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ABSTRACT

The aim of this paper is to present a generalization of Lunn-Senior’s mathematical
model of isomerisin in organic chemistry. The main idea of A. C. Lunn and J. K. Senior
is that if the type of isomerism is fixed, a molecule with a fixed skeleton and d univa-
Jent substituents has a symmetry group W < Sy which is generally not the molecule’s
3-dimensional symmetry group. The unit character of W induces a representation of
the symmetric group Sy which governs the combinatorics of the isomers of the given
molecule. Lunn-Senior’s thesis is that certain non-negative integers established by this
representation are upper boundaries of the corresponding numbers. vielded by the ex-
periment (and often coincide with them). Moreover, the authors define (in a particular
case) a partial order among the objects of the model, such that some simple substitution
reactions correspond to inequalities. These two groups of data determine the gronp 117,
and produce so called "type properties” of the molecule (properties which do not depend
on the nature of the univalent substituents). Our hypothesis is that if we replace the
unit character of W by any one-dimensional character of W (thus we count only a part
of the isomers — those having a maximum property), we also get a type property of the
molecule. An instance of that is the inventory of the stereoisomers called chiral pairs.
The formalism can be generalized naturally and produces some preliminary chemical
results. Especially the partial order is defined and studied in the general case and indi-
cates the possible genetic relations among the corresponding moleeules. An important
result of E. Ruch which connects the dominance order among partitions and the exis-
tence of chiral pairs is obtained as a consequence of a much more general statement.
Ruch’s formulae for the number of isomers corresponding to a given partition of d ave
generalized.

1. INTRODUCTION

In this introduction we summarize both the Lunn-Senior’s mathematical model fron
(3], and the content of the present paper.



1.1. Let AR be a set of atoms and radicals we are interesting in.  The stctural
{connectivity) formula of a given chemical molecule s nsually deawn as an AR-labelled
graph I', where the labels of the vertices of T' represent atoms or radicals from AR, and
its (possibly multiple) edges represent valences, or, equivalently, the connectivity data.
We note that repetitions of labels are allowed. In the sequel, we identifv the graph T
with the corresponding structural formula. Following [3, I, p. 1030}, we use the ferns
“structure” and “connectivity” as synonyms in order to underline their independence
of the 3-dimensional space’s limitations.

The mathematical model of Lunn and Senior, which is considered in [3]. is Dased on
fixing a certain subset U(I") of the set «(I') of vertices of T', which Las the property that
each vertex in U(I') is an endpoint of exactly one edge of T. The labels of tlie vertices
from U(T') are called wnivalend substituents of T'. The subgraph S(I') of ' with set of
vertices v([)\I/(I') and all edges that connect these vertices, is said to he the sheleton
of T

Obviously, the division of a structural formula into skeleton and wnivalent substituents
is not unique, but once fixed, this division produces certain properties of the molecule,
which, after Lunn and Senior (see {3, I, p. 1031]), are called type propertins.

Given the skeleton £ = %(T'), the “degrees of freedom” of the system ave constituted
by the various ways of distributing the univalent substituents among the unsatisfied
valences of the skeleton. Let d be the number of univalent substituents of I'. We assign
to each vertex of the skeleton with unsatisfied valence a number from 1,2.. . ... so that
different vertices have different numbers, and denote the set of these numbers Iy [1.d].
There are as many different AR-labelled graphs I' with a fixed skeleton X, ax maps
i:[1,d] = AR, k + i;. Thus, the Cartesian product (AR)d classifies the variety of all
structural formulae T' with a given skeleton ¥. The combinatorial analysis of these I's
is governed by the representation theory of the symmetric group ¢ of the set [1.d].
The fact that the univalent substituents consist of “groups of like individuals”, and
that “...the differences between them become qualitative, like the differences between
red, blue, and yellow geometrical points” (see [3, I, p. 1031]), can be encoded iu the
mathematical model via dissecting the set [1,d] into several disjoint subsets Ay {1.d] =
UgAgr. The group Sy acts naturally on the sct Ay of all ordered dissections A =
(A1, Az, ... Ag) of the set [1.d] by virtue of the rule

CA = (ClA1).¢(A2), ... ¢(Ad)). i1.11)

Thus, we establish a monomial representation of the symmetric group Sy We consider
the subset Ty of Ay, consisting of all ordered dissections A whose components ave ovdered
from largest to smallest. Clearly the clements of the latter can be identified as tabloids
with d nodes (see (2, Ch. 2, 2.2.16]). Since Sy is d-transitive on the set [1,d], there exists
a one-one correspondence between the orbit space 54\Ty and the set Py of all partitions
A= (M, Ae, o Ag) of the positive integer . This correspondence can be obtained by
factoring out the surjective map ¢: Ty — Py, (A, As. ..o, Aay = (AN A Ay ). where
Mg is the cardinality of the set 4z, The Sy-orbit Ty corresponding to the partition
A € Py consists of all tabloids of shape A,

Onee a skeleton ¥ with d unsatisfied valences is fixed, any tabloid A < Ty can be
considered as structural substituents’ pre-formula of the d univalent substituents. In
other words, A is a pattern of maps which assigns to eaclh munber in the component
Ay of that tabloid Ay identical univalent substituents @y of type 1, to eacli munber in



the component A; — Ay identical univalent substituents @, of type 2. ete.. regardless of
the nature of these substituents. Moreover, there is a one-one correspoudence hetween
the structural substituents’ pre-formulac and the structural pre-formulae obtaiued after
joining the skeleton. Then the monomial

T (112)

where \ is a partition of d, represents the empirieal substituents’ pre-formmla conunon
to all struetural substituents’ pre-formulae from the the set T.

Throughout the rest of the paper, in any particular consideration the skeleton will e
fixed, so we shall use the expression “structural (respectively, empirical) pre-formula”
for structural (respectively. empirical) substituents’ pre-formula, and shall identify this
structural pre-formula with the correspending tabloid.

Introducing tabloids, we avoid their equivalent but complicated set theorctic interprera-
tions used in [3, II-]. In particular, our approach allows us to generalize for auy partition
) of d the adjacency relatious from [3, VI, explicitly defined by Lunu and Senior only
for the case Ay + Ay = d.

1.2. A simple substitution reaction

A Ai Aj

i 3
el e e Y B e B sy (1.2.1)

B i
where At € Py, and gy = Ay, i = N+ 1o gy = A= 1,0, g = M. is reflected
by the mathematical model via introducing on the sets Py and T the so called simple
raising operators p; ;, and I ,, respectively (see Sections 2, 3). The operator R; , acts
on a particular structural pre-formula A = (44, 4s,...,Ag) € Th by transferring the
element s € A; to A;. This operator mimies the inverse of the operation indicated in
the chemical equation (1.2.1): The replacement of one of the univaleut substituents r;
of type 7 in A with an univalent substituent &; of type j. The structural pre-formula

B={(A1,..., A U{sh-.., A\{s}h,..., 4¢) = Rind

thus obtained is a tabloid of shape p, and A and p are connected via the simple raising
operator p; ; (sce Section 2): pt = p; ;A

A finite product R (respectively, p) of simple raising operators Ry , (respectively. p; ;) is
said to be a raising operator. By means of these raising operators, we introduce partial
orders on the sets Ty and Py:

A < B if and only if there is a raising operator ? with B = R4. (1.2.2)

A < o if and ouly if there is a raising operator p with y = pA.

The latter order is the famous dominanece order which plays an nnportant role in the
representation theory of the symmetrie group (see [2]). We note that in Sections 1 and
3 we state equivalent definitions of the partial orders A < B, and A < jr. respectively,
which allow a direct check (in particular, by a computer).

1.3. Now, we turn our attention to the structural pre-formulae as arranged in equivalence
classes by certain isomeric relation. In [3]. Lunn and Senjor consider three isomeric
relations:
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{a) Univalent substitution isomerism;

(a) stereoisomerism;

() structural isomerism.

The hasic assumption of Lunn and Senior in [3, ITT] is that for a fixed isorueric velation
among (a) - (a7}, and for a fixed skeleton X, there exists a permutation gronp 71 < S,
such that the corresponding isomerie classes ean be identified with some 1T-orhits in
Ty4. More precisely, the group W acts on the set Ty via the rule (1.1.1), aud the isomers
with skeleton © and with d univalent substituents are identified with the clemeuts of
the set Tpw = WA\Ty of W-orbits in Ty.

The authors emphasize that this gronp W can be chosen from the large selection of sub-
groups of 4, using considerations which have nothing in common with the 3-dinicusional
space confignration of the respective molecule.

The set Ty of tabloids of shape A is a disjoint union of several W-orbits, and if we denote
the set of these W-orbits by Th,w, we have Tyw = Usep, T It should e mentioned
that in the set T are gathered all isomers with empirical pre-formula (1.1.2). Let
ny.w be the number of elements of the set Th.w .

1.4. Let us consider the partial order on Ty obtained by factoring out the partial
order (1.2.2) in T4: For a, b € Ty, we write

a<bifandonly if A < B for some 4 € @ and B € b.

This partial order on Ty is a natural generalization of the adjacency relations consid-
ered in [3, V1], so it is a mathematical model of the genetic relations among isomers in
organic chemistry.

For any couple A, and p of adjacent partitions with A <y, and p = p; jA. we consider
the subset Ry p.w C Ta;w X Tpw . consisting of all ordered pairs (a.b) such that a < b.
and set £y 0w = |[Raowl-

1.5. Now, we shall enunciate the main statements of Lunn and Senior frony [3], snnma-
rized in the following

1.5.1. LUNN-SENIOR’S THESIS. Let T be a skeleton with d unsatisficd siugle valences.
One considers molecules with skeleton T and substitution’s structural pre-formulae
which have empirical formula (1.1.2). Then

1. There exist three permutation groups G, G', G" < Sy, such that:

(1a) Any univalent substitution isomer can be identificd with a G-orbit in Ty:

(1a') any stereoisomer can be identified with a G'-orbit in Ty;

(1a"” )} anv structural isomer can be identified with a G"-orbit in Ty,

2. The groups G, G', and G < Sy4. arc connected in the following way:

(Za) G = @', in case there are no chiral pairs among the univalent substitniion isomers,
and G < G' with |G": Gl =2.in ¢
G'-orbits coincide and some of them represent the diastcrecomers. In the last case. cach

there are sucl pairs. In the first case. the G- and

G'-orbit coutains either

2ac) two G-orbits. and the members of auy chiral pair ave represented Dy ol a couple
& I T 4

of G-orbits,

or, coincide with

{Z2ad) one G-orhit, and any diastercomer is represented by suel a G-orbir.

(2b) Any G"-orbit is a disjoint union of G'-orbits.
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3. Each simple substitution reaction b — a of the type (1.2.1) can be identificd with
the elemient (a,b) € Ry ¢

4, The terins and relations involved in the statements 1+ 3 do not depend on the natire
of the univalent substituents, so they represent type properties of the molocules nnder
consideration.

REMARK 1.5.2. The chemical discourse which has resource to the experiment. and
Lunn-Senior’s mathematical model, create two languages showing some discrepancy.
Below, we state explicitly the chemical definitions of the different types of isomerism
described by the mathematical model. in terms of the model itself. Any two compounds
in a particular definition are supposed to have the same empirical fornmla, that is. the
corresponding tabloids have the same shape.

Two chemical compounds are said to be structural isomers if the G"-orbits of their
structural formulae are different.

Two chemical compounds are called stereoisomers if the G'-orbits of their structural
pre-formulae arc different, but are contained in the same G”-orbit (that is. they Lave
the same connectivity data).

Two chemical compounds are said to be univalent substitution isomers if the G-orhits
of their structural formulac are different.

Two chemical compounds are said to form an chiral pair if the G-orbits of their struetural
formulac are different, but are contained in, and cover the same G'-orbit (in particular.
they represent the same stercoisomer).

Two chemical compounds are said to be diastereomers if: (a) the G-orhits ) and
(0 of their structural formulae are different: (b) cach of O and O, coincide with the
corresponding G'-orbit; (¢) both Oy and O, are contained in the same G"-orbit ((a) -
(¢} yield that Oy and Oy are stereoisomers).

Let Ny.x (respectively, N:\;‘_:, .N,‘[;:) be the number of univalent substitution isomers

(respectively, stereoisomers, structural isomers) with fixed skeleton Z. which have em-
pirical pre-formula (1.1.2). Let Ty ,;x be the number of different simple substitution
reactions of the type (1.2.1) among the univalent substitution isomers with that skeleton
T

L

According to Lunn-Senior’s thesis we have as conscquences the following inequalities:

Nyw <nnay Tapy <taues A€ Py, {1.5.3)
Nys < nxe, A€ Py, (1.5.4)

and
Niw <nxer. A€ Pa. {1.5.5)

The above inequalities can be used to find the group which corresponds to the partiendar
type of isomerism. as Lunn-Senior’s thesis asserts: If one of the inequalities from a row is
false for a particular subgroup of the svmmetric group Sy, then this subgronp has to he
rejected (see [3. IV]). On the other hand, Theorem 5.2.5 shows that the family (1301 )y of
non-negative integers defines both the permmutation group W < 5; up to combinatorial
equivalence, and the corresponding induced monomial representation ]ml,&’;"(ln-) of the
symmetric group Sy -~ up to isomorphism (here W is one of the groups G. G/ or G).

1.6. A disadvantage of Lunn-Senior’s mathematical model is that there are no enowgh
tools immanent to it, in order for two W-orbits to be distinguished.
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The aim of this article is to present a mathematical formalism which includes Lo
Scnior's model as a particular case and makes use of the one-dimensional characters of
the group W, and the one-dimensional characters of the group Sy = Sy, # Sy, -+ <
Sq. for picking out of some special W-orbits. A point of departure is the [ollowing
observation. Let us suppose that there are chiral pairs among the stercoisomers of a
given molecule with empirical formula (1.1.2). Then, according to Lunn-Senior's thesis
1.5.1, the group G is a (normal) subgroup of G' with |G7 : G| =2. Let \,: "+ {1. -1}
be the homomorphism of groups, which assigns 1 to ecach clement of G. aud =1 to
each element of the complement G'\G of G. Each G'-orbit (which, at least potentially.
represents a stereoisomer) coincide with the corresponding G-orbit (and potentially
represents a diastercomer), or splits into two G-orbits (thus potentially representing a
chiral pair). The G'-orbits O which consist of two G-orbits can be distinguished from
the other G-orbits in the following way. Suppose that A € O is a tabloid. and let
G, be the stabilizer of A in G'. We can consider \. as a one-dimensional character
Ye: G" = K, where K is the field of complex numbers. Then O splits into two G-orbits
if and only if the character y, is identically 1 on the subgroup G';. We can count the
number of those G'-orbits (let us call them y.-orbits), using the machinery developed
in Section 5. Thus, the one-dimensional character v, of the group G produces a type
property of the molecule in question.

On the other hand, it is well known that there is a one-one correspondence hetween the
set Th.qy of all W-orbits in Ty, and the set of all double cosets of Sy modiulo (117 S,).
Let 8 be a one-dimensional character of the group Sy, and let \ be a one-dimensional
character of W. We consider the subsct T,y ¢ of the set Tx,w, consisting of all T -orbits
which satisfy property (5.1.3), (eall them (y, 8)-orbits), and set ny,\ o = [Ta.\ 4]

The hypothesis that for any pair (y,#), where W is a group among G. G', and G, the
property (5.1.3) is a type property of the corresponding molecule, recognizable by an
experiment, yields the following

1.6.1. EXTENDED LUNN-SENIOR'S THESIS. Let S be a skeleton with d nusatisfied
single valences. One considers molecules with skeleton © and substitution’s stroctural
pre-formulae which have empirical formula (1.1.2). Then

1. There exist three permutation groups G, G'. G" < Sy, such that:

(1a) Any univalent substitution isomer can be identified with a G-orbit in Ty:

(1a') any stereoisomer can be identified with a G'-orbit in Ty:

(14" ) any structural isomer can be identified with a G"-orbit in T.

2. The groups G. G', and G" < Sy, are connected in the following way:

(2a) G = G', in case there are no chiral pairs among the univalent substitution isomers,
and G < G’ with |G' : G| = 2. in case there are such pairs. In the first casc. the G and
G -orbits coincide and some of them represent the diastercomers. It the
G'-orbit contains either

(2ae) two G-orbits. aud the members of any chiral pair are represented by such a conple
of G-orbits,

or, coincide with

Hst case. l‘i“"l

(2acl) one G-orbit, and any diastereomer is represented by such a G-orbit,

The \.-orbits are those G'-orbits which represent the chiral pairs.

{2b) Any G"-orbit is a disjoint union of G'-orbits.

3. For cach sequence b — -+ — @ of simple substitution reactions onc has a < b and
the reaction b — a can be identified with the inequality « < b in Tyq;.
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4. The terms and relations involved in the statements 1 - 3 do not depend on the nature
of the univalent substituents, so they represent type properties of the molecnles mder
consideration.

5. If @ is a one-dimensional character of the group Sy, and \ is a oue-dimcusional
character of the group W, where W is one of G, G, or G”. then the sct of all (. #)-
orbits of W in Ty represents a type property of the molecule,

The isomers which correspond to the hypothetical type property from 1.6.1, item 5.
are called (y,#)-isomers. Let Ny gx be the numnber of all (v.8)-isomers with fixed
skeleton ¥.

As far as Extended Lunn-Senior’s thesis is valid, we have the inequalitios

Moo < naee

1.7. In Scection 2 we consider the dominance order on the set My cousisting of all d-
tuples m = (rny, ... ,mg) of non-negative integers whose sum is d. (see (2, Cl. 1. 1.4.6]}
and gather the necessary information concerning neighbourhood in A4, and in its subset
Py of all partitions of d.
In Section 3 we introduce tabloids and raising operators which act on their set Ty by
analogy with the raising operators from Scction 2. Inasmuch as possible, we work in the
wider set Ag, consisting of all ordered dissections A = (A;...., Aq) of the set [1.d]. We
provide the set Ay with a partial order (also called dominance order) such that if we
consider the dominance order on the set My, then the map ¢: Ay — A, from (3.1.1) is
a homomorphism of partially ordered sets. The main objective m Section 3 ix the study
of the equation »(X') = n, where n € My (respectively, n € Py), and the unknown
X varies in an interval {4, B] in Ay (respectively, in Tj). Theorem 3.4.3 allows us to
establish Theorern 3.5.1 which is a criterion for two ordered dissections (tabloids) 4 aid
B to be neighbours with respect to the corresponding partial order. This is doue by a
systematical usc of raising operators.
In Section 4 we factor out the constructions from Section 3 with respect to the action of
a permutation group W < Sy, and produce the sets Agw and Typ-. the last one heing
the sphere of action of the generalized Lunn-Senior’s mathematical model of isomerisn.
Note especially Theorem 4.2.1 which gives necessary and sufficient conditions for two
elements @ and b to be adjacent in Agw (respectively, in Tyw), as well as Theorem
4.2.3 which is a criterion for a and b to be neighbours there.
Section b is devoted to finding explicit expressions for the maximum munber of isowers
under consideration, according to Lunn-Senior’s thesis 1.5.1 and its extension 1.6.1.
Here Theorem 5.2.7 is the central result. In Corollary 5.2.10 we give another proof of
Ruch’s formula which establishes an explicit expression for the numbers 13y (see [6]).
We have to point out Lemma 5.4.3 which shows that when @ is the unit character of the
group Sy, the abstract condition (5.1.3) on the stabilizer Wy of an ordered disseetion
A€ ¢ is equivalent to to the following maximum property of the W-orhit «:

“the W-orbit « consists of |W : W | W\ -orhits™,
where W, < W is the kernel of the one-dimensional character \: 17 — I
Theorem 5.3.1 is a generalization of an important result of E. Rucli which conncets
the dominance order on the set Py aud the existence of chiral pairs, as it is shown
in Subsection 6.2, Theorem 6.2.1. The rest of Section 6 contains illustrations of our

approach applied on well known examples: A proof of Kauffmann formmlae for the
derivatives of naplhithalene. and inferences of the genetic relations of ethene and henzene.
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2. PARIITIONS

2.1. Let Ny be the set of all d-tuples m = (my. ..., i) of integers nej witly Z/ wiy =
Let Ay be the subset of Ny consisting of all d-tuples m with non-negative cowponents.
We denote by Py the subset of My whose elements ave all A = (A ..., Mgl & My owith
A1 2 ... 2 Az, The elements of Py are called partitions of d. The partition A can be
visnalized by the corresponding Young diagram:

XK TR SRS R B A1 nodes
X K see eee X Az nodes
A : (2.1.1)
X e A nodes
where A, is the last nonzero component of A, Let | = ({y,...,{g) and m = {11y, ., g

be two elements of the set My. In case [} = my, we denote by (1, 1) the maxinum

number g € [1,d] such that {} = my,... . l; = m,. Otherwise, we set ¢(!.in) = 0.

Let < be the dominance order on Ny (see [4, Ch. I, Sec. 1]). We remind that [ < if
andonly if 35 e < 374 my for any 1 < ¢ < d. In this case we say that i dominates
1. Tt is clear that < is a partial order on Ny which induces partial orders on Afy and
i Py, the last two being denoted by the same sign and also named doninance order.
Below, the dominance order on Py is graphically portrayed.

(6)

(1%)

Given i, j € [1,d]. we define an operator p; ;: Ny — Ny by the formulac

d,

. {(1.....,1‘+1....,1_,71 ..... L) if 1<i<j<d
[} g <

The operators p; ; are called simple rawsing operetors in Ny Obviously. aa hwo simple
raising operators py, ;. and pi, g, i Ny commute. Any product p = p; 5 o, of
simple raising operators is called raising operator in the set Ny, A raising operator is
said to be non-trivial if it moves at least one element in Ny Otherwise. it is called

trivial.
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REMARK 2.1.2. We note that the subsets My, and Py of Ny are not closed with vespeet
to the action of a non-trivial raising operator: Given a d-tuple | € M, and a siple
raising operator p; ; with 1 <7 < j <d, one has p; ;{1) € My if and ouly if 7, > 1.

f1<i<j<d and gy = p;;A € Py, then the picture below illustrates the action of
the simple raising operator p; ; on the Young diagram representing the partition A:

R B S B ol GRS Sy 59 Ay nodes
i M X ¥ A nodes
A= )
i X X o ox X A; nodes
T A nodes
boopig
% % wes e e weE Ewm R Ay nodes
T B % Foowe e B X Ai + 1 nodes
. :
i X o} e X Aj = 1 nodes
se e At nodes

2.2. The main aim of the rest of this section is to discuss the conditions wnder which twao
elements of My (respectively, of Py) are neighbours with respect to the corresponding
partial order.

For any ordered pair (I,m) of clements of Ny we define a sequence of integers

k

re =rp(l,m) = Z(m, ), k=1,...,d—-1,

and set r = r(l,m) = Ef;: v It is evident that I < m if and only if ry (/i) = 0 for
alk=1,...,d—1, and that r(l,m) =0 yields | =m.
We borrow part (i) of the next lemma from [4, Ch. 1, Sec. 1], and modify it iu part (ii).

LEMMA 2.2.1. (i) Ifl, m € Ny, then one has | < m if and only if there exists i raising
operator p with m = p(l):

(ii) if im € My, and if I < m. then m = p(I) for a raising operator p having the
following property: There exists a sequence of v = r(l,m) non-trivial simple raising
operators py.pa...., pr of the tvpe p; iy, 1 <i < d—1, such that:

(a) p=pr--p2p1;

(b) m(l) € My, papy(1) € My,.... proy oo papi(l) € My;

(el <mll) < papr(l) <o < ppey v pei(l) < .

ProOF: (i) Suppose that there exists a raising operator p with mr = pil). We can
assume that p = p, ;. and in this case apparently I < . Conversely, let 1 -2 i Then



1 = p(i) for
d—1

P—HPHH»

where 1 = rr(l,m);

{1i) We shall prove this statement by induction with respect to v = ril.n) > 1. I
r = 1, then there exists an index k = ¢ such that v; = 1, and », = 0 for all 1 £ 4.
[ d — 1. This implies m = p; ;41(1), and we can set p = p, ;4. Suppose that
part (ii) is true for all L.m € My with I < m, and with » < &, and let » = L + 1, We
set ¢ = gq(l.m). Thus. ¢ <d—1,andry =--- =ry =0, and ryq; > 1. Let v > 2 be
the smallest integer with r,y. = 0 (integers & with the property v, = 0 cxist: For
instance, & = d — ¢). We have

lpva+ -+l 2 lgpa+ - Flopw —mgga + o F gy, = g4 = L

and hence there exists an index j, ¢ +2 < j < ¢+ &, with [; > 1. We set 7 = g+ 1. and
I = pi (1), Then ' € My, { < I'. and we have rg(!'.im) = rg — 1 when b =/..... i-1
and (1", m) = rg otherwise. Sincery > 1forall k =4, .. ¢+n =1, then o (Fon) 20
for all &, so I" < m. Moveover, r(I’,m) = r(l,m) = (j —i) =k +1—(; — /) < k, and
the inductive assumption yields that there exist r' = r(I’, m) simple raising operators
ple--a ) of the desired type, such that m = p'(I') for p' = p!, -+ pi. sl conditions
(b ) and {c) are satisfied. Taking into account that p;; = pia1---p,—r . and that
r=17"4(j —i), we get our statement.

THEOREM 2.2.2. The d-tuples I, m are neighbonrs in My with | < if aud only if
there exists 1 € [1,d} such that m = p; jq(1).

Proor: Let m = p;ipi(l) and 1 € n <m. Wehave ng =l =my for 1 < b </ -1
Then l; <n; <m; =1;+1, soeither n; = {;, or n; = my. Further, i+, < 0+ <
L4+ 1+ ligr — 1, hence I; + Ly = ni + nigq = my + myp. The two cases wy = 1, or
i = my, tuply m =1, or n =, respectively. Thercfore { and i ave neighbours with
< m.

Now, suppose that the d-tuples {1, m are neighbours in My with [ < 1. According to
Lemma 2.2.1, (ii), we have m = p(I), where the raising operator p satisfies all conditions
(a) - (c). This yields r = 1, and hence m = p; ;4 (1),

2.3. Here we state [2, Ch. 1, Theorem 1.4.10] which gives necessary awud sufficient
conditions for two partitions A, g € Py to he neighbours in Py, aud vefer to the
corresponding proof there. It reads as follows:

THEOREM 2.3.1. The partitious A, p are neighbours in Py with A < yo if aud onlv if
there exist a pair of integers (i, j) with 1 <7 < j < d. and such that ﬁhcv {ollon-ine two
conelitions hold:

(1) One has jo = p; (A):

fii) one has j =i+ 1. or A; = A,

In terms of Young diagrams we move the node from the end of j-th row of A to the
cnd of its i-th row and this move is minimal with the property that we do not leave the
subset Py C Ag. The last mininmm property is equivalent to (ii).



3. DOMINANCE AMONG ORDERED DISSECTIONS AND TABLOIDS

3.1. By an ordered dissection of the integer-valued interval [1,d] = {1.2..... d} we
mean a d-tuple A = (A;,..., 4q) of disjoint subsets A, C [1,d] with U“f_ﬂ,.—l, w2 [ Bl

Sometimes, we shall think of an ordered disseetion A as an infinite sequence
(Ar,...p da. Aty o),

where A; =@ for k> d. We denote by Ay the set of all ordered dissections of [1.d],
and define the surjective map

(piﬁ,{ - Md, (311)
(Arye.yAa) > (i A,

3.2. Each ordered dissection 4 = (A;..... Ag) of [Lod] with [4] > ... = |4y} 15 ealled
tabloid. Let Ty be the subset of Ag consisting of all tabloids. Obviowsly. Ty = »~'( Py).
The tabloid A can be visualized by placing the elements of Ax in the A-th row of the
Young diagram (2.1.1) corresponding to the partition A = ¢(A4) withont taking into
account their order, for & = 1,...,t. The next figure illustrates botli the tabloid A and
the map »:

61,0 @iy oww wen s GLAY the component A,
a1, 022, ... ... G2, the component 4,
A= 3
Gy 15 sse the component. A,
& @
KX ree oses osss X Ay nodes
OB aww mme (M s nodes
A= "
X s Ar nodes

We define a partial order on Ay via the rule
A< B ifand only if Uy_; Ax € Us_, By, forany 1 < < d,

and call it dominance order. In case A < B we say that B dominates A.

For each s € [1,d] and each 4 € Ay there exists a unique j € [1,d], such that ~ € A,
We set =4(s) = j. Thus, any A € Ay produces a map = 4:[1,d] — [1,d].

We introduce a partial order on the set of all maps [1,d] — [1,d] by virtue of the rule:
a < 3 if and only if a(s) < 3(s) for all s € {1,d].

For any two integers 1 < ¢, s < d, we define an operator R, ,: Ag — Ay by the formulae

R, (4) = {(A- ------ AU fsh. .

The operators R, o are said to he smple raising vperators in Ay, Any product 7=
Riy o Rig sy - - of simple raising operators is called raising operator on the set Ay

The action of the simple raising operator R; s on the tabloid A with B = [t; .1 € T,
can be illustrated by the picture below:

5"13.]\{.'.‘}‘....‘-1,1) if zals) >4
A if sa(s) <0,
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€11, ¥ ... kL. * *dy the component .4,
Ui ®  eewe W s @D the component A;
A= 7 :
451, * ... % 3 the component A;
(i 2] [— the component A,
b Ry
€11, ¥ ... x L. * *oay N, the component B3,
@iy, ¥ ... k.. Gix. S the component 3,
B =
aji, ¥ ... % the componenr I3
GEEy the component By

It is easy to see that any two simple raising operators commute. Thus, for any 7 € {1.4].
and for any subset X C (1, d] we can define without ambiguity R; v = H‘re,\ R..
For any i € [1,d], and for any finite family J = (jr)zex of elements of [1.d]. we define

a raising operator in Ng by p; 5 = Hre\’ Piliss

LEMMA 3.2.1. (i) For any A € Ay and any raising operator R = R;, , It;, ., .... one
has the inequality cpiay < 4. If there exists a pair ig,s; with 2 4(s¢) > i then
Sppay <EAS

(ii) for any subsct X C [1,d], one has o(Ry x A) = p; . ,(x)p(A);

(1ii) the map p: Ag — My is a homomorphism of partially ordered sets: p(A) < ¢(B)
for A< B; if A< B and p(A) = @(B), then A = B.

PROOF: (i) It is enough to prove the first statement for B = R, ,. When ¢ 4(s) <. it
is obvious. Now, let ¢ 4(s) > 7; Since ¢ = £ puy(s) and since 2 4(#) = & g 4501) for 1 # s,
then 24y < 24, and we have proved both the first statement and the second statement
for R=R;.,.

For the second statement, we write R = R'R;, ;.. Then R(A) = R'R;, ..(4) and
ER(A) € R, L (A <Ea

(11) We shall use induction with respect to the number of clements in the set X. When
|X{ = 1, this is trivial. Suppose |X| > 2, and set X' = X\{s}, where s ¢ X. B =
Ri x4, and j =ep(s). We have

P(RixA) = p(RiRi v Ay = o(RiuB) = pije(DB) =

Pie(RixtA) = pijpi - (xne(A)

Since s ¢ X', then j = zp(s) = =4(s), so part (ii) is proved.
J I 1
(iil) This is a direct consequence of the definitions of the partial orders on Xy and My
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LEMMA 3.2.2. Let A € Aq. IfR = Ry, o Ri, s, ... is a raising operator. then A < R{A).
In particular, if there exists a pair iy, sy with £ 4(s;) > i, then A < R(A).

Proor: Let B = R(A). We can suppose that ' = R, and in this case the inequality
A < R(A) is obvious. Now. Lemuma 3.2.1, (i), yields the statement.

3.3. Let 4. B € Ay with 4 < B.and let I = o(A) and m = @(B). Accordiug to Lenna
3.2.1. (iii). the map , defined via (3.1.1). is & homomorphism of partially ordered sets,
In particular, ¢ maps the interval [A, B into the interval [{, m]. In the next two lemmas
we begin the study of the equation (X)) = n. where X € [A, B], for various u € |1.m].

LEMMA 3.3.1. Let A, B € Ay with A < B, and let | = p(A) and m = o(B). Suppose
[ <n < m, where n € My. If for some i, 1 <i < d, one has

i—1=q(ln),

then there exists a raising operator R x with X C A U... U Ay, such that A" =
Rix(A) and l' = ¢(A") satisfy the conditions A < A' < B, andl <" < n. and

1< q(l',n).

PROOF: If i = d. then n = [, and we choose X to be the empty set. Now, let 1 < d.
The equality 1 — 1 = ¢({,n) implies Iy = ny,....li_y = n;—y and [; < n,. Hence,

L+t li<nm+--+n; <my+ 0+ my.

We choose a subset X C By U...UBA\A; U...UA; consisting of n; — I; clements.
Obviously, X € Ajp1 U... U Ag. Weset A" = R; x(A). Then I' = p;.(xy(D. ol the
conditions of the lemma are satisfied.

LEMMA 3.3.2. Let A B € Ay with A < B, and let | = ¢(A) € My and w1 = (D).
Suppose that m = p; ;l. where 1 <1 < j < d. and that there exist an integer v > 1. and
two sequences (1x )y, and (sx)s=; in the interval [1.d], such that

1= <ip < ...<tp < J, and £4($x) = g1, forall 1l <k <rv—1, and £4(5,) > 1,

and that the components of the ordered dissections R;, s, ... Ri ¢ A and B coincide for
all indices in the closed interval [1,1,]. Then there exist two integers i,41. <4 iu [1,d].
such that 1, < iygy < J. and € 4($r41) = Gegr, and in case iy < J the componcnts of
the ordered dissections Ry, 4, ... Ri ;| o, A and B coincide for all indices in the closed
interval [1,4,41]. or one has B = Ry, . ... Ry, o, A In case i, = j.

PrOOF: It is obvious that the elements s;,...,s, € [1,d] are pairwise different, The
condition yields B;, = (A, \{s¢—1 U {si} forall2 <k <r, and B;, = A, U {s }. and
Bi=Apforall 1 <k <i, with k¢ {iy..... i}

We shall prove the following

SUBLEMMA. (i) One has Ay = By for all k € [i, + Lomin{ea(s,). j} — 1]:

{if} one has =a(s,) < j.

PrOOF: When min{e a(s,). j} =i+ 1, that is, the interval [¢, + Lanin{s (). 7} = 1]
is empty, the statement is trivial. Let min{e a(s;).j} > 7 + 1. We have

A YessUd;, Ui v By Y. U B U By g
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Since
B,u...uB; =4;, U...UA; U{s},

and since s € A; 41, we obtain A, 4 © By 41 Then b g1 = 1y, 4y implics 4,4 =
B: 4. Suppose that
A1 =B gr.nnn s Ar_1 = Bi_1,

for i, + 1 < k < min{s4{s,),j} — 1. Then we get Ax C By U {s, }. and hecanse of
s, & Ay. we obtain Ay C By. Then Iy = my implies Ag = By. Thus. part (i) is proved
by induction.

(ii) Supposec the opposite, that is, e4(s.) > j. Then, according to part (i), we have
Ay C ByU{sr} Again s, ¢ Aj vields 4; C B;. On the other hand. [; — 1 = 4. which
is a contradiction.

We set 7,41 = £4(s,). According to the above Sublemma, ¢, < 1,4, < j and «Ap = B
for all i, <k < dy41. Thus, we have A, | C By, Uisc},so 4 s 2B
Case 1. 1,41 < j.

Since l; ;= my,,,, there exists an element 5,4, € By, such that s, € A, \{+}
and By, = (A, \{sr}) U {sr1}. Since sp € By, we have s,y # = for 1 <
k < r. This implies s,y ¢ A4, hence 4(s;41) > fp4y. Having this informa-
tion. it is not hard to check that the components of the ordered dissections B and
Ri o Rip o, By, s,y A coincide for all indices in the closed interval [1,4,4].

Case 2. 1,41 = j.

Since I; — 1 = myj, then A;\{s,} = B;, so the components of the ordered dissections
R 4 . Ri s, Aand B coincide for all indices in the closed interval [1, ], Now. we shall
prove that By = Ay for all 7 +1 < k < d. We have Uj_ Ap = U{,:IB;\., s0 A0 C B
Therefore the equality lj11 = mjy1 gives Aj41 = Bjy1. Obvious induction finishes the
proof.

3.4. We say that [ € My and m € My are adjacent with i < m if m = piyl for some pair
of integers (i, j} with 1 <7 < j <d. Given 4, B € Ay, we set { = (A} wud 1 = (B).
The ordered dissections A and B are called adjacent with A < B if 4 « B. and | and
mare adjacent (with [ < m). According to Lemma 3.2.1, (ii), if the ordered dissections
A and B satisfy B = R; A for some pair 7,5 € [1,d] such that z4(s) > /. then A and
B are adjacent in Ay with A < B. The converse statement is not true. The sitnation
is clarified in the next theorem.

THEOREM 3.4.1. Let A, B € Ay be adjacent with A < B, and let | = »{A) € My and
m = w(B). Suppose that m = p; ji, where 1 < i < 3 <d. Then there exist an infeger

r > 1, and two sequences (r;,)zl'll and (s, )=y in the inferval [1.d], such that

Ve g € e Sikpgy =24, i B 4(E) S ey Torall LER

antel gt Br= Ry ur swu i A

Proor: We apply several times Lenia 3.3.2. In order to begin, we note that of/ ai) =
i — 1, and use Lemmma 3.3.1 in case n = nu. thereby producing the fivst pair (/). 5, ) with
i =14, and z4(s1) > i. It is abvious that the components of the ordered dissections B
and Ry, A coincide for all indices in the interval [1,4,].
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THEOREM 3.4.2. Let A. B € Ay with A < B, and let | = p(A) € My and m = (D) €
My. For any n € My withl < n < m. and ¢(l,n) = q. there exists a raisiug operator
of the type B = Ry x, . o Rpgr x o with X © Ay UL U Ay, sael that U = R(A)
satisfies the conditions 4 < A" < B, and p(A") = n.

Proor: We shall use induction with respect to ¢ = g(l,n). If ¢ = d. then ! = 5 and
the ordered dissection A = R(A) = A for the trivial operator B = Ry, Ruqin,,,.
Xo= Xag1r =0, works. Suppose that if i < ¢ < d, then there exists a raising operator
of the type R = Ry, ... Byy1,x,,,, such that A" = R(A) satisfies the conditious
A< A < B,and p(A’) = n. If ¢ =7 — 1, then Lemma 3.3.1 yields the existenee of a
raising operator of the type R = R, v, with X; C A U. . .UA,, such that 4" = R(4).
and 1" = p; .. (x(l). satisfy the conditions [ < I" < n, and 1 < ¢(I”.n) < d. and
A< A" < B. and p(A”) =1". Hence, there exists a raising operator

Rl= By %o s Din Nogas

such that 4" = R/(A") satisfies the conditions A” < 4’ < B, and ¢(A') = n. Siuce
A = R(A) for

R=R'B"=Ryx,..-Riya xiRix = Raxe- o Ryn,x, 000
the induction is done.

THEOREM 3.4.3. (i) Let A, B € Ay with A < B. Let | = ¢(A) and m = »(B). Then

the restriction y of the map ¢ on the interval [A, B] in Ay is a surjection
w1 A, B] = [l,m],

and one has 7 ((I.m)) = (4, B);
(ii) let A,B € Ty with A < B. Let A = ¢(A) and u = ¢(B). Then the restriction oy of
the map ¢ on the interval [4, B] in Ty is a surjection

w2 [4, B)] = [A ],
and one has @5 ' ((\.p)) = (A, B):

Proor: (i) The surjectivity of ¢y is a consequence of Theorem 3.4.2. The inclusion
‘;!"((l,m.)] C (A, B) is obvions. Suppose that A < C' < B. Then the assumuption that
o(C) =1 or p(C') = m leads to a contradiction with Lemma 3.2.1, (iii).

(i) If C € My with o(C) € Py, then € € Ty, so part (i) assures that the map oo is
surjective. The rest of the proof is identical to that of part (i).

THEOREM 3.4.4. If A, B € Ay then A < B if and onlv if there exists a raising operafor
R such that B = R(A).

Proor: The “if” part follows from Lemma 3.2.2. Now. let A, B € Ay, 4 < B, with
I=p(A) and m = @(B). In case A = B we choose I to be the trivial operator. Now,
let A < B. We apply Theorem 3.4.2 in the particular case n = m to produce a raising
operator R such that the ordered dissection A’ = R(A) satisfies 4 < A" < B aud
p{A’) = m = o(B). Then Lemma 3.2.1. (iii), yields that B = A’ = R({4).

3.3. Here we find necessary and sufficient conditions for two ordered disseetions. or
for two tabloids to be neighbours with respect to the partial orders on Ay and on Ty,
respectively.
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THeOREM 3.5.1. (i} The ordered dissections A, B € Ay arve neighbours in Ay with
A < B, if and only if there exist i € [1,d) and s € [L,d), snch that = 4(=) = i + | and
B = RiJ(A);

(ii) the tabloids A, B € Ty are neighbours in Ty with A < B, if and ouly if there exist
a pair of integers (i, ) with 1 <i < j < d, an integer v > 1, and two sequences (i,..)l“;'l
and (s,)h-, in the interval [1,d}. such that:

J=i+1or |l =4, 1352)
and
i=1) <ip <...<ipp1 =7J, and ca(sx) = iupr, forall 1 <wu <r, (3.5.3)
and that
B=Riy.. I, A (3.5:4)

Proor: (i) We set I = (A), and m = p(B). Suppose that the pair A.B € Ny is
such that B = R; ;(A) with € 4(s) = i + 1. Then Lemma 3.2.1, (ii), vields @ = p; il
we have that ! and m are neighbours with I < i,
and now Theorem 3.4.3, (i), yields that A and B are neighbours in A, with A < B.
Assume that A, B € Ay are neighbours in Ag with A < B. Theorem 3.4.3. (1), implics
that [ and m are neighbours in My with { < m. Then, due to Theorem 2.2.2 theve exist
an integer 1 <7 < d, such that m = p; ;41/, and Theorem 3.4.1 yiclds the existence of
an element s € [1.d] with c4(s) =i + L and B = R; ,A.

(i1) Suppose that A, B € Ty are neighbours in Ty with A < B. Denote A = i5(A) and
4t = »(B). Theorem 3.4.3, (i1}, implies that the partitions A and p arc neighbours in Py
with A < z. Due to Theorem 2.3.1, there is a pair of integers (7,7) with 1 < 7 < j <d
ancl such that g = p; ;A. Therefore, according to Theorem 3.4.1, there exist an integer
r > 1, and two sequences (ix);T} and (s.)l=, in the interval [1,d]. such that (3.5.3)
and (3.5.4) hold. Moreover. Theorem 2.3.1 yields (3.5.2).

Conversely, suppose that the conditions (3.5.2) - (3.5.4) are satisfied. Applying the map
» on the equality (3.5.4), we obtain

1 =2(B) = Pisiy - PiriraPlA) = pijA.

Therefore Theorem 2.3.1 assures that the partitions A and ;e ave neighbowrs in % with
A < yi. Now. according to Theorem 3.4.3, (ii), the tabloids A and B are neighbours in
Ty with A < B.

The next picture illustrates Theorem 3.5.1, (i), case j > i + 1, when there exists a
sequence of “virtual substitutions™ which starting with A4 produces B. Heve “virtnal”
means that during the intermediate steps we leave the set Ty of tabloids.



—169=—

yg. yp, * e * * g, Ay
1= 14 iy, O,k L., * i A
Fr e * * * -~ TR * * A,
J=iep din, % LI P * aj5; A,
IR Ay
1 Ri, s,
1, * LT * *oap Ay
i=1 a1, @2, * ® = * ain; A,
tr—1 * * * * L. * * Aoy
iy * Sy Spel, * * * Ai, Udse}
)=ty @31, K " Sry e By A\ s}
(OB A,
L Ri--1,s,-|
apy. @y, ko k... * * * oay A,
=1 @1, @ig, k k... ok dix, 81 AU s}
B= : ;
| =1 a * % oo e Oy A\ =}
J T+1 20> r 1A A
g, .‘lr

(The hat over a number stands for absence of that nnmber.)

4. THE MODEL

41, The symmetric group Sy acts on the set Ay of all ordered dissections of [1.4] by
the rule (1.1.1). Let W < Sy be a subgroup of the symmetric group Sy. Then the gronp
W acts on the set Ay via the same rule. We denote by Aggy the factor-ser 1170,
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and by Ty - the factor-set W\Ty. Let ¥y Ay = Agw be the natural snrjection,
For any A € Ay we denote by Ow(A) its We-orhit in Ay, so ¢y (A) = Oy(.1). Siuce
plaA) = @A) for any A € Ay and for any o € W, the map o factors ont 1o o wap
P Dpw — My

LemMa 4.1.1. If A, B € Ay are neighbours in Ay with A < B and if ¢4 < B, thes
(A < B, and the ordered dissections (A and B ave neighbours in A 4.

PRrOOF: The equalities (A = B, p(CA) = ¢(B), together with Lemnma 3.2.1. (iii). vield
A = B which is a contradiction. Hence (4 < B. According to Theorem 3.5.1, (). the
fact that A and B are ueighbours implies B = R; ;A for some 7 € [1.d] and « € [1.d]
with €4(s) = 7 4+ 1. Then, using Lemma 3.2.1, (ii). we obtain @(B) = p(B, .4} =
piit1(p(A)) = piisi{p(CA)). Now, we apply Lemuma 3.3.2 for the pair ¢ A and B, and
get the existence of an integer s, € [1.d] with € 4(s;) =4+ 1, such that B = R, ,(¢A)-
The neighbourhood of (A4 and B follows from Theorem 3.5.1, (i).

Let a, b € Ayw, and A € a, B € b. We define a partial order < on the factor-set A
via the rule:

a < b if and only if there exists a 0 € W, such that ¢4 < B.

THEOREM 4.1.2. (i) Let a, b € Ay, and A € a, B € b with A < B. Then the
restriction ¥y of the map yw on the union of the intervals [0 A. B]. o € V. iu Ay isa
surjection

Y11 Ugew|od, B] = [a.b]

outo the interval [a,b] in Apw, and one has ¢ ((a,b)) = Uyew (04, B):
(i) let @, b € Ty, and A € a, B € b with A < B. Then the restriction vy of tie map
¢y on the union of the intervals [0 A, B], o € W, in Ty, is a surjection

Vi UnewloA, B] = o]

onto the mterval [a, 0] in Ty . and one has t.;").;' ((a,0)) = Ugew (4. B):

Proo¥: (1) By definition @ < b. Suppose that a < ¢ < b, where ¢ € Ay and let C € e
There exist o, 7 € W, such that oA < C and 7€ < B. Then red < rC < B and
w1y (TC) = e, so the surjectivity of the map o is proved. Assume that o < " < B for
some o € W, and some ' € Ay, By definition, @ < ¢ < b, where ¢ = ¢ (('). [f o =0
or ¢ = b, then 7C' < C, or 7B < B, respectively. for an appropriate ¢ € 117, which
contradicts to Lemma 3.2.1, (iii). Therefore Ugen (oA, B) C ) ' ({e.b)). aud part (i)
holds.

(i) We note that ¢ € Ty, and C € ¢, where C' € Ay, yield C' € Ty, Thus. the proof of
part (i) holds in this case, too.

4.2, It is said that a.b € Ay are adjacent with a << b if there exist A € o, and B € b
which are adjacent with A < B (sce 3.4). In other words, there exists o pair of lutegers
(4.) with 1 <7 < j < d, and such that pw(b) = pij(ewla)).

THROREM 4.2.1. The elements a.b € Agy are adjacent with o < b if ane only if
there exist A € a. and B € b. with A < B. and there exist a pair of integers (1. f) with
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1<i < 3 <d, an integer r > 1., and two sequences (1,‘)1211 and (sy)p=, in the interval

[1.d]. such that:
= i = and cAl3) = ing1s for all 1 £

and that
B=iRs i e R s (1.2.2)

Proor: The uccessity holds because of Theorem 3.4.1. For the converse statenent we
apply the map ¢ on the equality (4.2.2) and obtain ¢(B) = p; ;(¢(A)). Hence v and b
are adjacent with a < b.

THEOREM 4.2.3. (i) The elements a,b € Ag,w are neighbours in Agyy with o < b, if
and only if there exist A € a, and B € b, with A < B, and therc exist | € [1.d] and
s€ [1.d], such that £ a(s) =4 + 1 and B = R; 4(A);

(ii) the elements a,b € Tyw are ncighbours in Tyw with a < b. if and ouly if there
exist A € a. and B € b, with A < B, and there exist a pair of integers (1. j} with
1<t < j<d, an integer v > 1, and two sequences (ik);;]l and (s, )i—y in the interval
[1,d], such that:

=i+ Lordl = |4,

and
1=1 <ip < ... < irg1 =J, and e4(8;) =ixq1; foralll < < »,

and that B = Ry, o, ... R, s, Al

ProoF: Using Lemma 4.1.1. and Theorem 4.1.2. (i) (respectively (ii)). we get that
and b are neighbours in A (respectively, in Tyay) with a < b if and ouly if A and
B are neighbours in Ay (rvespectively, in Tg) with 4 < B. Then Theorewmy 3.5.1. (1)
(respectively (ii)), finishes the proof of part (i) (respectively, of part (ii)).

5. COUNTING OF ISOMERS

5.1. The set Ty can be stratified using the fibres Ty = =" (A) of the map o: Ty — Py,
where A runs through the set Py. Clearly, Ty is the set of all tabloids of shape A, Since
the svmmetric group Sy is d-transitive on {1,d|, the set of fibres Th. A € Py, coincides
with the set Sg\Ty of Sg-orbits in Ty.

The orbit Ty contains the tabloid I with components Iy = [LLA ] Iz = [\ + LA +
;... and its stabilizer is the subgroup Sy = Sy, % --- x 9y, < S Thus

SafSx =~ Tx. (5.1.1)

vSy = vl

is an isomorphism of Sy-sets.

Let us fix a Sg-orbit Ty and consider the action of the permutation gronp 117 < S,
on Ty, which is induced by the action (1.1.1) of S4. Let us denote hy Ty the orbit
space W\Tx. Then the isomorphism (5.1.1) of Si-sets can also be considered as an
isomorplism of W-sets, and moreover, it factors out to a bijection

W\Sq/Sx ~ Taw,
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WoSy = vl

between the set of double cosets of Sy modulo (W7, 5)), and the set of TF-orhits in Ty
Let A =] € Tx. The stabilizer W4 of A in the group W consists of all & < 117 such
that v~ 'ov € Sy, or, equivalently, o € ¢S v, Hence Wy = W oSy,

We fix a one-dimensional character x: W — I and a one-dimensional character 8: 5y —
I, For a given v € Sy, and A = ¢l the rule

3 Wa = K, {0.1.2}

Fulo) = v(o)8(v™ av),

defines a one-dimensional character of the stabilizer W,
If B=7A for some 7 € W, then B = rof and Wy = rWar 1. For the corresponding
one-dimensional character d,,: Wp — K, we have

-1

Bro(rar™) = x(ror™H)8(v 1 trer o) = Gu(a),

where o € W,4. Therefore, given a W-orbit a € Ty,w, the statements
“3u(o) =1 for any o € W4" {5.1.3)

are simultaneously true or false regardless of the representative A = I € a. We denote
by Th;y,s the subset of Ty consisting of those W-orbits a for which the statement
(5.1.3) is true for some representative A = vI € a, and call them (\.8)-orbits of the
group W. In particular. T,\;|w'|s‘ = Tx:4i:

In case 8 = 1g, for all A € Py, the (x,8)-orbits of the group shall be called simply
v-orbits of the group W. Thus the y-orbits are those W-orbits @ € Ty for whicl there
exists a tabloid A € a such that the character y is identically 1 on its stabilizer 117, (see
(5.1.3)). Then the last condition holds for all tabloids A € a. We set Ty,, = Taivilsy»
and Ty, = Usep, Ty

We introduce the following families of non-negative integers: ny., ¢ = [Ta.y 6] 1125, =
[Ty ). and naw = |Taw|, where A € Py Note that ny, = Mxiyls, - ad iy =

Xl = PAdy s, -

5.2. Now, our aim is to find an explicit formula for the number 114, 4 of (1, 8)-orhits
of the group W in the set Ty, where A € Py, We shall use freely terminology, notation
and results from [4, Ch. I] and [7. Ch. I- II].

For any finite set X we denote by |X| the number of its elements. For a partition A € Py
we shall use also the notation (1™, 272, . ™), where my is the number of the parts
of A, which are cqual to &, 1 <k < d. Given a permutation ¢ € Sy, we denote by ofch
and also, by (10006 2020¢) d®y the corresponding partition of the munber o, We
sCT

CIW.5x) = {(o.n) € W x S| olo) = oly)}.

Let t he the length of the partition A. Then Sy = Sy, x--- x Sy, so any 1 = Sy has the
form i =y ..., where i € Sy, . Thus o(y) = plin)U ... U o). where o) € Py,
The one-dimensional character 8 has a unique decomposition 8 = 6, ... 8, wlere 8 s
either the signature or the unit character of Sy,. We sct

Fon = {((1.(1(" ..... o'ty e Py x Py xeoox Py |la= oty Ly ""ll-



and define a map
i W% 8y X oo xSy = Py x Py, x -0 x Py,

(aym o) = (ola),e(m)y .-y o).

Then C(1W, 5,) = ‘)-‘f] (La). Let L'(W,5)) C Ly be the image of C(TV..Sy) via the wap
+1. The restriction of 4, on C'(WW, §) is a surjective map

4 C(W, Sx) = L'{W, S3).
IFla, oM. . ot € L'(W,8)), then
I (eI SO o'ty =W, x Kooy x oo x Ko, (52, 1)

where W, is the subset of the group W. consisting of all permutations of cyvele-type a.
and K% is the conjugacy class in Sy, , corresponding to the partition o' £ Py, . The
set W, is a union of conjugacy classes of the group W
Wo,=cu...u C,-(:’. (5.2.2)

We set

LW, 85) = E{W, SaN{((1). (1), . (1))} (5.2.3)
Let hy = hafia, ..., where iy, is the Ag-th complete symmetric function (see [4, Cl.
I, Sec. 2]).
LEMMA 5.2.4. Let W < S, be a permutation group and let x\:W — L be a one-
dimensional character.

(i) The characteristic of the induced monomial representation Indit(\) is equal to the
generalized cyele index

T o ‘
Z(GP1-pa) = [y PG
gEW

where pe = x5 + 2y + - - are the power sums;
(ii} one has nyy.9 = (In.d:;’f(x),]rlrij:i(g)).sd 7
(iii) one has ey, = (Z(Xip1. .- pd) ha):

(iv) if Z(X:P1s- .- Pd) = 2nep, amn, where my are the monomial symumetric fine-
tions, then ay = nj;,.

PrROOF: (i) Let v be the map which assigns to each substitution ¢ € Sy the svnnetrie
function pycy (see [4, Ch. L See. 7]). According to Frobenius reciprocity Jaw.

rh(]ndﬁi(\)) = (Irzd&*(\],gn)_gd =

(S Respi (0w = Z(\ipra- . pa)-

(ii) Using Frobenius reeiprocity law and Mackey’s theorem (sec [7. Ch. 1L 7.4 Propo-
sition 13]), we have
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(Indr(\), IndS (6))s, = [\, Resyp Ind3 (6))5, =
(3. D Indiy (8w
e
where T is a system of representatives of the double cosets of Sy modulo (11055, ad

#, is the one-dimensional character of the group W N oSye™! given by the fornuda
#,(x) = 8(v~zv). Further,

{Indgd(x), Indt (8))s, = 3 (x, Indyy, (80w =
vEY

3" (Resll (x).80w, = Hv € T| Rest, (v} = 8.}
veET
Since 8% = 1, then
{lveT| Resaﬁ“(\) =0,}={veY|d(c)=1foranyoe W}
Therefore, using the isomorphism (5.1.1) of W-scts we get
(Indy (x), Inde! ()}s, = nay.6:

(i11) Indeed, the characteristic map ch is an isometric isomorphism of rings {~ee (4. Ch
I, Sec. 7, 7.3]), so in particular,

(Indt (x), Ind$ (15, ))s, = {eh{Indi (), eh(Indg] (15, })}.
Evidently, ch([ndg“;(lg;‘\]) = hy. According to Lemma 3.2.4, (i), we have

ch(f?ldf{ﬁ(x)] = Z(X; P15+ Pd)-

Therefore

Py = P, = IndR(x), Indd (15, )ss = {2(x5Pto - s pads 1a).

(iv) Using part (iii) we obtain

Ny = | z My, iy} = Z ag{ia, ha} = ay.

o€ Py AEF,
The last equality holds because of [4, Ch. I, Sec. 4, 4.5].

THEOREM 5.2.5. Let W, W' < 5y be two permutation groups, Then the following four
statements are equivalent:
(i} One has nyw = naue forall X € Py;
(ii) onc has

Z{lwipre-o.pa) = Z(Lwipr .o pali
(ii1) the induced monomial representations Ind‘?{‘r(lw); and 1rr(iﬁ‘{,(l|‘-r J.oof the syn-
metric group Sy, are equivalent;
{iv) there exists a one-onc correspondence hetween the groups Wooand V', anedt that
the corresponding perumtations have the same type of cyele decomposition,
PRrooF: Lemma 5.2.4, (i) and (iv). applied for 1y and Iyo, and [4. Cl. 1. See. 7. 7.3
vield the equivalence of (1), (i), and (iii). It is easily seen that the equality of evele
iudices in (i) 15 equivalent to (iv).



REMARK 5.2.6. According to [3, IV], two permutation groups W, T < S, which
satisfy (iv) are said to be hterally conformal. In [5, Ch. I, Sec. 23], it is shown that
each of (i1) and (iv) is equivalent to the so called combinatorial equivalenee of 1 and
w'.

For any partition A € Py, A = (1™,2™2 . d™4), we set

sa = 1"1m 12™2m, ), d™e4myl.

THEOREM 5.2.7. Let W < Sy be a permutation group and let \: W — K he a one-
dimensional character. Let ny;y ¢ be the number of all (\,6)-orbits of the group 1 in
the set Ty. Then one has

d!
L T T
1 o ) »
i b Z|C‘"’| fe 5 —‘—"—almﬂ.],)...9,(1;,,.,.),
(aattl . att JEL(W,Sy) =1 L
where 1, C’,(:" are the conjugacy classes of W consisting of permutations of cvele-

type @ € Py, and K, is the conjugacy class in Sy, , corresponding to the partition
MeP k=1,..¢

PROOF: The characteristic map ch is an isometry, and Lemma 5.2.4. (i). holds. so

(I'n.clﬁ’f(\),Ind:g‘;(ﬁ))gd =i (ch([nda‘-(\*)).ch(Indg‘;(H)}) =

(Z(x;p1re oy pa)s Z(8ip1y. ooy pi)) = 'W Z X(@)Po(o)s 7o |5 I Z O0n)poiny) =

cEW nES)
- z z (2)8(0)(Patays Potm))-
i" |SA| ceW neES)

According to [4, Ch. I, Sec. 4, 4.7], we obtain

1

S (. S e
(Indyt(x), Indgl(8))s, = WISa]

X(@)807)2 (- (5.2.8)
(o) EC{W,S))

Further, we use the partition of the set C(W,Sy) into the fibres of the surjective niap
%, as well as their representation (5.2.1). Thus, we have

{Indy(x). Ind (8))s, =

1 =
N 2. > (@8 () Bz =

(n»,uf” ..... n‘”)EL’lll’,S_\) (e JEWe X B 1y %X K (1)

!

L e (et Ag! i
WA Z (Z [x(C5 H O (N )z, =

Tk
(et ot )L (W,5y) =1 k=1
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‘T;LT Z Z‘C’{nl‘ (ch Mi’:_T___“ 0o 1 g

T e B
(it ol V) EL/ (W, 51 ) =1 hem

&l
Wit At
1 o & Zo . s
- 3. (Zic‘ (CI) — 6, (K ). B K ).

¥ 2 S
| [(n.n‘“,..unr")}ELHr'lr'.,‘i,\) k=] alh alt)

In the last two equalities we make use of (5.2.2) and (5.2.3). Now, Lemnia 5.2.4. (ii).
viclds the result.
The specialization v = lw, aud 8 = lg,, in Theorem 5.2.7 entails
COROLLARY 5.2.9. One has
d!

Ll T T

1 :
] 2. (W ——
(a,a“',...,n('J)GL(lV,S',.) N L

COROLLARY 5.2.10 (RUCH’S FORMULA). One has

“’VOH(S»\)OI.

naw = WVHSA\ Z

PROOF: Using the equality (5.2.8) for x = lw, and § = 1, , we have
1

WIS 2 e =
{an)eC(W.Sy)

1
GEPY Z i

wE Py (o) EW xSy plo)=p(n)=u

n)\;yy =

TS 2 Wall(Sa)alea =

€y
n! [Wall(Sx)al
WISH &,

REMARK 5.2.11. Let T and A be two graphs with o vertices, and witl antomorplisin
groups W and Sy, respectively. The number calculated in Theorem 5.2.7 coiucides
with the number of superpositions of T and A, such that the one-dintensional chavacter
(5.1.2} is identically 1 on their stabilizers (that is, their antomorphisin pronps). The last
number can also be obtained hy an appropriate generalization of Redficld s superposition
theorem (see [1]).

5.3. Here we shall consider the family of non-negative integers ny = [Th,\|. A € Py.
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THEOREM 5.3.1. Let \ be a one-dimensional character \ of the group 11" < S, and
let Moyt € Py If N < o, then ny, > ny,..

PrOOF: According to Lemma 5.2.4, (iil). we have nay — 1,y = (Z(\ipr..... Pad oy —
hy). Then [4. Ch. L Sec. 7. Example 9 (b)] implics that the difference Ly — 7y is
a nou-negative integral linear combination of the Schur functions s,, » € P). On the
other hand, Z(y:p..... pa) is the characteristic of the induced monomial representation
Ind':’;‘f(\ ). so it also is a lincar combination of s, with non-negative integral coefficients.
Therefore the above scalar product is non-negative.

The specialization \ = Ly yields

CoroLLARY 5.3.2. If A\, pu € Py, and X < pu. then nyw > nyay.

5.4. Below, Lemma 5.4.3 for I = Ty gives a combinatorial interpretation of the set Ty,
of all y-orbits. We shall work in a more general setup.

Let 1 be a finite group which acts on a set I. For each clement i € I we denote by 117
its stabilizer in W. Let \ be a one-dimensional character of the group 1" with kernel
H<W.

LEMMA 5.4.1. The following statements hold:

(i) The inclusion W; < H. and the equality |W; : H;| = 1 are equivalent for anv i € I;
(i) if O is a W-orbit in I, then all H-orbits in O have the same number of clements.
and their number is a divisor of the index |W : H|.

Proor: (i) It is enough to note that H, = H N W,

(i) Let i € O. Since H is a normal subgroup of W, then o H;o ™' < H for all o & 11",
Therefore |H : Hyi| = |H : oHio™'| = |H : Hy|, that is, each H-orbit in O has the smne
number of elements. Then using the equality

W H||H : Hi| =W : W,

Wi Hy, (0.4.2)

where i € I, we obtain immediately that the numnber of H-orbits in () is a divisor of
W H.

If O is a W-orbit in I, and if one has W; < H for some i € O (and. henee, for all 1 € (),
then () is said to be a \-orbit.

LEMMA 5.4.3. The following two statements are equivalent:
(i} The W-orbit Q is a y-orbit;

(i) the W-orbit O contains exactly |W : H| H-orbits;

(iii) the W-orbit O contains maximal number of H-orbits.

ProOF: Let O be a y-orbit. The equality (5.4.2) and Lemma 5.4.1. (i), yvield [IT7 -
Hi|H : Hi| = |O| for 1 € O. Because of Lemma 5.4.1. (ii), the indices |H : 1] do
not depend on 7 € O and all are eqnal to the nunber of elements of any H-orbit in ).
Therefore (ii) holds. Conversely, suppose that the W -orbit O contains exactly |17 : H|
H-orbits, and let 2 € O. Lemma 5.4.1, (ii), implies |W : W;| = |Q| = |W : H||/ : H,|.
Comparing with (3.4.2), we obtain |W; : H;| = 1. Duc to Lemma 3.4.1. (i). ) is a
y-orbit. Finally, Lemma 5.4.1, (i1). yiclds that part (iii) is equivalent to parr (ii).
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6. FIRST APPLICATIONS

6.1. Now, we apply Corollary 5.2.9 to obtain Kauffmann formulac for the wunber of
the derivatives of naphthalene, CyoHs.

The group of substitution isonerisin of naphthalene is the subgroup G of Sy, cousisting
of the elements

(1), (12)(34){56)(78). (13)(24)(57)(68), (14)(23)(58)(67)

(see (3, IX, D]). The unit (1) of G produces the term
of G have cycle structure {2" ). 50 |Gany| = 3.

%M!,“J\a!' The other 3 elements
Supposc that the set L(G,Sy) contains an element (a,o, ... o) with o = (2%).
Then a is to be the cycle-type of an element of Sy = Sy, x -+ x 5y, < Sk, where t1s
the length of the partition A of 8.

In case at least one of the components Ay is odd, we establish a contradiction. so in this
case

1 8!
Mg = — ————s.
e B W I
In the rest of the cases, all components A\g are to be even, so A = (241,24, .. iy,

where g = (g1, pt2,...,q) is a partition of 4. Now, we have

L(W.53) = {((2Y), (2"),(2"),.... (2% )},

i 18 1 24y
B S L et T G
1 8! 3 214!
Nl Tammpgemgt
18 3 a4l
AINT A (R

Thus, we have obtained Kauffmann formulae,

6.2. This subsection is devoted to chiral pairs. Let © be a skeleton with o wusatisfied
single valences, Suppose that among the substitution derivatives of 2 given parent
substance with skeleton T there is an chiral pair. Then according to Lunn-Senior Thesis
1.5.1, (2a), the group G’ < S, of stereoisomerism contains the group G of substitution
isomerism as a subgroup of index 2. In particular, G is a normal subgroup of &', Let
\e: G' = K be the one-dimensional complex valued character with kernel G. We have
Yelo) = 1 for o € G and (o) = =1 for ¢ € G'\G. Lemma 5.4.1. {ii). for T = Ty
and W = G’ implies that each G'-orbit () contains either two or one G-orbit. Lunn-
Senior Thesis 1.5.1, part (2ae). and part (2ad). makes the correspouding identifications
with the chiral pairs. and with the diastercomers. respectively, Lemma 5.4.3 applied for
1 =T, and W = G’ shows that the set T\ of y.-orbits contains the clival pairs. In
particular, part (2a) of the Extended Lunn-Senior Thesis 1.6.1 is justified.

Now, as a direct cousequence of Theorem 5.3.1 for W = @' and = \,. we obtaina
result of E. Ruch of special beauty.
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THEOREM 6.2.1 (RucHt). If a distribution of ligands according to the partition
amounts to a chiral molecule, and X is dominated by p . then also a distvibution ae-
cording to A vields a chiral molecule.

6.3. Now using our approach we shall present the classical IC6rmer’s relations herween
the di-, and tri-substitution derivatives of henzene CsHg. The exposition helow follows
that of Lunn and Senior.

Let the skeleton ¥ be the six carbon atom ring of benzene, According to |3, V1], the
group G of substitution isomerism of benzene has the following elements:

(1),(123456)., (135)(246), (14)(25)(36), (153)(264). (165432).

(13)(46), (12)(36}(45), (26)(35), (16)(25)(34). (15)(24), (14)(23)(56).

Clearly, G coincides with the dihedral group Dy = (r.s), where » = (123456). and
s=(13)(46).

Case 1. A = (4.2).

There are three isomeric forms of the di-substitution products of henzene. called para.
ortho, and meta derivatives. Therefore Ny 55 = 3, which is in agreement with the
equality ngy 2. = 3.

We have T(y 2y,c = {@(a.2):ba.2), €(a,2) }, where:

aq.9) 1s the G-orbit

{({2,3.5,6), {1.4},0,0,0.0), ({1,3,4,6}. {2,5},0.0,0.0), ({1,2,4.5}. {3.6}.0.0.0.9)}

of the tabloid A2 = ({2.3,5,6},{1,4}.9,0,0,0);
bs.2) is the G-orbit

{({1,2,3.4), {5.6}.0,0.0,0), ({2,3.4,5}, {1,6},0.0,0,0). ({3,4,5,6}. {1.2}.0.0.0.0).

({1,4,5,6},{2,3},0,0,0,9),({1,2,5,6},{3,4},0,0,0,0),({1,2,3,6}. {4, 5}.0.0.0.0}}

of the tabloid B2 = ({1.2,3,4}, {5,6}.0,0,0.0):
Cia2) 18 the G-orbit

((42,4,5.6},{1,3},0,0,0,0),({1,3,5,6}, {2, 4}, 0,0, 0,8, ({1,2.4, 6}, {3.5} .1, 0. 0.9).

({1,2,3,5},{4.6},0,0.0,9),({2,3.4,6},{1.5},0.0,0,0),({1,3,4.5}. {2.G}. 0. 0.0, 0) }

of the tabloid C*%) = ({2,4,5,6},{1.3},0.0,0,0).

Case 2. A = (3%).

The tri-substitution products of henzene exist in three isomeric forms if all the sul-
stituents are the same. They are known as asymmetrical, vicinal. and sypmanetrical
derivatives. Thus Nyy2y.p = 3. which agrees with nz).q = 3.

We have T(y2y.c; = {32y, bzzy.c(32) }. where:

a3y 18 the G-orbit

{1{1,2.4}.{3.5,6}1.0.0.0.9), ({2,3.5}. {1,4,6},0.0.0.0). ({3. 4.6}, { 1.2.5}. 0,9, 0.¢)).

({1.4.5},{2.3.6},0.0.0,0).({2,5.6}. {1.3.4}.0.0,0,0), ({1.3,6}. {2.4.3].0.0.0. 9).
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({2,3,6}, {1,4.5},0.0,0,0),({1.2,5}, {3.4,6}. 0, 8.0,0), ({1,4,6}. {2,3. 5}, 0. 0. (. @),
({3.5.6},{1,2.4}.0.0,0.0), ({2,4,5},{1,3,6},0.0.0.8).({1.3.4}, {2.5.G}. 0. 4. 0. 0}}

of the tabloid AP = ({1,2,4},{3.5.6},0,0.0.0):
biz2y is the G-orbit.

{({1,2,3},{4,5,6},0.0,0,0),({2,3,4},{1,5,6},0,8,0.0), ({3,4,5}. {1,2.G}. . 0. . 0h).

({4,5.6},11,2,3},0,0,0,0), ({1,5,6},{2.3,4},0,0.0.0), ({1. 2,6}, {3. 4.5} 0.1.0,01)
of the tabloid B(3*) = ({1,2,3},{4,5,6}.0,0,0,0);
cyey is the G-orbit

(11,35, 12, 4,67, 0.8, 0,0), ({2, 4,6}, {1.3.5),0,0. 0, 1)}

of the tabloid C0**) = ({1,3.5}, {2,4.6},0,0,0.0).
Since A() < (135)(246)400), AF) < BOD, 407 < (135)(216)c012), 1Y) <
B, B} £ (14)(25)(36)C2), and €07 < (123456)042), we have

32y < Gq2), G2y < b(4=2). aggzy < Cq2).

a2y < by bsy <eway oy < cu-

The diagrams below represent the Kérner relations between di- and tri-substitution
products of benzene, which serve for complete identification of these six derivatives,

(a,2) bis 2) €(1,2)
! & | LN
as?) asny by a2y ban ey

Here the arrow a — b means that the isomers ¢ and b are neighbours with « > b and
b can be obtained from e via a simple substitution reaction. The Korner's diagrams
vicld that agy sy represents the para compound, by ) represents the ortho compound.
€(4,2) represents the meta compound, aszy represents the asymmetrieal compound. bz,
represents the vicinal compound, and e(y2) represents the symmetrical compound.

6.4. Here we shall discuss the derivatives of ethene, € Hy, and their genetic relations,
taking into account the exposition from [3, VI]. The group G of substitution iromerism
of ethene is the Klein subgroup of Sy:

G = {(1),(12)(34). (13)(24), (14)(23)}.

Since there are no chiral pairs, G' = G. For the group G we can choose any one of the
three conjngated Sylow 2-subgroups of Sy, for instance

G = [(1).(12)(34), (13)(24),  14){23), (13). (24), (1234), {1432} ].
The group G cnincidr‘s with th( dihedral group Dy = (r.s), where + = [1234). and

= (13). Thus 1 = (13)(24), r* = {1432}, sr = (12)(34), sr? = (24}, =" = [14)(23).

These groups are defined in [3. \‘I] by using the inequalities (1.5.3) -~ (1.5.0).
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The Abelian group G has four one-dimensional characters: The unit chavacter. the
character y; with kernel {(13)(24)). the character vz with kernel ((12]1:}4)}. aud the
character vy with kernel {((14)(23)).

Let © be tlie two carbon atom skeleton of ethene.,

Case 1. A = (4).

Then Nayx = gy = 1, and Njjj o = nuyen = L

We have Tiyy. = Tg).¢v = {aw)}, where a(y) is the only G-, and G"-orbit of the tabloid
AN = ({1,2.3,4},0,0,0). The only G-orbit @¢q) Tepresents the parent substauce of
ethene.

Case 2. A = (3,1).

In this case, again Nz 1.z = nga ¢ = 1, and N} | o =nigayer = 1

We have T(3 1. = Ti3,1).6v = {a@,1y}, where ugz gy is the only G-, and G”-orbit of
the tabloid A" = ({1,2,3}, {4},0,8). This is because both G, and G" are transitive
subgroups of Sy.

Moreover, a(3,1) < (4, since A < AW,

Case 3. X = (22%).

Then Nig2y = nggzyg = 3, and Ny o = ngayan = 2.

We have Tjz2).¢ = {aga2y,biaz), ¢22) }, where:

a2y is the G-orbit

{({1.2},{3,4}.0,0),({3.4},{1.2}.0,0)}

of the tabloid A2} = ({1,2},{3,4},0.0) with stabilizer G ) = ((12)(34)):
beazy is the G-orhit
{({1.4},{2.3),0.0), ({2,3},{1,4},0,0)}

of the tabloid B(?*) = ({1.4},{2,3},0,0) with stabilizer G pz0) = {(14)(23)):
¢(p2) is the G-orbit

{({1,3},{2,4).0,0), ({2.4}.{1,3},0,0)}
of the tabloid C(2°) = ({1,3},{2.4},8.9) with stabilizer Gopny = ((13)(24)).

For the group G", we have Tigzyqn = {u(zg), U(azg)} where:;
ugp2y is the G”-or blL

{({1.2}1.43,4}1,8,0). ({3.4}. {1,21.0,0), ({1,4}. {2,31.0,9), ({23}, {1. 4}. 0. 1)}

of the tabloid A(?) = ({1.2}.{3,4},0.0);
v(22) is the G"-orbit

10{1,3}.{2,4},9,0),({2.4},{1,3}.0.0)}
of the tabloid (%) = ({1.3}.{2,4}.0.0).
Evidently, w32y = @2y U b2y, and v(az) = c(u2).
Moreover we have,

agzy < agg )y bz <oy 6y < g

since A(2°) < 4630 (13)(24)B B¥) < 481 gng ¢(¥) < 430 . respectively
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Case 4. A =(2,1%).

Then ;V(?J:):g_-, = N(212%6G = 3, and -'\'r(q_;Jz);E = nearpGr = 9.
We have Tiy i), = {a(2,12),b(2,12). €212y }. Where:

agy 2y is the G-orbit

{0{1. 2}, {81 {4}, 0). {({1. 2}, {4}, {31.0). ({3, 4} {1} {21 ) 1. ({3, 4}, {2} 41 h. )

of the tabloid A(") = ({1,2}, {3}, {4},0) with stabilizer G s,2) = {(1}}:
bes 12y is the G-orbit

{({1,4}, {2}, {31 ), {({1.4}, {3}, {2}, 1), ({2, 3}, {1}. {4}, D)} b0

of the tabloid B(*'*) = ({1,4},{2}.{3},0) with stabilizer G .2y = {(1
¢(2,32) is the G-orbit

(01,3}, {23, {41, 0), {({1, 3}, {4}, {2}, 0), ({2, 4} {1}, {3} 01}, ({2. 4} {3} {1}. D)}

of the tabloid C(31%) = ({1,3}, {2}, {4},0) with stabilizer G 2,2 = {(1)}
For the group G" we have Ti3 2y, = {u(2,12), ?(2.12) }» Where:
g2y 1s the G"-orbit

{({1,2}, {3}, (4}, 0), ({1, 2}, {4}, {3}, 0), ({3, 4}, {1}. {2},0), ({3. 4}, {2}. {1}.0).
({14}, {2}, {3},0), ({1,4}, {3}, {2}, 0). ({2, 3}, {1}. {4}, 0), ({2.3}. {4} {1} 0}
of the tabloid A(2'*) = ({1,2}, {3}, {4}.0);
v(2,12) 15 the G"-orbit
{({L, 35,42}, {41, 0), ({1, 3}, {4}, {2}, @), ({2,4}, {1}, {8},0). ({2.4}. {3}. {1}. )}

of the tabloid C(*"*) = ({1,3}, {2}, {4}.0).
Clearly, w(z,12) = @(z,12) U b(2,42), and v(y12) = ¢(2,12)-
Moreover,
agz,12) < Q(22), b(g»]?] < (')(22,, C(z2,12) < €(22)s

since A1) <« 4(F) B(2*) & p(#) 0(21*) ¢ () and
a7y < Ay bz < aey. cean < agays (6.4.1)

because A(217) < 4G, [12)(34)3(2'12) <A™ and c(21*) £ 400,
Case 4. A = (11).
Then Npyx = neye = 6, and Njiv = ngayer = 3.
We have

Tusye = {agay, banseaay, ean fan han s
where:
agyay is the G-orbit

25 BE A4 (2H {1h (41 3D (03] (4] {Lh 21 ({4 {31 {21 41D
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of the tabloid A1) = ({1}. {2}.{3}.{4}) (the right coset G of Sy modulo G);
byyay is the G-orbit

{0 {2h A4h 431 2R A1 A8 {41), (31441421 {11, (4] 8} {1} (2]

of the tabloid BU") = ({1}, {2}, {4}, {3}) (the right coset G(34) of §; modulo G}:
¢+ Is the G-orbit

{1} {4 {23 3. ({2}, 31, {1} 41, ({31, {2). {4}, {1}), ({4} {1}. {3}. {21}

of the tabloid C('") = ({1}, {4}, {2}, {3}) (the right coset G(243) of Sy modulo G):
¢ is the G-orbit

{43k 25 A4h (21 {41 (0} 31, (081 {11 44h 421, ({4} {20 {3} (1

of the tabloid E(*') = ({1}, {3}, {2}.{4}) (the right coset G(23) of S; modulo G
fi1sy is the G-orbit

{83 A1), {21 {4h. ({43, 21 {1}, 8, ({1}, {31 {4} 421, ({21 {4}. (3} {1 ) )

of the tabloid FU'') = (13}, 411,42}, {4}) (the right coset G(132) of Sy modulo G):
b4y is the G-orbit

{31 {21 A1} {41, (14}, {1}, {21 {31, ({1344}, {31 {21, (42}, {3} (4. (1D}

of the tabloid H1") = ({3}, 42}, {1}, {4}) (the right coset G(13) of Sy modulo G).
TFor the group G, we have

Tayen = {ugsy, van. wan b
where: 114y 1s the G"-orbit
{{1h 21 {8}, {4, ({21, {1}, {4}, {3}). ({3}. {4}, {1}, {2}, ({4}. {3}. {2}. {1}),

({3342} A0k {ab), (a1 (01 {23 31 ({1h {41,433, {2, (123 {8} 41 (1)}

of the tabloid 4(1") = ({1}, {2}, {3},{4}) (the right coset G" of S5 modulo G"):
vgyay 1s the G"-orbit

{1} 23 {41 43D, (42 {11 {3h (4D, (13}, (41 {21 (1), ({4}, 43 {1}. (2]

({1 {ah 425 (3D, ({23, (31 {1}, 44b). ({3, {2} (41 1), (41 {11 {3} 2Dk

of the abloid B('") = ({1}.{2}. {4}. {3}) (the right coset G"(34) of S; mdulo G"):
w4y 1 the G"-orbit

{(h 4325 {4h ( bR 3D A3 AR {4) (20 ({41 820 {30 (1))
({8}, {13, (21 4D ({4} 21 {1H 430, ({1 {31 {43, {2D). ({23 {4} {31 41D
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of the tabloid E(") = ({1}.{3}.{2}. {4}) (the right coset G"(23) of $; modulo G").
Clearly, 1y = aqy1y U hgny, vy = by U egray, winsy = ¢y U fro4.
Further we have

@iy < oz, by < apazy. eany < by,
coy < b(z‘lz), f[lJ) < €(2,12). ihth) < €(2,12)s

Tecaiize A" < A(Z'lz]‘ B(”) < A(‘Z'l:)‘ C(li) < 3(2'12). (14)(‘22})E(“] < ii‘:i"jl,
F(") < ¢(2*) ang H(") < c(%),

Here is the diagram which represents the derivatives of ethene.

(4) 1)
1 1
{3,1) ag )
1 v b N
g2
(2%) agg2) 53)) bazy  ¢a2)
{ v 1 N
2 a2y
(2,1 } A(2,12) =3 5(2‘12) €(2,12)
N N
P (e w4y
(1%)  apy biyay & caey  eqay 0 fuy by
sy g gy e u;]_ e

The arrow ¢ — b means that the isomers a and b are neighbours with « = b and b
can be obtained from a via a simple substitution reaction. The horizontal double arrow
means that the two isomers are diastereomers and the letter above/helow it denotes
the corresponding structural isomer. The above diagram does not indicates the simple
substitution reactions from (6.4.1), where the isomers are not neighbonrs.

Our extended approach confirms the conclusion of Lunn and Senior from (3, VI} that
there are no type properties which distinguish the members of the pairs of diastercomers
a2y, beyzy and a3 12y, b(5 y2y. It is clear that the genetic relations from the above diagram
fail to make any difference between them. Ou the level of one-dimensional characters of
the group G, the members of the second pair are indistinguishable becanse the stalalizers
of their elements coincide with the unit group. At first sight each one of the claracters

v

vz and y3 of the group G “distinguishes” a(z2) and byay: For instance v is identically 1
on the stabilizer GA(EZ) = {{12)(34)) of the tabloid .4.(2:) € yzy and \y is not identically

1 on the stabilizer G .2y = ((14)(23)) of the tabloid Bl?) ¢ beazy. The same iy true for
3 if we replace agy2y for b,z and viee versa. It is not hard to cheek that the presence
of a non-trivial one-dimensional character 8 of Si,2) in the formula (5.1.2) Las the same
effect as the interchange of \2 and \3. Unfortunately, the characters o, aud \; can
not be distinguished: Each one of them can be obtained from the other by a special
automorphism of the group &, that is induced by a renumbering the unsatisfied valences
of the skeleton ¥. Therefore we can only conclude that hoth egyz) aud beyoy ave clenients
of the symmetric difference

(Tt \Traz i ) U (Tromy o A T2z )-



so the type properties corresponding to v, and y3 via the Extended Luun-Senior Thesis
1.6.1 can not be nsed to make difference hetween the members of this pair of diastere-
omers. Thus, “...Whenever diamerie pairs of disubstitution derivatives of ethylene have
been investigated, it has been necessary to fall hack on the specific propertios of the
molecules in question in order to decide which one is the cis and which one the trans

isomer™ (see [3, VI]).

RESUME OF PART [

There are four themes in this paper, which may be of interest to a chemist.:

1) The determination of the structural formula of a potentially existing isomer with given
skeleton I, starting from any tabloid in the symmetry group’s orbit which represents
this isomer according to Lunn-Senior thesis 1.5.1;

2) the partial order < on the set of all G-orbits of tabloids (Section 4 and the subsidiary
Sections 1 - 3);

3) the hypothesis that the set of (y, #)-orbits determines a type property of the molecule
under consideration (Section 1, 1.6.1), and the count of (x, 8)-orbits (Section 5);

4) the attempt to breathe new life into the philosophy of the original Lunn-Senior’s
paper [3].

Below, all isomers in a particular consideration have the same skeleton .

The way of construction of the structural formula of an isomer is explicitly build in the
representation of this isomer by a tabloid A = (A, Az, ...): If i € Ay, then we atrach
the univalent substituent z; to £'s nnsatisfied valence number ¢, for £ = 1.2..... Since
there is no “canonical” numbering of the unsatisfied valences, a main problem of the
present model is the identification of the real substances (if any) having these structural
formulae, in terms of the model itself. The partial order <, and the (\,#)-orbits can he
applied for this problem to be solved (at least partially).

The partial order may also be used in the following way:

The relation a < b between the isomers a and b is an indication of the existence of o finite
sequence of simple substitution reactions b — ¢; = -+ = ¢, = a, where the compounds
€15 .+ &r, are intermediate stages in a synthesis of a. Such a sequence ¢y, ... ¢, (which
is far-away of being unique), can be constructed by means of Theorem 3.4.4.

The relation @ ¢ b implies that the isomer a for sure can not be obtained from the
isomer b via a finite sequence of simple substitution reactions.

The partial order is tested in Section 6 for finding the genetic relations of the substitution
derivatives of ethene. It is applied also in the case of di-, and tri-substitution derivatives
of benzene and yields the classical Korner's relations. These two applications are con-
sidered also in Lunn-Senior’s paper, Part VI. It goes without saying that the adequacy
of this partial order to the chemical reality needs more experimental verifications.

A central topic in the paper is a detailed study of the notion of "neighbonrhood™ with
respect to the above partial order. If two isomers ¢ and b are neighbours with o < b, then
probably there exists a chemical reaction b — a, but it is certain that this reaction can
not be represented as b — ¢ = a, where ¢ is a isomer. The main result in this divection
is Theorem 4.2.3, (ii), which characterizes mathematically the pairs of neighbonrs a < b,
and in this case predicts the existence of a chain b — ¢; = -+ = ¢, = o, where the
intermediate "reactions” are "virtual” | that is, ¢y, .. .. ¢, are not representod by tabloids,
but by ordered dissections.




~- 186 —

Item 5 of the Extended Lunn-Senior Thesis 1.6.1 is onr hypothesis. 1f  is o one-
dimensional character of the symmetric group G of the moleenle. and if 8 ix a oue-
dimensional character of the group Sy (this group refliects the empirical formula (1.1.2)
of the molecule), then the couple (v, #) produces via condition (5.1.3) a subsct of the
set of all G-orbits, which, we suppose, represents a type property of this moleenle, This
is true when y = 1lg, and 8 = 1g,. In this particular case we obtain the set of all
G-orbits. each one of them possibly representing an isomer due to Luu Senior Thesis
1.5.1. This also is true in case Y = Y., and # = 1g, (sce Section 6. 6.1). and we get a
set which represents the chiral pairs. Theorem 5.3.1 is a wide gencralization of a crncial
result of Ruch (see Theorem 6.2.1) which conneets the existence of chiral pairs with
the dominance order among the partitions. This theorem holds out a hope that the
Extended Lunn-Senior Thesis 1.6.1 is valid. Which eouples (v, #) are witlin the scope
of 1.6.1, item 3, is a matter of the experiment. We guess that therc are no exceptions.
Theorem 5.2.7 gives an explicit formula for the number of the (y, #)-orbits.
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