo) color classes which are
updated in lines 17,19. In lines 12 — 20, the new pseudo colors are allocated and assigned
as described before. Summing up this discussion, Procedure 4 has an overall running
time of O(|L(c)]) = O(|N(C(c))|) and thus, we obtain an overall running time of this
procedure of O(m log(n)).

— 270 =

Procedure 5 (recolor)
. Let L be the list of all vertices which got a new pseudo color.
; for all v€ L do
delete v from its color class C(f(v))

1

2

3

4 append v to C(f(v))
5. end for
6

7

8

9

. for all ¢ = f(v),v € L do B
compute d with |C(d)| = max{|C(f(v))| | f(v) = ¢}
if |C(d)| > |C(c)| then
exchange the colors of the color classes C(c) and C(d)
10: end if
11: end for
12: update f

To finish the step, we have to transform the pseudo colors distributed by (spliteolor)
into a new coloring. (recolor) (see Procedure 5) ensures that the largest color classes
keep their old colors and does the updating of the color classes and colors. This is necessary
for the validity of the results of Aho et al..

Computing the list L (line 1) can be done by keeping track of the new colors during
each (step). In order to update our data structures, the vertices have to be moved from
their old color class to their new one. In our data structures, deleting an element from
its color class and appending an element to a new class takes time O(1). Thus, lines 2-5
of procedure (recolor) take only Q(n) time. Since the sizes of the new color classes are
known, all executions of line 7 during one execution of Procedure 5 take time O(|L|).
Hence, lines 6-11 take time O(|L|) as well since two colors will be exchanged iff the new
color is larger than the old one. The final line of this procedure can be implemented in
time linear in |L|.

We conclude that all statements of Procedure 5 can be executed in time O(|L|) =
O(n).

Theorem 1 The Algorithm 1 together with procedure Procedure 2 has a worst-case
running time of O(mlog(n)).

The algorithm presented above does not compute a canonical coloring but the algo-
rithm can be easily adjusted to compute a cancnical coloring.

4 The Implementation

The above algorithm is implemented in the program gstab® which was written in C++.

'The program is available at
http://www-m9.mathematik.tu-muenchen.de/ bastert/qstab.html.

~ 1271 -

We like to introduce some ideas which decrease the running time of the algorithm
considerably. Instead of refining the coloring by considering all necessary colors ¢ and
then recoloring once, we refine the coloring by considering one color only and then recolor
immediately. This results in much more recolorings and blasts the theoretical time bound
but reduces the sizes of the color classes very quickly. This leads to a practically much
more efficient algorithm.

One can observe that many structure sets will not yield a refinement of the coloring.
It is easy to check whether a color class C(b) will be split by a structure set L(c} or not.
If

max{p | v e C(H)}- [C) = 3 7,
vec(s)
then the color class C(b) will not be split, otherwise it will. If we check this condition after
computing the structure set and then reduce the structure set if possible, the running time
decreases.

To give an idea of the speed of the algorithm, we have tested it on two graph classes,
namely benzene stacks and dynkin graphs. Two example instances are depicted in Figure
2.

%

(a) The benzene stack (b) The dynkin graph with 10
with 18 vertices vertices

Figure 2: The test instances

Table 1 shows the CPU times in seconds and the number of colors of the coarsest
equitable partition of each instance. The results have been obtained on a PC Pentium
11/350, Linux 2.2.7, 64 Mb memory, using the GNU C/C++ compiler, version 2.7.2.

Besides the number of vertices, the computation time depends highly on the number
of colors of the resulting partition.

— 272 —

benzene stack | dynkin graph

vertices || colors time | colors time
200004 | 33334 135.19 | 200003 802.56
150000 || 25000 76.27 | 149999 452.39
100002 || 16667 34.25 | 100001 201.28

10002 | 1667 0.4 | 10001 2.1
1002 167 0 1001 0.02
102 17 0 101 0
12 2 0 11 0

Table 1: Computational results

References

[AHU74] A. V. Aho, J. E. Hoperoft, and J. D. Ullman. The Design and Analysis of

[Bas98]

[CG97)

[CRS97]

[Godo3]
[McK81]

[Sac66]

[Sac67)

[Sch74]

[ST99)

Computer Algorithms. Addison-Wesley, 1974.

O. Bastert. New ideas for canonically computing graph algebras. Technical
Report TUM-M9803, Technische Universitat Miinchen, 1998.

A. Chan and Ch. D. Godsil. Symmetry and eigenvectors. In G. Hahn and
G. Sabidussi, editors, Graph Symmetry: Algebraic Methods and Applications,
volume 497 of NATO ASI Series C, pages 75-106. Kluwer, 1997.

D. Cvetkovié¢, P. Rowlinson, and S. Simié¢. Eigenspaces of Graphs. Encyclopedia
of Mathematics and Its Applications. Cambridge University Press, 1997.

Ch. D. Godsil. Algebraic Combinatorics. Chapman & Hall, 1993.

B. D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45—
87, 1981.

H. Sachs. Uber Teiler, Faktoren und charakteristische Polynome von Graphen
1. Wiss. Z.,12:7-12, 1966.

H. Sachs. Uber Teiler, Faktoren und charakteristische Polynome von Graphen
II. Wiss. Z., 13:405-412, 1967.

A. J. Schwenk. Computing the characteristic polynomial of a graph. In R. Bari
and Frank Harary, editors, Graphs and Combinatorics, pages 153- 172. Springer,
Berlin, 1974.

P. F. Stadler and G. Tinhofer. Equitable partitions, coherent algebras and
random walks: Applications to the correlation structure of landscapes. Match,
this volume, 1999.

