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Abstract

We study the interrelationship between the endomorphisms of a weighted (molec-
ular) graph and its spectral properties. The obtained results are helpful in design
of molecular graphs with a given subspectrum and may be of use for materials

engineering of substances with tailored electronic and photonic properties.

1 Introduction

A weighted (colored in other terminology) graph is a graph (directed or nndirected),
to every vertex and every cdge of which some quantity (weight) is attached. Weighted
graphs naturally appear in chemistry, as molecular graphs [1-5]: here, the weight of a
vertex corresponds to the sort of an atom, while the weight of an edge designates the
type of a chemical bond. Another opportunity is given by geometrical graphs, where
the weight of an edge corresponds to the Euclidean distance between a pair of respective
atoms. Usual undirected graphs with or without self-loops comprise a particular case of

weighted graphs when the weight is allowed to take on only two values 0 or 1.
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It is a well-known fact (sce [1-5]) that the spectral properties of molecular praphs have
numerous important applications in the theoretical organic, physical and quantim chon-
istry. Hiickel’s molecular orbital theory, evaluation of the energy of conjugated molecules,
spectral properties of polyhexagonal systems and computations with the characters of
symmetry groups of graphs just provide a few impressive examples of such applications.

A lot of correlations are known between the spectrum of a molecular graph and its
automorphism group (see [3-5]). In a more general context, such interplay may be in-
vestigated with the use of the centralizer algebras of permutation groups [6]. Numerous
results in the quantum chemistry can be regarded as the applied theory of representations
of finite groups (see [7-9] for the case of the symmetric group).

In the present paper, we shall investigate interrelations between the spectrum ol a
graph and its generalized symmetries, that is, endomorphisms of graphs. Here, an endo-
morphism of a graph [ is a function mapping its vertex set V into V', which preserves
edges of I'.  An endomorphism is called strict if it also preserves nonedges of 1. We
associate to a strict endomorphism ¢ of a weighted graph [ a certain partition of V" and
characterize this partition in internal terms of I'. Our main result is that the existence of
classes of this partition, which satisfy certain numerical restrictions, implies the existence
of eigenvalues of the adjacency matrix A = A(T), for multiplicities of which we arc giving
an efficient lower bound.

In Section 2, all necessary preliminaries are presented, while formulations and proofs
of main results are given in Section 3. A short discussion of possible applications of our
results and their connections with other investigations in the spectral graph theory and

in the theory of semigroups is provided in Section 4.

2 Preliminaries

We recall that a semagroup S is a nonempty set with a binary associative operation
o (see [10]). Usually, for s,,s; € S we write s;s; instead of s; 05, € S.

A monoid M is a semigroup with a unity element 1 such that
Yse S 1ls = sl = s.

A group H is a particular case of a monoid, for which each element b & JT has, in H,
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its unique inverse h~' such that
h™'h=hh™! =1.

An element a of a monoid M is called an idempotent if aa = ¢* = a. For every clement,
g of a finite monoid M there exists the minimum power m, called period of ¢ [10]. such
that g™ is an idempotent and, moreover,

9 =90 =0 (rwia <7 <t +m—1),

where 7y > 0 is the wdez of g (see [10]). In other words, every such idempotent power
¢™ serves as a unity for the corresponding cyclic subgroup K, = {¢*.¢**',... "1}
(8 = Twmin) generated by g € M.

Any semigroup S can be represented by the endomorphisms of some structure X (see
{10]). Herein, we shall consider the endomorphisms of graphs.

Let T' = (V. E) be a graph with the vertez set V (|V| = n) and the edge set E
(|E| = m); we consider directed and undirected graphs with and without self-loops. To
each edge (7,7) (1 <4,j < n) we associate a number a;; which is called the weight of

(2,7). In the case when ¢ = j, the number a;; may be interpreted as the weight of a vertex

n
ig=1

ior of the self-loop lying in the vertex i. Let A = (aj;) be the edjacency matriz of a
weighted graph I'. The equality e;; = 0 (resp. a; = 0) will be regarded as the absence
of the arc (i,5) (loop in a vertex i) in I'. We denote by A, and A™ the u-th row and
u-th column of a matrix A, respectively.

An endomorphism e of a graph [ is an arbitrary function ¢ : V = V' which preserves
the edges of I, i.e., e(E) C £. An endomorphism ¢ is called strict if it also preserves the

nonedges of T', viz.:
Vi, v € V (u,v) € E & (e(u),e(v)) € E. (1)
An analog of the condition (1) for an arbitrary weighted graph I' can be given in the
following matrix form
Yu,v € V Uy = Qefu)e(v)- (2)
It is convenient to consider for any endomorphism its "adjacency” matrix £(c) =
(57,1, where
1 ifj=¢e(s)

0 otherwise;
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E(£) can be regarded as the generalization of a permutational matrix (cf [6]). The fol-
lowing simple proposition is a direct analog of a well-known property of a permutational

matrix.

Proposition 1. Let A be the adjecency matriz of o weighted graph T and lel -2V V
be a function on the verter set of I'. Then the function < 1s a strict endomorphism of T
of and only iof

E(s)A(E()" = 4, (3)

where CT is the transpose of the matriz C.

Note that it easily follows from (3) that the set End(T') of all strict. endomorphisms
of ' is closed with respect to the composition of functions, that is, forms a semigroup

(monoid).

3 Main results

Let [ be a weighted graph with the vertex set V' and the adjacency matrix A. Let
e € E(I') be its arbitrary strict endomorphism. Define the equivalence relation ~, as
follows:
e v & e(u) =elv) (strict equivalency).
Proposition 2. Let ¢ : V = V be a strict endomorphism of a weighted graph I with the

adjacency matriz A. Then for each pair u, v of ~,-equivalent points we have thot A, = A,

and A®™ = AW,

Proof. Fix an arbitrary € V. Then @ = opu)epe) = Tequje(z) = Cue. Thus, A, = A,

Analogously, A® = AW, u]
For each weighted graph I with an adjacency matrix A we also define three following

equivalence relations:

e A=A, (row equivalency),
u~ & AW = AN (column equivalency),
w~r e w~y, v and v (graph equinalency).

Remark 1. If A is a symmetric, skew-sytmetric or Hermitian matrix, then, evidently,

all the three relations ~,., ~, and ~ coincide.
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Corollary 2.1. For cach strict endomorphism £ of I u ~p v = w ~ v, that is, any twn

strictly-equivalent vertices are also graph-equivalent.

Corollary 2.2. If a weighted graph T has a noninvertible strict endomorphism, then ~ is

a nonirwial equivalence relation on V.

It turns out that the converse of Corollary 2.2 is also true. First, we need to prove the

following

Lemma 3. Let W, (resp. W) be an equivalence class of ~, (resp. ~.). Then a,, is

constant for all w € W, and all v € W,.

Proof. Let u,u' € W, and v,v" € W, be arbitrary vertices. Then A, = A, and it implies
Quy = Qyry. Likewise, A® = AM) implies that a,, = ayy. Combining these equalities,

we obtain a,, = 4., as required. O

Theorem 4. Let T be a weighted graph with the vertex set V and the adjacency matriz
A Then T has a noninvertible strict endomorphism if and only +f ~ w5 o nontrival

equivalence relation on V.

Proof. By Corollary 2.2, the existence of a noninvertible endomorphism implies that
~ is nontrivial. Now assume that ~ is nontrivial. Let T C V be a subset which is a
transversal of equivalence classes of ~ (in the sense of [11]). In other words, T intersects
each equivalence class of ~ by exactly one element. Define a mapping  : V' T by the
following rule

WweViweT cw=w e v~

Then £(v) ~ v for each v € V. In particular, £(v) ~; v and £(v) ~, ». Now, by Lemma
3, we obtain that @y, = @cueq; 1.e., £ 1s a strict endomorphism. Since (1) = T and
|| < |V], e is noninvertible. m}

In what follows, any set W of ~-equivalent vertices will be called a set of fusnned
vertices. An equivalence class of ~ is called a maximal set of twinned vertices. If I' is an

undirected graph, then there are two possibilities for a set W of twinned vertices:

either @y, =0, w,v € W (uncoupled case)

or @y =1, uw,v €W (coupled case).
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As we have seen before, for each strict endomorphism ¢ of T’ there exists m ¢ A snch
that o = ™ is an idempotent, that is, 0 = ¢. Denote by M the set of all idempotents

of I'. For cach 0 € M, 0% = 0 and o(u) ~, u.

Proposition 5. Let M be the set of all strict idempotent endomorphisims of o weighted

graph U with the verter set V and adjacency matriz A. Then we have
tk (4) < minlo (V)], (@
where th(A) stands for the rank of A; or, equivalently,
7{A) 2 [V] - minlo (V)] (5)

where 11 (A) stands for the nullity of A and o (V) is the image of V' with respect Lo the

action of .

Proof. Let 0 € M. As we have seen above, o(u) ~, u for all u € V. By Corollary 2.1,
it follows that

Agpwy = Ay and AU = 40, (6)

Then (6) can be rewritten as follows
E(c)-A=A=A-(B(o)".

Since the rank of the matrix product is not greater than the rank of cach factor, we get
at that
rk (A) < 1k (B(a)) = |o (V)|
for cach o € M. This implies (4) and, consequently, (5). o
Let K € V be an arbitrary subset of cardinality k. We say that K is a (k. 0. X)-subset
of rows of A if the rank of a submatrix (4},),k of the matrix A" = A= Alis & -0 (where

I is the identity matrix).

Lemma 6. Let K CV is a (k.6, X)-subset of rows of « matric A and 0 > 1, then X is an
ergenvalue of A of multiplicity greater or egual than 6.

Proof. Set A' = A — A\I. Among the rows of (A ek we have exactly b - 0 lincarly-
independent.  Consequently, the number of lineariy-independent rows of A is al most
(n—k)+ (k—0)=n- 0. Therefore, n(A"') > 0. Since the multiplicity of the eigevwalue
Aof A 1s at least n(A"), the multiphieaty of X s at least 8. u]
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As a direct consequence of, we get the following

Theorem 7. Let A be the adjacency matriz of a weighted graph T. Assume thal there
ezist (ki 0, A;)-subsets W; of rows of A; 1 <i<s. If6; > 1 for each 1 < i < s, then A,

w an cigenvalue of A, the multiplicity of which is greater or equal than ;.

Remark 2. The samec results may be obtained for the sets of columns of 4.
Remark 3. If for some set 1 < j; < jp <--- < jp <sofindices A = A, =... = A,

and the sets W, , Wj,,.... W, are pairwise disjoint, then the multiplicity of A is at least
Oy + O + -+ + By,
We will discuss in next section how our two main results (Theorem 4 and Theorem 7)

can be combined for practical applications.

4 Discussion

4.1. Strict combinatorial images are very helpful in the consideration of the cigenvalues
of graphs. We refer especially to Section 2.3 of [12], where a very useful way of treating
the eigenvectors of a graph is presented. One could find in the same book a nunber of
impressive applications of this method.

In our paper, we are trying to attract the reader’s attention to some supplementary
methods of the investigation of the eigenvalues of graphs. In a few words. our idea is
to speculate on the existence of equal lines (that is, rows and columns) in the adjacency
matrices of graphs.

Maximal classes of such lines play an important role in the evaluation of the mmlti-
plicity of certain eigenvalues of a graph (see examples below). Algebraic interpretation of
such classes is similar to that of orbits of the antomorphism group of a graph. We suppose
that a comparison of two main equivalences (strong and graph) introduced in this paper
stresses essential similarities and distinetions between auntomorphisms and strict endo-
morphisms. From the other hand, we admit that the consideration of endomorphisms
and eigenvalues may be carried out separately and independently of each other.

4.2. To the chemist, evaluation of the multiplicities of the eigenvalues of a molecular graph
is a practically important task. Usually, molecnlar graphs are relatively sinall and are

presented pictorially: therefore, simple tricks demonstrated by us here in a few examples
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cat be rather helpful. These tricks are immediate consequences of the theoretical results
developed in the previous section.

Let us detect a few classes of "standard” subgraphs of a graph I', the existence of
which immediately implies some precise information on cigenvalues. Thoese snubgraphs
may readily be represented by their adjacency matrices.

Ezxample 1. The hanging star with ¢ rays, where § = 3:

* 1 11
1 e 0 0
1 0 a 0
1 00 «

Here,  in the first line stands for an arbitrary loop weight corresponding to the point of
attachement of the hanging star to the whole graph, while the entries in tlie lower lines
correspond to three pendant vertices. Existence of such a star contributes exactly § —1
linearly-independent eigenvectors which belong to the same eigenvalue A = ey, where acis
the weight of loops in the pendant vertices.

Exzample 2. Let us consider a subgraph with a cycle of the length four:

[« 000100 0]
0*001000
00+«00100
0000100
1100001 1|’
0011001 1
000011 a0
(0000110 a

where, the "starred” vertices may have (like in the precedent example) some additional
adjacencies, while all the adjacencies of the "unstarred” vertices are shown in the matrix.
Two loops in the subgraph have the same weight . This subgraph coniributey to the
whole spectrum of T' at least one eigenvalue o,

In both examples above. we were dealing with the uncoupled twinned vertices. Now

consider the coupled twinned vertices.



211 -

Ezample 3. A hanging triangle

1 3 «

where o« and J are again the weights of a loop and edge, respectively, contributes to the
spectrum of I' one eigenvalue A = o — 3.

Bxample 4. A more complicated subgraph

* 1 0 00
I % T i 1
01 a g g
01 i)
01 A «a

contributes two eigenvalues A = o — f3.

We invite the reader to construct now his own further examples of similar or even
more sophisticated ”standard” subgraphs.
4.3. It is worthy to mention that the subsets of the twinned vertices of either kind, in
particular, maximal subsets, appear as subgraphs of specific interest in chemistry (espe-
cially, in quantum chemistry). For instance, in the above examples, the weight « of a
self-loop in vertex z may be interpreted as the value a = a; = [ Hydr, where a; is the
coulomb integral of an atom i (we refer to the quantum-chemical graph I' which appear
in the Hiickel method (see, e.g., [1-5]). A similar interpretation in terms of resonance
integrals 3;; = [ 4 Hy dr works for other, nondiagonal, elements of the adjacency matrix
of the Hiickel graph. Thus, finally, certain eigenvalues of the Hiickel graph and their
multiplicities acquire a strict physical explanation.
4.4. There is a number of other significant areas of spectral graph theory which (explicitly
or implicitly) are related to the topics in this paper. We would like to give here just a
few hints to such interplays,

Idempotent matrices play a significant role in the theory of matrices. [n partienlar,
they arise as the projection operators related to the eigenvalues and cigenvectors of a

matrix. These applications are presented in [13].



A classical approach in spectral graph theory, which is based on the use of the so-called
divisors of graphs, describes how some partition of a matrix A into rectangular blocks
enables one to find "nonevident”™ eigenvalues A of a graph (that i1s those A which are not
cqual to @ or o — f, in terms of the examples above). This approach is presented with all
details in [4]; also see [3, 5: 13-15], where other interesting approaches are expounced.

Note that in a more modern terminelogy divisors of graph correspond (o so-called
equitable partitions of the vertex set of graphs; see [12]. In [17], this notion is considerel
in a more wide context of colored (weighted) graphs. An original approach to estimating
the multiplicities of the eigenvalues was recently proposed in [16].

To conclude, we would like to stress that the paper [18] by Nummert plaved an im-
portant role in the genesis of the approach presented in this work. In particular, a few of
our results are generalizations, to the case of weighted graphs, of corresponcing theorems

by Nummert.
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