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Abstract

A landcape is a pair (G, f) of a configuration graph G and a fitness function f: V — R
defined on the vertex set V of G. It is a mathematical model for studying functions on
a discrete set V' where the neighborhood relation on the graph defines how one is able to
move within this set and how one gets access to the values of f. There are many situa-
tions where such a model is of high interest, in chemistry and elsewhere. Configuration
spaces in molecular biology, spin glass models in physics, QSAR models in chemistry or
pharmacology are landscapes in our sense, as well as the solution spaces of combinatorial
optimization problems together with a solution heuristic like simulated annealing or some
version of a genetic algorithm.

Autocorrelation functions are useful mathematical tools for a profound study of lands-
capes. These functions are defined in terms of random walks on G and represented
conveniently either using eigenvalues and eigenspaces of the configuration graph G or via
equitable partitions derived from its coherent algebra. In this paper we give a comprehen-
sive introduction into the use of equitable partitions for investigating spectral properties
of typical configuration graphs. The techniques demonstrated here are certainly useful in
a wide range of applications in chemistry, not only in the study of landscapes. Further
we present some basic notions from the theory of coherent algebras and show how these
notions enable us to work out a rich panel of autocorrelation functions for a fixed fitness
function f.
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1 Introduction

1.1 When one is asked to express a “landscape” in mathematical terms, then it seems
straightforward to start with a function f : §* — R that expresses the altitude of a
location in terms of its geographical coordinates. In fact, this is how topographical maps
are represented in a computer. Sewall Wright [82] used this picture to describe evolutio-
nary adaptation as an uphill walk on a “fitness landscape”, where altitude is replaced by
reproductive success and the geographic coordinates are replaced by a representation of
an organisms genetic composition.

Conceptually, there is a close connection between the (biological) landscapes and the
potential energy surfaces (PES) that constitute one of the most important issues of theo-
retical chemistry [52, 32]. As a consequence of the validity of the Born-Oppenheimer
approximation, the PES provides the potential energy as a function of the nuclear geo-
metry of the system, U(R). PES are therefore defined on a high-dimensional continuous
space and they are assumed to be smooth (at least twice continuously differentiable).

An important difference, however, becomes immediately evident. While geographic or
atomic coordinates are taken from a continuous space, genes are inherently discrete and
finite objects. While the analysis of PES makes extensive use of differential topology,
we need different tools to work with discrete landscapes. By replacing the sphere 5°
of geographic coordinates or the 3N-dimensional Euclidean space of atomic coordinates
for an N-atomic molecule by a discrete set, we give up all hope to use calculus on our
landscapes. For instance, the critical points of a PES, characterized by VU(&) = 0, have
no obvious discrete counter part. Local minima and maxima are easily defined given a
proper adjacency relation or metric on the set of genes. The proper analogue of a “saddle
point”, however, remains elusive.

1.2 A landscape, hence, consists of a finite set V' of configurations, which is usually
very large, and a fitness function that “evaluates” the configurations. In order to speak
about “geometric” notions such as a “hill” that has to be “climbed”, we need a notion
of closeness, accessibility, or distance among the members of V. In the simplest case we
assume a neighborhood relation among the configurations. In biological terms, we say
that two genes are neighbors of each other if and only if one can be converted into the
other one by means of a single mutation event. Qur set of configuration thus becomes
a configuration graph, with vertex set ¥V and an edge connecting “neighboring”, that is
mutually accessible, configurations.

1.3 Such a construction is by no means restricted to models in evolutionary biology.
Hamiltonians of disordered systems, such as spin glasses [7, 51], and the cost functions
of combinatorial optimization problems [26] have the same basic structure. Let us briefly
consider a few examples:



Spin glass Hamiltonians are a well studied model of disordered systems. These models
consists of a collection of n spin variables o; that may have the values up (+1) and down
(~1). The energy of a particular spin configuration is described by a Hamiltonian, which
most commonly is assumed to be of the form

Hio) = Z Jij0:0;
]
where the sum runs over a set of “interacting” pairs of spins. The coefficients J;; measure
the “interaction strength” of each pair of spins. Assuming that the spins are arranged
on a lattice 1 - j refers to lattice neighbors, while in a long-range model, such as the
Sherrington-Kirkpatrick model [64] the sum runs over all i < j. The dynamical behavior
of spin glasses is commonly investigated based on the assumption that the “elementary
move” is flipping a single spin, ¢; = —o;. This arranges the spin configurations {¢} in a
hypercube of dimension n, see 3.9.4.

Lattice models of protein folding (15] and RNA folding [21] belong to the same class of
models. The configuration sets in these cases, however, contain more complicated objects
than strings in these cases. One has to deal with self-avoiding walks on certain lattices
and a particular class of sub-cubic outerplanar graphs, respectively.

A combinatorial optimization problem, by definition, consists of a set V' of configurations
and cost function f : V — R. The configurations may be encoded as strings taken
from a alphabet A as is commonly the case in applications of genetic algorithms [36],
permutations as in the case of the Travelling Salesman Problem (see 3.9.5), or trees as
in genetic programming [44]. Similar constructions can be found in search theory [59]. A
large class of optimization heuristics, including simulated annealing, works by iteratively
testing “neighboring” configurations and accepting them under certain conditions. Hence,
they are implicitly defining a landscape, as emphasized in (39, 40].

1.4 The relationships between the chemical or pharmacological activity of a molecule and
its underlying structure is of utmost importance in drug design. The molecular structu-
res, represented by their structure formulas (graphs), take on the role of configurations,
while to cost function measures the activity. In methods such as QSAR (Quantitative
structure-activity relationships) [31, 45] so-called “descriptors” or “indices” (i.e., numeri-
cal parameters) are derived from a molecular graph, or via the detour of computing the
detailed three-dimensional spatial and electronic structure of the molecule. The vector of
these indices is then related to a particular physical, chemical, or biological property of
interest by means of multivariate statistical data analysis.

In the language of this paper we may interpret QSAR as a landscape problem. The fitness
function f : V —> R assigns an activity f(z) to each molecular structure graph z € V
taken from a predefined class V' of molecules. The computation of the descriptors and
their translation into activity is all encapsulated in the fitness function f in this picture.
A graph structure on V could be imposed by simple “edit operations” on the backbone,
preferably operations that correspond to reasonable chemical reactions.



The QSAR approach is generally based upon evaluation of sets of con-generic molecules,
where the relationship between structure and measured effect can be readily elucidated.
With diverse molecular sets, predictions are less precise and links between structure and
mechanism may be difficult to discern. The necessity to screen diverse compounds in the
drug development process requires QSAR analysis of diverse (non-con-generic) molecules
for predicting e.g. cytotoxicity. Recently this has lead to the application of combinatorial
optimization techniques, such as Genetic Algorithms, to improving and searching the
predictive models, especially in the context of diverse sets of molecules [60].

1.5 One crucial difference, however, separates landscapes in chemistry, biology, and phy-
sics from those of operations research and computer science. The neighborhood relations
are predefined by nature in the former cases as spin flips, point mutations, or chemical
reactions. When designing search strategies or optimization heuristics, on the other hand,
we have a free choice of the “move set”. In fact the efficiency of an optimization heuristic
depends crucially on selecting a suitable one.

The theory of algorithmic complexity [57] hence starts with the definition of V and f,
asking e.g. whether an efficient (i.e., polynomial) algorithm exists to find mingey f(z). In
most physical applications, however, the complexity of the problem in this strict sense
is irrelevant. Nature has already provided a search strategy (that is, a configuration
graph) and we are stuck with it. In this contribution we will therefore mostly investigate
properties of a landscape on a fixed configuration graph, although we will expand our
investigation to certain classes of related weighted graphs in section 5.

1.6 The main challenge to landscape theory is to determine which features of the fit-
ness landscape determine the evolvability of the systems on the landscape. It has been
known since Eigen’s [17] pioneering work on the molecular quasispecies that the dynamics
of evolutionary adaptation (optimization) on a landscape depends crucially on detailed
structure of the landscapes itself. Extensive computer simulations, see, e.g., [22, 23] have
made it very clear that a complete understanding of the dynamics is impossible without
a thorough investigation of the underlying landscape [18, 38].

The intuitive concept of the ruggedness of a landscape has been identified as one of the
most important characteristics of a landscape [78, 18, 67, 56, 42]. A rugged landscape,
so the intuition says, would contain many obstacles for optimization heuristics such as
simulated annealing of genetic algorithms, and hence “rugged landscapes” would be hard
to optimize in practice. There are at present three distinct approaches to define and
measure ruggedness: It is most easily quantified as the correlation of fitness values in
“neighboring” positions. Weinberger (78, 79] suggested the following procedure. Given
a Markov process on V, we sample the fitness values f(z(*)) along a trajectory of this
process, interpret them as a “time series”, and compute its autocorrelation function.

Alternatively, [56] proposed to use local optima, and [41] suggested the length distribution
of so-called adaptive walks. Some connections between these measures are discussed in
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[25]. The different definitions and measures for “ruggedness” that can be found in the
literature are not equivalent, albeit closely related with each other.

It should be kept in mind, however, that a landscape is of course not determined comple-
tely by its correlation functions, see [1] for an instructive example. Correlation measures
are good predictors for the “optimizability” of a landscape provided the landscape is ty-
pical in a sense which can be made precise in terms of maximum entropy type property
called “isotropy” [73].

1.7 Methods from spectral graph theory have been used in [71, 72, 74, 69] to explore
landscapes by ways of the structure of their correlation functions. Much of this work
is based on expanding a landscape into a “Fourier series”, with a “Fourier basis” that
is implied in a natural way by the configuration graph (or a more general so-called P-
structure in the case of recombination spaces [74, 69, 77]).

In this contribution we generalize previous results and put them into a unified perspective
making consequent use of two related contructions from algebraic combinatorics: equitable
partitions and coherent algebras.

This paper is organized as follows: In section 2 we define the notation and rehearse some
basic properties of landscapes on graphs and their “random walk” correlation functions.
Equitable partitions of matrices are employed in section 3 to simplify the task of com-
puting the spectrum of large graphs with a high degree of regularities. The problem of
finding usefully coarse equitable partitions is addressed in section 4. Coherent algebras
are used in section 5 to extend the notion of so-called elementary landscapes to certain
classes of random walks. We close with some concluding remarks in section 6.

2 Graphs and random walks on graphs

2.1 Let G be a graph with n vertices, vertex set V = {1,...,n} and edge set E. Unless
explicitely stated otherwise our graphs are undirected and have neither loops nor multiple
edges, i.e. E may be identified with an irreflexive and symmetric binary relation on V. If
uund v are adjacent vertices in G we denote this by writing u ~ v. An undirected edge
connecting v and v is denoted by [u,v], or simply by uv.

For v € V the set N(v) = {u : u~ v} is called the set of neighbours of v, its cardinality
|N(v)] is called the degree of v and is denoted by d,. A graph G is called D-regular, if all
its vertices have equal degree D.

All graphs considered in this paper are connected.

The adjacency matrix of a graph G is denoted by A(G), or simply by A, if G is fixed. It
is a symmetric matrix with entries from {0,1}. The 7j-entry of A is A (or sometimes
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(A);;). Vectors are understood as column vectors and denoted by bold letters like x, with
components 1, ¥, and s0 on. Let e be the n—dimensional vector of all 1's. The transpose
of a matrix A (or a vector x) is AT (or xT).

2.2 Let a connected graph G and a real-valued function f: ¥V — R be given. (G, f) is
called a landscape, G the configuration graph and f a cost or fitness function on G. If f
is constant we call (G, f) a flat landscape.

A landscape f determines an n-dimensional vector f with f, = f(v). Define
il o
f:mz_f(z), f*=fe, F={f{v) :veV}
i€V
1 5 .
af'= m{fﬂ' V(e —£).
If f is considered as a random variable with uniform distribution over F' then

F=Exp(f), a; = Var(f),
Le. f is the expectation and o% the variance of f.

A Maurkov chain on V is a sequence of random Variables Zy, Z,, Z,, ..., with common
range V', a stochastic matrix T of dimension n x n (the transition matrix) and a stochastic
vector p such that

Prob{Zy =t} =p;, 1 <i<n,

Prob{Z =i} = (pTT*),.
If T is such that T, > 0 implies uvv € E then the Markov chain is called a random welk
on the graph G. We may consider a random walk on G as a stochastic process where
we start at a vertex v with probability p, and move along the edges of G from vertex to
vertex, the probability for reaching vertex u after k moves beeing (p” T*),.. The standard

rendom walk on a graph G is the random walk with transition matrix T defined with the
aid of the adjacency matrix A by

1
Tuv = d_u Auv -

If G is D-regular this reduces to T = D 1A.
A Markov chain is called stationary, if p is such that
p'T=p".
In this case, p is called the stetionary distribution of the chain. For random walks on

connected graphs there is a unique stationary distribution, namely

d

P=my
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where d is the degree vector of G. In the case of a k-regular graph this reduces to the

uniform distribution 5

P =7
Vi

2.3 Consider the set F' as a (in general huge) ensemble of datas and G as a system of rules
specifying how one is able to move around in this ensemble. As it is most frequently the
case in dealing with a huge amount of datas the final goal ist to get a "global” description
of the function f “belonging” to F', i.e. one would like to know the details of the fitness
function f. A more realistic goal is to gather some amount of information about f and
infer statistical properties of the set of fitness functions that fit the given data. Such
statistical properties are conveniently expressed by values of statistical parameters like
the mean f and the variance a';‘. Another convenient way is to use a stationary random
walk on G and investigate its autocorrelation function.

Let Zy,Z), Zs,... he a stationary Markov chain on V' with transition matrix T and
stationary distribution p. Define F; = f(Z;), 7 > 0. Then

Exp(F) = Y f(k)pe,
k=1

Var(F) = 3 (f(k) — Exp(F))ps,
k=1
Cov(F, F) = 33 (f(k) = Exp(F))(f(1) — Exp(F;))pe(T )i,
k=1 I=1
Cor(F, Fy) Cov(F,, F)

Var(F;)\/Var(F)

Here the expressions Exp(F}) and Var(F;) are independent of i, while the covariance
Cov(F;, F;) depends on i and j only via the difference k = j — 4. The same observation
holds for the correlation Cor(F;, F;). Given f, the function r¢(k) = Cor(F;, Fiyy) is called
the autocorrelation function of the Markov chain.

2.4 If G is D-regular, then for the standard random walk T = D~'A, Exp(F,) = f
Var(F) = o}. Further,

f—f)TARf - f*
Cor(F;, Fix) = %17%*“)

The autocorrelation function is

= [f ;,f‘]T [DAM] [f ;ff‘] |
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Hence, ry(k) is a quadratic form

sl l—‘l/lfTT"f

where

, TF=— k>0

Since f has mean F =0 and 0;- =1, we have

T'f(k) = T'f(k), k> 0.

For this reason, in what follows we may assume w.l.o.g. that f = 0 and a} = 1. Under
this assumption we have
1
re(k) = !—v—lf'TT"f.

The function r; depends on the landscape only, ie., on f and on the graph G. It is
therefore a characteristic of this landscape. Its “shape” has been the topic of several
investigations reported in the literature, see e.g. [24, 37, 42, 65, 72, 78]. An important
result of these investigations is expressed by the following proposition.

Proposition 1. Let (G, f) be a non-flat landscape on a connected, D-regular graph G
with adjacency matrizr A. Then r; is an ezponential function if and only if f is an
eigenvector of A.

Proof. A proof of this statement has been given in [72]. Since it needs only a few lines,
we add it here for the convenience of the reader.

Since A is symmetric, there is a system on n orthonormal eigenvectors x*

A. Let Ay, Ay, ..., Ap be the corresponding eigenvalues. Then

X2y dor

T*x = (%)"x‘, 1<i<n.

Write

n
f= Ea,x‘,

=1

with appropriate constants a, ... , . Inserting this into the formula for r,(k) gives

=1

i=1 j=1
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Hence, ;(k) is exponential if and only if thereisa j € {1,... ,n} such that o; # 0 implies
Ai = A;. But this means

= Z ax' = fx

vA=A;

where (3 is a constant and x is an eigenvector for the eigenvalue A;. o

2.5 If G is not D-regular define a matrix D by Dj; =0ifi #jand Dy =d;, 1<i<n.
Then the transition matrix of a random walk on G is T = D' A. Since for a non-regular
graph the stationary distribution is

d

P=ﬁ,

in the definition for r;(k) no longer the arithmetic mean of the values of f appears. We
have to redefine f by

=3 ftiger
i=1

Further, the variance of the stationary distribution is
n
B iy — PP
q-gmnnmm

Under analogous assumptions as before (f = 0 and o} = 1) the autocorrelation function
reads now
Tf(k) = fTka
where 1
Ty = —DT*.
T 2E]
Again using the representation of f via the eigenvectors of A we find

n

rylk) = %EIZ

i MDY
=1 i=1

Form this expression we see that Poposition 1 can be extended to non-regular graphs as
follows: A non-flat landscape has an autocorrelation function of the form

ry(k) = (DTN

if and only if f is an eigenvector of A for the eigenvalue A; (1 <1 < n).
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2.6 Note that in the non-regular case the transition matrix T of the standard random
walk is not symmetric. In the case where this matrix is not diagonalizable, the x',... ,x"
are not necessarily eigenvectors of T. For this reason, when studying the properties of
random walks on a graph, the matrix L = D — A is a another useful tool which for certain
goals is more convenient than the adjacency matrix A, The matrix L is symmetric and,
therefore, we can represent any vector f as a linear combination of the eigenvectors of
L. However, if G is D-regular, then L and A have the same eigenvectors, and if ) is an
eigenvalue of A, then D — X is an eigenvalue of L, and vice versa. For a non-regular graph
@ this is not true. The matrix L is often called the admittance matriz of G, and —L is
called the Laplacian of G (for an explanation of this name see [11, 53, 54]). For the study
of the autocorrelation function of a landscape, the Laplacian —L is in general not more
advantageous than the adjacency matrix A.

In many practical applications an idealized model is used where the configuration graph
is regular (even in a stronger sense than D-regularity expresses). The non-regular case
becomes important when one wants to investigate the effects of slight perturbations of
the idealized model.

2.7 The autocorrelation functions of landscapes have been studied in numerous papers,
see e.g. [24, 37, 42, 65, 72, 78]. Its shape can be determined using the eigenvalues and
eigenspaces of the configuration graph. Therefore for this field of research the spectral
theory of graphs is of considerable importance. Spectra and eigenspaces of graphs ha-
ve been intensively investigated in the literature for several different reasons. Standard
books on this topic are [6, 13, 14, 28]. In many cases, combinatorial considerations allow
(at least partly) the determination of the eigenvalues of graphs, i.e. of their adjacency
matrices, without applying numerical methods. Numerous combinatorial tools have been
developed for this aim. In this paper we give an introduction into the use of one particular
useful combinatorial tool for investigating the spectra of graphs, the so-called equitable
partitions. Combined with a second powerful combinatorial tool, the coherent algebra of
a graph, we will be able to formulated further interesting results about autocorrelation
functions of landscapes.

3 Equitable partitions

3.1 Let G be a graph and let 7 = (V),...,V,) be a partition of the vertex set V into s
non-empty and pairwise disjoint cells V;. The partition 7 is called equitable (with respect
to G) if for each 7 and k the number of neighbors of a vertex u € V; which belong to Vi,
te. {v : v~ u}n V|, depends only on the cell indices ¢ and k and not on the vertex u
selected. We denote this number by Ry,
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An equitable partition is accompanied by a so-called quotient graph G/r. This is a
directed multigraph having the cells V; of = as vertices and Ry arcs leading from V; to
Vi (1 < i,k < s). The quotient graph is not necessarily symmetric, since in general
Rix # Rii. It can be considered as a visualization of the matrix R = (Ri), which plays
a crucial role in the study of the spectrum of G, as will be shown below.

To have an example, consider the graph in Figure 1. In a copy on its right side an equitable
partition is indicated by using different symbols for the vertices in different cells. The
third figure is the corresponding quotient graph.

Other examples one finds with the help of groups of automorphisms of a graph G. Let
Aut[G| be the group of all automorphisms of G, H any subgroup of Aut[G]. The orbits
Off,...,0f of V under the action of H is an equitable partition. In the example of
Figure 1 the mentioned equitable partition is the partition into the orbits of the group of
those automorphisms which fix the set of the two vertices marked by a full circle.

There are two trivial examples for equitable partitions: the trivial pertition n = {V},
where s = 1 and V) = V, and the discrete partition m = {V,,... ,V,}, where s = n and

Figure 1

Equitable partitions and the notion of the quotient graph have been introduced by Sachs
[62, 63]. The notation equitable partition was introduced in [66]. In [49] equitable par-
titions were studied to some extend in connection with their use in graph isomorphism
algorithms. Today, these concepts are well-known and treated thoroughly in several mo-
nographies (see (10, 14, 28]).
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3.2 For the aim of this paper we shall use a somewhat different approach to the notion of
equitable partitions. We will define them not as partitions of the vertex set of a graph G
, but as a partition of the rows and columns of an arbitrary matrix A. A similar approch,
however in a different context, can be found in [28].

Let again V' = {1,2,...,n}. For a partition = = {Vy,Va,...,V;} of V into s cells let
gl,g?, ... ,g° be the characteristic vectors of the cells, i.e. (g) = 1 if k € V;, and
(g*)k = 0 otherwise.

A partition 7 is called row equitable with respect to a matrix A if there exist real numbers
Ry, 1 <14,k < 5, such that

Ag =Y Rueg* 1giss
k=1
It is called column equitable with respect to A if there exist real numbers Cy such that

5
gTA=) Cug'” 1gi<s.

k=1

For two cells Vi and V; let A'%*) denote the submatrix of A (of dimension |V;| x |Vi|)
consisting of all entries A, with s € V; and ¢t € V}. In terms of these submatrices row
equitable means that all rows of A®* sum up to the same value Ry, i.e.

Ry, = ZAM:

LEVR
independent of s € ¥;. Column equitable means that all columns of A*) sum up to the
same value Ciy, 1.e.

Cu=Y_ Ag,

SEV

independent of t € Vi. By summing up the entries in A®® in two different ways, once
row-wise and once column-wise, we get the equalities

ViR = Cue|Val, 1 <4,k < 5.

Clearly, if A is symmetric, then row equitable implies column equitable, and vice versa.
In this case we call 7 simply equitable. If A is the adjacency matrix of a graph G, then 7
is equitable with respect to A if and only if 7 is equitable with respect to G.

Assume that 7 is equitable with respect to A. The numbers R;; and C;; are called the
structure constants of (A, ). The matrices

R = (R;j)1cijes and C = (Cyj)icijes
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are called the structure matrices of (A, ). Obviously, if A is symmetric, then C = RT.

In the example of Figure 1, the structure matrices are

1200 1100
1010 2010 "
R = 3 C= =R".
0111 0112
0020 0010
REMARK. Define R(m) = span(g’,...,g*) (the subspace of the n-dimensional real space
R spanned by the characteristic vectors g',...,g* of 7). Note that 7 is equitable with

respect to A if and only if R(x) is a left and right invariant subspace of R" with respect
to the action of A on R".

3.3 The usefulness of equitable partitions is expressed in the following proposition. By
spec(A) we denote the set of different eigenvalues, by xa (z) the characteristic polynomial
of A.

Proposition 2. Let R and C be the structure matrices of (A, 7). Then
(1) spec(R) = spec(C) C spec(A).
(2) Ax = Mx, g7x # 0 for at least one i, 1 <i < s, implies A € spec(C).
(3) xr(z) = xc(z); if A is diagonalizable, then R and C are also diagonalizable
and xr(z) s a factor of xa(z).

Proof. Assume that Ru = Au, Cw = pw, for some u # 0,w # 0. Define a vector
x= S0, uig'. Then

8 $ s 5
Ax = 2 'U.:;Agi = Z Z u,-RMg" =) Z ukg" = Ax.
=1 k=1 i=1 k=1

Since |Vi| - Rix = Cux - |Vi|, we get

s s
ZRim = Ay; = ZC‘-MIV}:\ = du;|Vil,
= k=1

§ s
Wy w;
Ciapwg = pw; =% ) R = por
§ ' a ,CZ‘:I Vel TV

This proves (1) and the first part of (3).
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To prove (2) assume Ax = Ax, x # 0. It follows

s
g TAx = Z Cag"Tx = 2gTx.

k=1
Hence, C has eigenvalue A with eigenvector u, where u; = g"Tx, 1<i<s.

Recall that a matrix is diagonalizable if and only if its minimal polynom has only simple
roots. Thus, in this case (1) implies that also the minimal polynomials of R and of C have
simple roots only, and these matrices are also diagonalizable. The proof of (1) shows that
a set of linearly independent eigenvectors of R determines a set of equally many linearly
independent eigenvectors of A. This completes the proof of (3). [

REMARK. It follows from part (2) of the proposition that, if A is an eigenvalue of A the
eigenspace of which is not orthogonal to span{g',...,g"}, then A € spec(C). Note that
(3) holds for any symmetric matric A.

According to [14] the main part of the spectrum of a matrix A is the set of those eigenvalues
of A which have an eigenvector not orthogonal to e. Since a vector which is not orthogonal
to e cannot be orthogonal to all vectors g',... ,g* it follows from Proposition 2(2) that
the main part of spec{A} is contained in spec(R.).

REMARK. Condition (2) in Proposition 2 can be used to guide the search for graphs that
have equitable partitions with a 1-point cell V; and spec(R) # spec(A). Suppose V; = {v}
and let A be an eigenvalue of A. Then A € spec(R) whenever there is an eigenvector x
of A such that z, # 0. Hence, we have to look for eigenvectors that vanish on certain
vertices of a graph. Oftentimes, such eigenvectors occur in graphs with “small” symmetry
groups.

ExaMPLE. For the adjacency matrix A of the path graph 2-1-3 we get
A= 0, x'=(0,-1,1),
A o= V2, xt=(—v2,-1,1),
A= V2, X =(v2,-1,1).

The partition m = {{1},{2,3}} is equitable since it is an orbit partition. We find
spec(R) = {—v/2, 2} C spec(A).

Proposition 3. Let 7% = {Vl(k),... ,Vs(:’)}, 1 <k < v, be a sequence of equitable
partitions satisfying the condition that for every k € V there is a & with {k} € 7%, Then

U spec(CH)) = U spec(R¥%)) C spec(A) C U spec(R™),
k=1 k=1 k=1

where R¥ and C*' are the structure matrices of 1),
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Proof. The first inequality follows from the first statement of Proposition 2. To prove
the second inequality assume that Ax = Ax, x # 0. There is a k, such that z; # 0.
Then x is not orthogonal to R(r*). Hence, the claim follows from the remark following
Proposition 2. 2

REMARK: Proposition 3 may be viewed as a generalization of a result in [8]. There, a
graph is called highly regular if for every vertex v € V there is a partition

m={=0LW ...V}

such that each vertex u € V" is adjacent to exactly R;; vertices in V" By definition, each
7, is equitable in this case and R = R™ is the same for all v € V. Thm. 6(ii), p. 159, of
8] states that the adjacency matrix A of a highly regular graph and the structure matrix
R have the same minimal polynomial, i.e., spec(A) = spec(R). Highly regular graphs
with structure matrix R are of course D-regular with D = }° R;.

3.4 Let m be equitable with respect to A and consider the orthogonal space R*(r) of
R(r). It consists of all vectors x satisfying x”g* = 0, 1 < i < s, and has dimension n — s.
Assume that g' ... ,g"* is a linear basis for R* (x).

If x € R (n) implies Ax € R*(7), then we say that R*(r) is a right module (invariant
linear space) for A. In this case

=
Ag'=) Rug*
k=1

with appropriate constants Ry

If x € R*(x) implies ATx € R*(n), then we say that R*(w) is a left module for A. In
this case

n-=s
A=Y CutT
k=1

again with appropriate constants CI-;C.

If RL(7) is both a left and a right module for A, then the matrices R and € have the
same properties as the matrices R and C, i.e. Proposition 2 and Proposition 3 are valid
likewise with R instead of R and C instead of C. Moreover, the following statement is
valid.

Proposition 4. Let 7 be an equitable partition for a matriz A for which R* () is a left
and right module, then

spec(A) = spec(C) Uspec(C).
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Proof. Basic facts from Linear Algebra. o

Note that for a symmetric matrix A and each of its equitable partitions 7 the hypothesis
of this proposition is fulfilled.

3.5 Before we study some examples in order to demonstrate the usefulness of the above
notions we add still a very helpful lemma.

Suppose that P is a permutation matrix corresponding to some permutation y : V. —+ V
and suppose that PA = AP. In the case when A is the adjacency matrix of a graph G
this means that v is an automorphism of G (and P is a permutational representation of it).
Let 7 = {W, ..., V,} a partition of V and define its image under v by =¥ = {V",...,V]},
where V" = {v7 : v € V}} and v” is the image of v under +.

Lemma 1. [f 7w is equitable with respect to A, then © is equitable for every permutation
v such that the corresponding permutation matric P commutes with A. The structure
matrices remain unchanged when we replace @ by ©7.

Proof. From s
Ag'= Z Ryg

k=1

it follows ’
PTAPPTY =% R.P e,
k=1

Since PTAP = A, we get

8

APTg =) RuP"g"

k=1
Since Pg' is the characteristic vector of V', we see that 77 is row equitable if = has this
property. In the same way it is shown that 77 is column equitable, if 7 is so. °

3.6 In the following examples, if we deal with a symmetric matrix A and its equitable
partitions, we work with the structure matrix R. We mention the second structure matrix
C only, if C # RT.

Consider the graph in Figure 2 which is the same as in Figure 1 with the exception that
now the vertices are numbered. Its adjacency matrix is
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010001100000
: 101000000000
010100001000

: , 001010000000
0001010000T10

100010000000

53 A=l 100000010001
000000101000

001000010100

¢ 000000001010
Figure 2 000010000101
000000100010

Let us denote the equitable partition indicated in Figure 1 by m and its structure matrix
R given in subsection 3.2 by R{). Using the numbering in Figure 2 we have

m = {1,7},{2,6,8,12},{3,5,9,11}, {4,10}.

The matrix A has more equitable partitions. We list here three of them. For reasons
becoming clear somewhat later on, we denote them by 74, 75 and m:

Te= {1}1 {4}7 {7}1 {10}1 {Z)G}r {3) B}r {8! 12}! {9) 11};

s = {3}, {6}, {9}, {12}, {4, 2}, {5,1},{10,8},{11,7};

me = {5}, {2}, {11}, {8}, {6, 4}, {1,3}{12,10}, {7, 9}.

Here 4 was found using an algorithm described in a later subsection. 75 and 7 we get
from m; with the help of automorphisms (Lemma 1).

The three partitions m,, 75 and g fulfill the condition of Proposition 3. Let R R® and
R® be the corresponding structure matrices. We have

00 02000

R® - —R® =R®,

-0 = o
- N o o

o = O © O O Q =
—

o O = O O @ ©
- o o 0O o o o
(== = = =]
= o O = O O N
- O O o O N O

o o O
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Hence, spec(A) = spec(R™), where some of the eigenvalues have larger multiplicity in A
than in R®),

3.7 In the foregoing example we have reduced the computation of the spectrum of a
12 x 12 matrix to the computation of the spectrum of a 8 x 8 matrix. However, a further
reduction is possible.

Let us compare the equitable partition w4 with the partition 7. Evidently, the cells of m;
are unions of cells of 74, namely
{1,7} = {1} u {7}, {2,6,8, 12} = {2,6} U {8,12},
{3,5,9,11} = {3,5} U {9,11}, {4,10} = {4} U {10}.

This observation motivates us to recall here the well known relations finer, respectively
coarser, between two partitions. A partition 7 = {V,...,V,} is called finer than a parti-
tion ' = {V{,...,V}} (in symbols 7 < 7'), if 7 # 7' and every cell V; of « is completely
contained in some cell V} of @', or in other words, if every cell of 7’ is a union of cells of
7. In this case 7' is also called coarser than m (denoted by 7' > ).

If 7 < n' or # = 7', then we say = is at least as fine as 7' and denote this by = < 7.

A possible further reduction of the problem size in our example is based on the following
statement.

Proposition 5. Let m and «* be two equitable partitions for A with structure matrices R
and C, respectively R' and C'. Assume that 7 is finer than 7' and that w = {W,,... Wy}
is a partition of {1,2,... s} such that

V=) %1gjiss.
iEW;
Then w 1s row equiteble with respect to R with structure matriz R, and column equitable

with respect to C with structure matriz C'.

Proof. Let g', 1 <7 < s, and h?, 1 < j < &, be the characteristic vectors of the
partitions w and 7', respectively. We have

h! = Zg‘.

e W;

From

;
AW =3 R b
=1
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it follows

.
D2 Ag'=) R,) &

A =1 €W

On the other hand
s 5
Y A=) Buat=Y zﬁl‘kgi-
ieW,; iEW; k=1 keW; i=1

Comparing the coefficients of g' in these two expressions gives

i€Wi=Rj;=) Ra
keW;

This proves that w is row equitable with respect to R and with structure matrix R’.

The second part of the proposition is proved by analogous arguments. °
Let us continue with the example above. We mention three more equitable partitions of
A, namely

m ={1,3,5,7,9,11},{2,4,6,8,10,12},
T = {1,3,5},{2,4,6},{7,9,11},{8,10,12},
m = {1,7},{2,8},{3,9},{4,10},{5,11}, {6,12}.

Their structure matrices are

110001

0210 101000

ro=(12) gwo[2000| pe_JOt1100
20 1002 001010
0020 G LT

100010

We have
XRi® = ?—z-4.

Note that 7, < my and 72 < m,. Hence, by Proposition 5, XRO) divides XR(M and XRi2),
and we find

xem =7 —22° —da? + 5z +4=(2* -z - Q) (" -z - 1),

xro =21 — 922 + 16 = (2% — z — 4)(z* + = — 4).
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Since we have many equitable partitions at hand, there are numercus ways to finish this
example and find the spectrum of A. We choose one which nses Proposition 4.

Since 7y < 7, the partition 7, determines an equitable partition w for R¥ (see Propo-
sition 5). Suppose that R is indexed using the primed numbers 1,2, .. |8, then w
reads

w={1,3}, {57}, {6,8}, {2, 4'}.

It 1s easy to check that

1 0 Q 0
0 0 0 1
o ¢ 0 (] 0
7o - 0 whs 0 ot 0 o4 -1
B = 0 v B= 1 i il = 0 » B = 0
0 0 1 0
0 =], Q 0
0 0 -1 0
is a linear base for Rt (w) with
RUE = —g'+¢?
RWg = 28'+8°
R(4)g3 = gE s g3 A 2@4’
RWg' = 287
This gives
-1 1 0
o 2 0 1 0
w_
R 0 1 -1 2
0 0 1 0

The characteristic polynomial of this matrix is
Xiw =2t +22° — 457 — 5r + 4.

Since we have already three quadratic factors of xg, two in xga) and one additional in
Xpr» the polynomial xgay must be divisible by one of these quadratic factors. Checking
this fact we get

XRr) = (12 Jp— 4)(1’2 +z— 1).

Thus, finally
xam =@ —r— @t +r - -z -t +2-1).

From this expression we can easily compute the spectrum of A.
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Note that in the course of the determination of this factorized form of xgu, the largest
size of a matrix the characteristic polynomial of which we have determined was 4 x 4,
while the adjacency matrix A is of size 12 x 12.

3.8 In the example with the graph in Figure 1 all considered equitable partitions are
orbit partitions, that means, their cells are the orbits with respect to some subgroup of the
automorphism group. The coarsest equitable partition which we found, namely my, is the
orbit partition of the full automorphism group. This is not the general case. In general,
an equitable partition must not be an orbit partition. The simplest counter-example is
the trivial partition {V'} of a regular graph G the automorphism group of which is not
transitive, i.e. which has at least two different orbits under its group of automorphisms.
A further example is given in 4.4.

3.9 The problem of how to find equitable partitions of a graph will be addressed in
the next section. We finish this section by mentioning some special classes of graphs for
which finding a system of equitable partitions satisfying the hypothesis of Proposition 3
is particularly easy.

1. Distance-Regular Graphs. The distance §(u,v) of two vertices u und v in a
connected graph G is the minimum number of edges in a path of G connecting these
vertices. The maximum distance between any two vertices is called the diameter of G and
denoted by A. For v € V define the distance partition S(v) = {So(v), Si(v),... , Saw(v)}
of V' with respect to v by

Si(v)={ueV :8(u,v) =1}, 0<i<A(v), A(v) = max{d(u,v) : ue V}.

A graph G is called distance reqular if A(v) = A, independently of v, and if there are
numbers a;, b;,¢;, 0 < © < A, (the intersection numbers) such that in every distance
partition (no matter with respect to which v} every vertex in S; has exactly a; neighbours
in S;, b; neighbours in S;4, and ¢; neighbours in S;_, (with §; = Sa4) = 0 this condition is
well stated for all 7 € [0,d]). It says exactly that all distance partitions §(v) are equitable
with identical structure matrices

0 b

o a b

€y Oy by

Here, R is called the intersection matriz.
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Figure 3: Octahedron and Petersen Graph

Since this matrix is independent of v, Proposition 3 implies that the different eigenvalues
of A are exactly the different eigenvalues of R.

Note that any equitable partition wich contains the cell {v} is finer that the distance
partition &(v). This shows that for a distance-regular graph the system S(v), v € V is
the "coarsest” system of partitions satisfying the hypothesis of Proposition 3.

To have an example consider the first graph in Figure 3. It is the regular octahedron. Let
A be its adjacency matrix. There are three different distance partitions, namely

8(1) = 8(4) = {1},{2,3,5,6}, {4},

8(2) = 8(5) = (2},{1,3,4,5}, {5},

S8(3) = 8(6) = {3},{1,2,4,5},{6}.

L The common structure matrices are

040

R=C'=|121

5 2
040
Hence, this graph is distance-regular.  Therefore,
n spec(A) = spec{R). Now, since
4 3

xr{x) = &® — 227 — 8z = x(z — 4)(z +2),
Figure 4 we get spec(A) = {—2,0,4}.

A graph is called distance-transitive if for every four vertices x,y and 2,y with é(z,y) =
4(x',y') there is an automorphism which maps z onto =’ and y onto y'. Hamming gra-
phs are distance-transitive. Any distance-transitive graph is distance-regular and has a
transitive automorphism group. Graphs with a transitive automorphism group are cal-
led verter-transitive. Vertex-transitivity does not imply distance-transitivity, even not
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distance-regularity. Consider the graph in Figure 4 which is obviously vertex-transitive.
It is the regular pentagonal prism (a chemical graph, the corresponding hydrocarbon has
been synthesized). Its distance partition for vertex 1 is

S(1) = {1},{2,5,6},{3,4,7,10}, {8,9}
which is not equitable.

2. Strongly Regular Graphs. A graph [ is called strongly regular if there are natural
numbers k,a and ¢ such that T is k-regular, and any two vertices u and v have exactly
a joint neighbours, if they are adjacent, and exactly c joint neighbours, if they are non-
adjacent.

Strongly regular graphs are exactly the distance-regular graphs with diameter A = 2.
Select an arbitrary vertex v € V and consider the partition V; = {v},Vo = N(v),V5 =
V — N(v) = {v}, which is equitable. From the definition of a stronlgy regular graph it
follows that a vertex u € V; has a neighbours in V,, and hence, k — 1 — a neighbours in Vj,
while a vertex w € Vj has ¢ neighbours in V;, and hence, k — ¢ neighbours in V;. Thus,
the structure matrix R of the equitable partition is

0 k 0
R=|12a k-1-a
0 ¢ k-c

The characteristic polynomial of R is
Xr(z) =2 — (a+k —c)z? + [k(a — ¢) + ¢~ klx + k(k — ¢).
Since a k-regular graph has eigenvalue py = k, xr(z) is divisible by z — k and we get
Xr(z) = (z = k)(@® ~ (a = c)z +c— k).

Using this result, since the structure matrix R is independent of the vertex v, we find that
a strongly regular graph with parameters n, k, ¢, ¢ has exactly three different eigenvalues,
namely k and the two roots of (22 — (¢ — )z + ¢ — k), which are

_a—ct/la—cP+4(k-o)
= 5 :

H23

To have a concrete example consider the second graph in Figure 3. This is the often cited
Petersen graph which has numerous interesting properties.

Take v = 1. The corresponding equitable partition is

{1}, {2,5,6}, {3,4,7,8,9,10}.
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02

10

Figure 5: H(2,3) and H(3,2).

This gives
030

R=]10 2
01 2

With @ = 0 and ¢ = 1 the above considerations gives the three different eigenvalues
=3, fe =1, p3=-2.

More results on graphs with exactly three different eigenvalues can be found in [55]

3. Hamming Graphs. This class of graphs is another special case of distance-regular
graphs. A Hamming graph H(v, @) is defined on the base of a finite alphabet A. Assume
that A contains o different symbols and let A* be the set of all possible sequences of
symbols of length v, also called words of length v. For example, if v = 2 and & = {0,1,2}
then A* = {00,01,02,10,11,12,20,21,22}. The set A* is the vertex set of H(v, ). Edges
are introduced by the following rule: Two words are adjacent if and only if they differ in
exactly one position. Hence, in the case » = 2 and a = 3 just mentioned this rule requires
the edges
[00,01], [00, 02], [00, 10], [00, 20}, [01, 02], [01, 11], [01, 21],. ..

and so on. Note that the kind of the symbols is obviously irrelevant for the definition
of H(v,a), only their number is relevant. Therefore we always may assume that the
alphabet for H(r,a) is {0,1,... ,a = 1}.

Hamming graphs arise in a natural way in molecular biclogy, since genes are sequences
taken from the alphabet A={A,C,G,T}. Extensive studies of landscapes derived from
models of RNA secondary structures are discussed in (24, 65, 68], and the references
therein.

The eigenvalues and eigenvectors of Hamming graphs are well known, see e.g. [4]. It also
well known that the Hamming graphs are distance transitive and hence distance regular.
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“Gencralized” Hamming graphs, which have a different alphabet at each position of the
sequence, play a role in population genetics. Here, each sequence position corresponds
to an entire gene, and different “letters” represent the different allels, see e.g. [69] for a
discussion in the context of landscapes. These graphs are not distance regular any more.
However, generalized Hamming graphs are products of complete graphs, which allows the
explicit computation of eigenvalues and eigenvectors, see e.g. [13]. Furthermore, they are
Cayley graphs derived from suitable commutative groups.

4. Hypercubes. Hamming graphs H(n,2) are called hypercubes. H(1,2) consists of a
single edge, H(2,2) is a unit square, H(3,2) is the unit cube (in the second part of Figure
5 drawn as planar graph). Hypercubes are by far the most used configuration graphs. In
fact, most combinatorial optimization problems and even continuous optimization pro-
blems are deliberately encoded in terms of binary strings with fixed length in order to
run standard optimization heuristics, in particular genetic algorithms.

The eigenvalues of H(n,2) are y, = n — 2p with multiplicity (:), the eigenvectors are
known as Walsh-functions and play an important role in the analysis of genetic algoritms
[29, 69, 76].

5. Cayley Graphs of S,.. Let G be a group and let ¢ denote the identity in G. Further-
more, let 2 C G be a set of generators of G such that (i) ¢ Qand (ii))z € Q = z7' € Q.
A graph G = G(G, Q) with vertex set V = G and edges {z,y} € E ifand only if 2y € Q
is called a Cayley graph of the group G. Cayley graphs form a special class of vertex tran-
sitive graphs. The most important configuration graphs, including the Hamming graphs
discussed above, are Cayley graphs of suitable groups.

A typical combinatorial optimization problem on a set of permutations is the Quadratic
Assignment Problem (QAP). We are given n facilities and n locations. There is a flow f;;
between facility i and facility j, a distance or cost rate per unit flow d;; between locations
1and j, and a cost c;; for setting up facility 7 at location j. The total cost of a particular
assignment = € S,, is then

n n n
FE) =33 fdnmy + 3 ot
=1

i=1 j=1

For a survey see [58]. The Traveling Salesman Problem (TSP), in which X is a set of
cities that have to be visited exactly once by a salesman, who at the end of his tour has
to return to the starting point, can be seen as a special case of QAP. One has to set
fij = 65541 (indices taken modulo n), and ¢,; = 0.

Oftentimes sets of generators of S,, are chosen as move sets for optimization heuristics
such as simulated annealing. Most commonly, tranpositions, or so-called reversals are
used. The landscape of the TSP with these two move sets is considered in [70]. Canonical
transpositions, K = {(i,i 4+ 1),0 < ¢ < n}, are a reasonable choice if one wants to get
relatively small vertex degrees in the configuration graph.
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Figure 6: The permutohedron G(Sq, X).

Distance classes are indicated by square brackets, the orbits of the stabilizer subgroup
Aut{G(S4,K)]o = {1,n} are labeled with symbols in round parentheses. Vertices shown in black
are fixed by this group, while vertices shown in white belong to orbits of lenght two. Dashed
lines connect vertices belonging to the same orbit. Reflexion on the shaded plane is a symmetry
of the permutohedron corresponding to the involution 1.

The Cayley graphs G(S;, K) exhibit a wealth of regularities, but are in many respects
much more complicated than Hamming graphs, in particular their coherent algebras (see
5.5) are homogeneous but not commutative for n > 4. G(S;,K) = P,, the path of
length 2, and G(S3, K) = Cs, the cycle of length 6. The graph G(S4, KX) is known as the
permutohedron, Figure 6.

4 How to find equitable partitions

4.1 In this subsection equitable means row equitable. With obvious changes in the
formulation all results remain valid also for column equitable partitions.

Suppose we are given a matrix A and some initial partition m of V. Is there an equitable
partition which is at least as fine as 77 Since we are interested in coarse equitable
partitions mainly (the structure matrix should be small), we should specify this question
to: What is the coarsest equitable partition, if any, which is at least as fine as .

Suppose that 7 is not equitable and that w is an equitable partition which is finer than
a. Take any two cells U W € 7. Let gy and gy be the characteristic vectors of U and
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W. Then W is a union of some cells of w, to be concrete, say W = W/ UW" U ..., with
W' W", ... € w. Now, if u,u" € U belong to the same cell of w, then

(Agw)u = (Agw)w, (Agwn)u = (Agw)w,...

and therefore
(Agw)u = (Agw)w-

With other words, if (Agw)u # (Agw)u, then u,u’ must belong to different cells of w.
Thus let us assume that {a,...,a} is the set of different values of the term (Agw),
when u varies over U. Define

U={uel: (Agwlu=a}, 1<i<Ht,

and replace in 7 the cell U by the new cells Uy,... ,U; to get a new partition ' which is
finer than 7 (if ¢ > 1). Any equitable partition which is finer than 7 must either equal =’
or be finer than n’. Thus, when looking for the coarsest equitable partition which is finer
than 7 we may replace 7 by ='.

Computing 7' from 7 is called a refinement step. As long as 7 is not equitable, the new
partition 7' is strictly finer than m. We may repeat this step now choosing two cells U’
and W' of #’. In this way we get a sequence of continuously strictly finer partitions which
are all coarser than w. This sequence must finish after a finite number of steps, since the
number of partitions of a finite set is finite. It ends when no further refinement step is
possible, i.e. when the current partition is equitable.

Of course, an analogous procedure will compute the coarsest column equitable partition
which is finer than 7. Just replace Agj, by gl A in the refinement step above. If A is
not symmetric, then we have to compare (Agw ). to (Agw ). and (giyA), to (g A)w to
decide whether u and u' can belong to the same cell of the coarsest equitable partition
finer than 7.

These considerations are summarized and restated in the following proposition.

Proposition 6.

(a) For every partition m of the index set V' of & matriz A there is ¢ uniquely determined
(row or column) equitable partition w which is at least as fine as w. In particular, there
is ¢ uniquely determined absolutely coarsest (row or column) equitable partition for A.
{b) For every matriz A there is a system of coarsest (row or column) equitable partitions
which satisfies the hypothesis of Proposition 3.

Proof. The second statement of part (a) follows with the initial partition # = {V'}. Part
(b) follows with the initial partitions =, = {{v},{V \ {v}},}v e V. °

The absolutely coarsest equitable partition is also called total degree pertition (see [75]).
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4.2 If A is the adjacency matrix of a graph, then (Agw ), means the number of neighbors
of the vertex u which belong to W, and a refinement step can be explained in terms of
numbers of neighbors. It is also possible to combine several refinement steps into a single
one by using all values (Agw),, W € 7 simultaneously. Let us explain this with the
graph in Figure 7, the so-called cunean.

The cunean is 3-regular, hence, the absolutely
coarsest equitable partition is the trivial partiti-
1 on {V}.

7 ’ 2 Let us start with
/ 11':{1}, {2»314,5,6,7,8}.

Take U = {2,3,4,5,6,7,8},W = {1} and W' =
U. For v € U the term {Agy), is the num-
ber of neighbours of u in {1} {which is 0 or 1)
while (Agw), is the number of neighbours of
uw in W’'. We associate to each u € U a list
L(u) = ((Agw)u, (Agwr).) of these two numbers,
obtaining

Figure 7: Cunean

L(2) = (1,2); L{3) = (0,3}; L(4) = (0,3); L(5) = (0,3);
L{6) = (0,3); L{7) =(1,2}; L(8) = (1,2).

We have found two different lists. According to this result U splits into {2,7} and
{3,4,5,6}. The new partition is now

' = {1},{2,7,8},{3,4,5,6}.

The first refinement step is finished.

For the next step take U/ = {3,4,5,6}. Since 7' contains three cells we have now to
construct a list of three entries for each u € U, the number of neighbors of u in the three
different cells. We get

L(3)=(0,2,1); L(4) = (0,1,2); L(5) = (0,1,2); L(6} = (0,2,1).
According to this result U splits into two parts {3,6} and {4,5}. The new partition is
now
" ={1},{2,7,8}, {3,6}, {4,5}.
The second refinement step is finished.

For the next step take U = {2,7,8}. Since 7" has four cells, the lists L(u),u € U will
have four entries. We get

L(2) =(1,0,1,1); L(7) = (1,0,1,1); L(8) = (1,0,2,0).
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Hence, U splits into two cells {2, 7} and {8}.

The next few steps (one for every cell) don’t strictly refine any more. They are nevertheless
necessary in order to prove that the current partition is equitable. Therefore, the coarsest
equitable partition of the cunean in which {1} is a cell is

m ={1},{2,7}.{3,6},{4,5}, {8}.

4.3 The refinement procedure for transforming a given partition into an equitable one
which we have presented in 4.1 and demonstrated in 4.2 can easily be formalized and
implemented as a computer programm. Numerous variants of this method are incorpo-
rated into graph isomorphism algorithms, see for example [50]. A detailed discussion of
such variants can be found in [75].

Tricky computer programs are able to compute the coarsest equitable partition which is
finer as a given one for matrices up to some million rows (graphs of some million vertices),
the upper bound depends on the available computer power. The programm qweil, freely
accessible under the address

http://www-m9.mathematik.tu-muenchen.de/m9/algograph/programs/wl.html,
works on a PC with graphs of some hundred thousend vertices.

4.4 The partitions m4, 75 and 7 in the example of 3.6 can been found by applying the
above described refinement method. Starting with {1,3,5}, V'\ {1,3,5} we would get m,
starting with {1,7}, V' \ {1,7} leads to m3.

In the case of the cunean Proposition 3 does not yield a full reduction of the problem size.
If we start with one of the vertices v € {2, 3,6, 7}, the resulting coarsest equitable partition
containing {v} is the discrete partition the structure matrices of which are C = R = A.
If this happens, then the second part of Proposition 3, namely

spec(A) C U spec(R™),
k=1

becomes trivial. Here only the first part

Uspec(R(k]) C spec(A)
k=1

reduces the task of finding the cigenvalues auf A to the task of finding the eigenvalues
of several smaller matrices, however, in general not the whole spectrum is covered by the
spectra of those matrices R*) which are strictly smaller than A.

In situations where the system of coarsest partitions satisfying the hypothesis of Propo-
sition 3 contains the matrix A itself one can look for coarse equitable partitions which
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contain a given predetermined cell Z < V. This leads us to the question: Given a matrix
A (or a graph G) and a subset Z of V| is there an equitable partition m wich contains the
cell Z7 The answer is not always positive. Z must fullfill certain necessary conditions.

Proposition 7. For any matriz A and any subset Z of V there is a coarsest row equiteble
partition contaiming the cell Z only if the row sums

ZA\']‘ and ZAij
jez JEV

are independent of i € Z. There is a coarsest column equitable partition containing Z

only if the column sums
> Ay and 3 A,

ez €V

are independent of § € Z. In the positive case the coarsest equitable partition is unique.

Proof. The conditions are obviously necessary. To show the uniqueness, apply the re-
finement method of 4.1 to the initial partition Z,V \ Z. Perform refinement steps as
described in 4.1 always choosing a current cell I # Z. If no more refinement is possible
in this way, then choose U = Z. If Z has to be split into several subcells, then no equitable
partition containing the cell Z exists. Otherwise, the current partition is equitable. o

Consider once more the cunean in Figure 6. Let us try to find an equitable partition
which contains the cell Z = {2,3}. We start with the partition

7 =12,3},{1,4,5,6,7,8}.
In the first step we take U = {1,4,5,6,7,8} and W = {2,3} and construct the lists
L(1} = L(8) = (1,2); L{4) = (2,1); L(5) = L(6) = L(7) = (0,3).
Thus, the new partition is
' ={2,3}, (1,8}, {4}.{5,6,7}.
In the next step we take U = {1,8} getting no refinement. Taking U = {5, 6, 7} results in
=" ={2,3},{1,6},{6, 7}, {4}, {5}.

The next steps do not. strictly refine any more. In the last step we take U = {2, 3}. Since
also then now no refinement is made, the current partition is equitable. Denote it by .

Note that for the cunean graph

mo = {1,4,5,8},{2,3,6,7}
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is also equitable. Since there is no antomorphism of this graph which maps 1 onto 4, the
set {1,4,5,8} is not an orbit of a group of automorphisms. Therefore, this partition is
not an orbit partition. The orbit partition with respect to the full automorphism group
of the cunean is

73 = {1,8},{2,3,6,7}, {4,5}.

Now we find
XR© =z -2z -3= (z=-3)(z+1)

and

Xaw = (z = 1)° —4(z — 1) = (z - 3)(z + 1)(z - 1).
Since 7, < 73, we can find xg) by applying Proposition 4 to R and 3. This gives

xpw = (@ = 3)(z+ 1)z - 1)(z* + 2z — 1).
Now, once more applying Proposition 4, this time to A and 7, yields
xa=(@-3)@+1)(z-1)(z"+2z-1)(z* +2> - 3z +1).

Since the cubic factor equals (z — 1)(z? + 2z — 1) we see that this last step did not add
anything to the spectrum of A, and we have finally

spec(A) = spec(RM) = {3,1,-1 + V2, -1,~1 — v2}
where —1, -1 + V2 and —1 — /2 have multiplicity 2 each.

The examples presented here and in Section 3 are chosen in order to demonstrate as
simply as possible the use of equitable partitions for finding the spectrum of a matrix. Its
is clear that for matrices of this small size no unusual mathematical tools are necessary.
Instead of treating the 12 x 12 adjacency matrix A of the example in Figure 1 "by
hand” we could use one of the software packages like mathematica or maple which would
provide us algorithms for computing the characteristic polynomials and the eigenvalues
of matrices of even much larger size. Today there are reliable numerical methods for
finding the spectra of matrices which can treat matrices up to some hundred thousand
rows. With configuration graphs, however, we have to treat matrices the size of which is
still enormously larger. It is here, where equitable partition can show their true power by
reducing the problem size to a tractable one.

4.5 Let 7 be any partition of V and R(r) the linear space defined in 3.2. The set A(x) of
matrices for which 7 is (row or column) equitable is a matrix algebra. Indeed, let A and
A’ be contained in A(w), let @ and &' be two arbitrary real numbers, and let R and C,
respectively, R’ and C’, be the corresponding structure matrices. A simple computation
shows that a A +o'A’ € A(m) with structure matrices @R+ 'R’ and aC+a'C’. Further,
AA' € A7) with structure matrices RR’ and CC'.

In particular, if 7 is equitable for A, then it is also equitable for every power A' with
structure matrices R! and C'. If p(z) is an arbitrary polynomial, then = is equitable for
p(A) with structure matrices p(R) and p(C).
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5 Coherent algebras

5.1 A matrix algebra is a linear space of matrices which is closed with respect to matrix
multiplication. The full matrix algebra of n x n-matrices which contains all matrices the
rows and columns of which are indexed with elements from V' is denoted by Mety. In
general, one is interested in subalgebras of Maty specified by certain conditions which
the elements should fulfill.

Let I be the unit matrix of Maty and J = ee” the matrix with all entries equal to 1. For
two matrices A and A’ define the componentwise product A o A’ by

(Ao Al); = AyAy;

A subalgebra A of Maty is called a coherent or a cellular algebra or (on V') if it contains I
and J, and if it is closed with respect to the componentwise product and with respect to
transposition. Coherent algebras have been introduced and studied first in [80], [81], and
independently in [33], [34], [35]. Since that, a rich theory has been built up around them
in the literature. Today, the notion coherent algebra and the equivalent notion coherent
configuration (see [34]) are placed among the main tools of algebraic combinatorics.

5.2 A friendly introduction to coherent algebras taking into account the interests of
chemists is given in [43], while the paper [20] is written for mathematicians and covers
the most important theoretical aspects. We list here some important features of this type
of algebras which are needed in the remaining part of our paper, for proofs see [33].

1. Every coherent algebra possesses a unique linear basis A, ... , A, consisting of 0,1-
matrices A;, called the the standard basis, such that

for some t, 1 <t < s, and

®) I=3 A.

=1

The second condition says that A;o A; =0 for i # j.

2. For every basis matrix A; there is a basis matrix Ay such that Ay = AT, Note
that in general ¢/ # 1, the matrices A; with ¢ > t are not necessarily symmetric.

3. The product of two basis matrices is a linear form
AA; =3 phAc
k=1

with integral coefficients pfj which are called the structure constants of the algebra.
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. According to 1(a) the sets C; = {v € V' : {A;)w = 1}, 1 < i < ¢, form a partition

Teert Of V, the so-called cell partition. This partition is equitable with respect to
every basis matrix A,. The cells C; are called the cells of the coherent algebra.

. The basis matrices A; can be considered as adjacency matrices of (in general di-

rected) graphs G; = (V, E;), the basis graphs. Their arc sets are B; = {(u,v) :
(Ai)uy = 1}. The sets E;, 1 < i < s, are called the basis sets of the algebra. They
form a partition of ¥V x V which is called a coherent configuration.

. For each basis set E; there are cells Cj, Cx € Teen such that E; C Cj x C. Further,

in this case, 5
D foru e C;

v : (uw,v) € B} = { *

0 otherwise.

and likewise,

D;
{v : (v,u) € Ei}| = {

0  otherwise.

for u € Cx

where
D-+ - |Ez'|

_ _I&l
oG

Gl

and D;

. A coherent algebra for which ¢ = 1 (or with other words, in which I is a basis

matrix) is called homogenous. In a homogenous coherent algebra C; = V, the cell
partition is trivial.

Our interest in coherent algebras is explained by the following facts.

Proposition 8. Let A be a coherent algebra on V, let Ay, ..., A, be its standard basis
and E\, ..., E; its basis sets. For arbitrary v € V define the partition

Ty = {Xu(v)v Xi’:(v) A )X".qu)}

where the Xy, (v) are the non-empty sets among

Xiv)={ueV: (y,v)e B}, 1<i<s.

Then each =, is row equitable with respect to all basis matrices A; and, hence, with respect
to all matrices A € A. The system n,, v € V, fulfills the hypothesis of Proposition 3.

Proof. Let v € V be fixed. The characteristic vector g7 of X;(v) is the column ((A;)1, ...
of the basis matrix A; with index ». Thus,

(Aigj)u. = (AiAj)u,v'

: (AJ)n.v)T
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Since N
AA; =) A
k=1
we get
Aigl)y = pr] Al Zpu(g
This gives

(A g}) . Z pl]

and proves that 7, is row equitable with respect to each basis matrix A;. Since every
A € Ais a linear combination of the A,’s, it follows that =, is row equitable with respect
to every matrix in A.

The partition 7, contains the cell {v}. Therefore, {m, v € V} fulfills the hypothesis of
Proposition 3. °

REMARK: If we change the definition of the X;(v)’s to
Xiw)y={u: (v,u)e 5}, 1<i<s,

then m, is column equitable with respect to every matrix in A.

5.4 The last proposition gives us a system of equitable partitions with the property that
the spectra of their structure matrices R cover the spectrum of every matrix in A. This
is a strong and very useful property. However, the main source of our interest in coherent
algebras is expressed by the following considerations.

Let again A be a coherent algebra on V' with standard basis A,,..., A, and basis sets
Ey,...,E, Let f: ¥V — R be function on ¥V and define an autocorrelation function of
| with respect to A by

'—'—1—- u) f(v —T
pii) = > Hu)fw) = AL

3 (uv)ek; |

For 1 < i < s let # be the index such that A; = A]. Obviously, for all i we have
o) = py(i).

Proposition 9. (a) Suppose that A contains the adjacency matriz A of a graph G. The
random walk autocorrelation function ry of a random walk on G is uniquely ezpressible in
terms of the partitions m,, v € V and the autocorrelation function py with respect to A.
(b) If A is homogenous, then the structure matrices R,, of m, are all equal to some matric
R. In this case vy is exponential if and only if py is an eigenvector of R.
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Proof. (a) First we show that A € A implies D! € A.

Suppose that the different vertex degrees in G are §y,...,, and define U; = {v € V :
d, = 4;}, 1 €i < o. These sets are the cells of the degree partition 7 of V' with respect
to G. Let w be the absolutely coarsest equitable partition with respect to A and w, the
cell partition of A. Since wp is equitable with respect to A, this partition is at least as
fine as w, and w in turn is at least as fine as . Hence, wy < 7.

For U C V let Iy be the diagonal matrix with diagonal entries (Iy),, = 1, if u € U,
and (Iy)y, = 0, if v € U. Note that for a cell C of A, the matrix I is one of the basis
matrices A; with index ¢ < ¢. The fact wy < 7 is now equivalent to the statement that
each matrix Iy, is a sum of certain basis matrices A;, all with indices ¢ < ¢. This proves
that each matrix I;, belongs to A. But

-3 L,
i=1 5.
Hence, also D™ € A.
Consider now the autocorrelation function of a random walk on G. We have

(k) = T TR

with 1
— —k+1pak
Ty = 2——‘ ElD A*.

Since Ty € A we may write
Te = 515 E, ZH,“

with appropriate constants Hy,. This yields

el S prac. LN poap
(k) = oE] :;szf Af = 3E] EH':JEJPI(Q-

Now, choose v € V' and consider the partition 7, introduced in Proposition 8, let
g, g

be the characterisrir vectors of its cells and R, its structure matrix. W. l. 0. g we may
assume that X; (v) = {v}. Define A(v) = {&),... ,%4}. Since m, is row equitable, all
vertices in a cell X,( v) have the same degree in G, denote it by 7. Then

1
DkHgl = FE', L€ Alv).
1
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With this notation the structure matrix for 7, with respect to T is

1 (R )IJ

(R(Tk))fJ 2|E| ;: 14 ‘!7] € A(U)
For 1 <@ < s let a(f) and 3(z) such that E; C Cap) x Cyy- Then for j € Afv)
) o 0 ifi'#jorvégCuy
A, Jn: AAj)w = Ay uA R
(A = ( 1) E( h(4s) { Dj  otherwise.

Further, since the assumption v € Cl,(jn) implies (') = 1, and 7, = d,, the equality

(Teg’)y = 2|E| Z & 1 ( hy, = 2|E\ ZH"‘(A'g

reduces to (R,
o = Hep D7
Changing indices j' to i gives
1 (Rk)t i
e o v/t
"D &

where v € Cyp;). Note that |Ej| = |Ey| = |Cqgy|D; . Inserting all this in the expression
for ry gives
R Veitit
k) = 57 E‘ Zw d”,; ()

where in each summand v; is an arbltrary vertex in Cyyyy. This proves (a).

(b) If A is homogeneous then G must be D-regular (for some appropriate degree D). In
this case 2|E| = |V|D, d, = D,|Ca;)| = |V| and we may assume i; = 1. Thus, using the
equality py(i') = p;(1), the expression for r; reduces to

rk) =" (I;Zi'ipf(il

=1

Let p; be the s-dimensional vector the components of which are p;(1),...,pf(s). Then
the last equality reads

ri(F) = o (RAph

Let y',...,y* a system of s orthonormal eigenvectors of R (which exists, see Proposition
2). Let i, ... , ps be the corresponding eigenvalues. Writing

s
Pr= z oy’
i=1



gives finally
s
; s B
(k) = ZUI*D*;(Y h-
1=1

This completes the proof. o

5.5 The investigation of the autocorrelation function r; via its representation with the
help of a coherent algebra A and its autocorrelation function py is the more convenient
the "smaller” .4, which means the smaller the number s of basis matrices A,. Coherent
algebras can be compared in terms of their basis matrices (or basis sets). An algebra A’
is a coherent subalgebra of a coherent algebra A, if every basis matrix Al of A’ is a sum

Al= ZA,, Tl i O S
JEA:
of basis matrices of A.

Given a graph G and its adjacency matrix A we need a coherent algebra A which contains
A. For each matrix A there is a "smallest” coherent algebra which contains A (and which
is a coherent subalgebra of all coherent algebras containing A). We called it the coherent
algebra generated by A and denote it by [A].

Given A, the coherent algebra [A] can be computed using the so-called Weisfeiler-Leman
algorithm (see [81]). There are also several other algorithms known for doing this task
(for a discussion of this topic see [3], [2]). Today the most efficient one is an algorithm of
Bastert, see [5]".

5.6 Of particular interest are homogeneous coherent algebras, which are generated by
very regular graphs such as vertex transitive graphs (which have a group of automorphisms
that acts transitively on the vertex set), like Cayley graphs or the distance regular graphs
discussed in 3.9.

ExaMPLE: To have an example consider once more the permutohedron, G(Sy4, K), intro-
duced at the end of 3.9. We give here only some hints how to find the coherent algebra
generated by the adjacency matrix of this graph.

We observe two types of edges: type a forms the sides of quadrangles, while type b
forms the remaining sides of the hexagons which connect the six quadrangles, hence these
edges cannot belong to the same edge orbit of Aut[G(S4, K)]. The adjacency matrix of
the permutohedron graph is the sum of the characteristic matrices of these two orbits
A = B4 4 BU9 In order to simplify the notation we set & = B(1#) and 8 = B('"). By
direct computation one verifies

F=E o'=da (aB)? = %azﬁa (Ba)? = %aﬁaz

'Freely available at
http://www-m3.mathematik.tu-muenchen.de/m3/algograph/programs/wl.html
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From here it is a tedious by straightforward computation to obtain the standard basis of
|A] in the following form:

A® =
Al — o Al10) = g
A = lo?-1

2
ABe)—-  — %a?ﬁ -8 ABa+ = %IBQQ -B
A® = Baf AP = afa-Paf
AT = (ap)® - Ba ALY = (Ba)’ - ap
Al = 18a’8-1
Ab = la?Ba’ - Ho’B+ Ba?) + 8 AGY = BaBaf -«
A® = 1(Ba)’ - (Ba’B - la®+1

The matrices a and 3, or more precisely their spectra and eigenvectors, contain the
complete information about [A].

5.7 If [A] is homogeneous, then none of the classes X;(v) in Proposition 8 is empty. The
structure matrix R, can be obtained in this case as

Ry)ij = Z o

kELCE

The basic matrices where Ex C E means that the pairs in Ey are edges of the graph,
see [72] (Lemma 10). Clearly this is independent of v, i.e., the underlying graph is
highly regular in the sense of Bollobas (see 3.3), and anyone of the equitable partitions
in proposition 8 contains the full spectral information on A.

A coherent configuration which consists of the basic sets of a homogenous coherent alge-
bra is also called an association scheme. A commutative algebra is one with the property
that AA’ = A’A for an two of its matrices A and A'. Commutative coherent algebras
are homogenous, and are therefore determine commutative association schemes. A co-
herent algebra which contains symmetric matrices only is necessarily commutative (and,
hence, homogenous). The coherent configuration of such an algebra is called a symmetric
association scheme. A standard monography on association schemes is [4].

Symmetric coherent algebras A have the property that there exists an orthogonal matrix
X such that X"'AX is a diagonal matrix for every matrix A € A (i.e. the matrices in A
are simultaneously diagonalizable). It follows that the set of columns x',...x" of X isa
set of n orthonormal eigenvectors for every matrix A € A. Moreover, each eigenvector of
a matrix A € A is also an eigenvector of all other matrices in A.

If [A] is symmetric for some matrix A, then this matrix must be regular, i.e. Ae = De for
some constant D, for otherwise the globally coarsest equitable partition with respect to



A would not be the trivial partition. However, the cell partition of [A] is trivial. Assume
B € [A]. This implies (B] C [A]. Hence, [B] is symmetric, and therefore, also B is
regular. Thus, a symmetric coherent algebra [A] consists of regular matrices only.

Assume now that G is a graph with adjacency matrix A such that [A] is a symmetric
coherent algebra. For each matrix B € [A] define an associated graph G(B) by

G(B) = (V, E(B)), where E(B) = {uv : B, # 0}.
Clearly, G(A) =

For cach B € [A] let Be = Dge. Then D3'B is doubly stochastic and defines a (non-
standard) random walk on G(B) with correlation function rg ; which we define by

re (k) = IVID*fTka k>1.

In this way, starting with the landscape (G, f) we get a rich system of landscapes
(G, f). T € X([A])

with the same cost function f. Here X([A]) is the set of all doubly stochastic matrices in
[A]. Using this notation we implicitely include the type of random walk that we want to
consider as a part of the definition of a landscape. Each (G, f) is a structural model of
the set of data F = {f(1),..., f(n)}. We may use the properties of this model in order
to describe “the structure” of F. In particular, we may use the autocorrelation functions
rp,z for this description.

5.8 It has been proposed in the literature (see [72]) to call a landscape f elementary, if f is
an eigenvector of the Laplacian of the configuration graph G. A surprising number of well
known examples, including spin glasses and many combinatorial optimization problems
such as the TSP, graph bipartitioning and graph matching, and certain satisfyability
problems are of this type, see [12, 30, 72, 25].

We propose here in accordance with [69] to call a landscape (Gt, f) elementary w.r.t. the
transition operater T, if f is an eigenvector of the random walk transition matrix T with
eigenvalue A # 1 (the case A = 1 appears when f is a flat landscape.)

The above considerations lead us to the following statement.

Proposition 10. Let A be the adjacency matriz of a D-regular graph such that [A] is
symmetric. If (Gp-1a, f) is elementary (w.r.t. D™'A), then every landscape (G, f) is
clementary (w.r.t. T ), where T is any matriz in X ([A]). In the positive case, each random
walk autocorrelation function rr;, T € X(|A]), is exponential.

Proof. The proof is by application of Proposition 9(b) and the observation that if f is
an eigenvector of A, then it is an eigenvector for every T € X([A]). °



5.9 Numerous practically important landscapes are such that the adjacency matrix of the
configuration graph generates a symmetric association scheme. This is true in particular
for all landscapes on distance-regular graphs (see 3.9).

Let G be a distant-regular graph with adjacency matrix A and define £; = {uv : d(u,v) =
i}, 1 <i < A. Let A, be the adjacency matrix of E;. Then {A,,... , A} is the standard
basis of [A] (see [4] or [9], for example). Thus, a distance-regular graph generates a
symmetric association scheme.

The association schemes generated by Hamming graphs H (v, o) are called Hamming sche-
mes. As discussed in the introduction, Hamming graphs are of particular interest as
configuration graphs. In our opinion, Proposition 10 opens a new approach for further
studies of landscapes on Hamming graphs and other graphs which generate a symmetric
association scheme. Proposition 10 can be easily extended to the case of commutative but
not necessarily symmetric association schemes. However, for this extension it is necessary
to consider coherent algebras over the field of complex numbers.

6 Concluding remarks

6.1 The ruggedness of a landscape on a given configuration graph, as expressed by
correlation measures, is conveniently represented in terms of spectral properties of the
underlying configuration graph. In the most important cases these graphs are very regular.
The Hamming graphs which are distance regular and the Cayley graph of the symmetric
group, both considered in subsection 3.9, may serve as examples.

In this contribution we have explored to what extent these regularities can be used to
simplify the task of computing the spectrum of a configuration graph. We have scen
that two related concepts, namely equitable partitions and coherent algebras play a key
role in this context. Since, these concepts maybe very useful also in different contexts of
chemical, physical or biological problems, we have introduced and discussed them on a
rather broad level.

6.2 Generalizing the discussion in 2.5 and 5.7 we may express the correlation function
of a landscape (G p-14, f) on a D-regular graph G in the form

1".f(k) = Z Bp(’\p/D)k

P>0

where A, denotes the distinct eigenvalues of G, A = D, and { B, } is the so-called amplitude
spectrum of the landscape [37]. The interpretation of the amplitude spectrum is, in many
cases, straight forward and sometimes highlights the physics that underlies the fitness
function, as in the case of RNA folding landscapes.
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6.3 The spectral properties of Cayley graphs are determined by their irreducible repre-
sentations. For some cases, including the Hamming graphs and Cayley graphs of the
symmetric group it is possible to determine the amplitude spectra by means of Fast Fou-
rier Transform techniques for the underlying group (46, 48, 61).

6.4 Model landscapes in physics and computer science oftentimes include a random
element in the sense that a set of parameters is chosen at random, usually i.i.d., from a
given distribution. In this setting it makes sense to investigate the covariance matrix of

“random landscapes”
C = E[f(z)f(v)] - E{f («)JE[f (v)]

where [E[ . ] denotes the expectated value w.r.t. the distribution of random parameters. The
structure of C, and its relation to a maximum entropy condition and to the eigenvectors
of the underlying graph, is discussed in [25, 73]. The relationships of the coherent algebras
[A) and [C] might well encapsulated important, as yet unexplored information about such
model landscapes.

6.5 So far, almost exclusively landscapes on graphs have been considered. More complex
search operators, most notably recombination or cross-over operators, however do not lead
to graphs. The spectral approach to analyzing the landscape structure can be extented
to this class of operators by considering Markov chains (77, 69] or based on certain hy-
pergraphs (74]. In the case of string recombination one obtains association schemes that
are at least closely related to Hamming schemes. More difficult types of recombination,
such as “tour recombination” in the TSP or recombination of trees so far have not been
considered from the algebraic point of view.
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