communications in mathematical

h, no. 38, October 1998

and In computer chemistry

ISSN 0340-6253 MATCDY (38) 85-98 (1998)

Some Current Trends in Evolutionary Algorithm Research
Exemplified by Applications in Computer-Aided Molecular Design

David E. Clark

Computer-Aided Drug Design, Rhone-Poulenc Rorer Ltd., Rainham Road South, Dagenham,
Essex, RM10 7XS, United Kingdom (Email: david-e.clark @rp-rorer.co.uk)

Abstract

From its beginnings in the 1950s, the field of evolutionary algorithm (EA) research has grown
dramatically, with much of the expansion occurring in the last decade. Many application areas
have benefited from the ideas emerging from the evolutionary algorithm community, not the
least of which is the field of computer-aided molecular design (CAMD). This short review
presents some of the current areas of research in the field of EAs with examples applications
drawn from CAMD. Among the topics covered are: the use of domain-specific knowledge to
guide the choice of representation of population members and the implementation of
evolutionary operators; the application of self-adaptive techniques; and the benefits of parallel
and hybrid variations of evolutionary algorithms.

1 Introduction

The genesis of evolutionary computation can be traced back to the late 1950s, although it has
only been in the last decade or so that the philosophy and methods it comprises have been
widely disseminated and applied amongst the general scientific community [1]. At the time of
writing, there can be few areas of scientific research involving problems of search,
optimization or classification that remain untouched by the explosive growth of interest in
what have become known as “evolutionary algorithms™ (EAs).

A good example of this rapid surge of interest in EAs is to be found in the field of Computer-
Aided Molecular Design (CAMD). A survey by the author of the number of publications in
this field involving EAs over the past few years shows a remarkable increase (see Figure | -
note that the 1997 figure is not for a complete year). These findings have been corroborated
by Milne, who states in a recent article that, between 1989 and 1992, there were only 5 papers
published with a chemical orientation that employed evolutionary algorithms; since 1993,
however, that figure has mushroomed to 210 [2].



60

50

40

30

20

10 A

0
1991 1992 1993 1994 1995 1996 1997

M No. of Papers

Figure 1: Graph of the number of publications in the last 7 years involving evolutionary
algorithms in the field of Computer-Aided Molecular Design

To facilitate later discussions, a brief introduction to EAs will now be given. As the name
suggests, evolutionary algorithms are inspired by the principles and processes observed in
natural selection. As an illustration of this, an outline of a general evolutionary algorithm
(following [1]) is shown in Figure 2:

t:=0;
initialize P(t);
evaluate P(1);
while not terminate do
P'(t) .= variation(P();

evaluate(P ()
P(t+1) := select(P() uQ);
t=1t+1;

enddo
Figure 2: An outline of a general evolutionary algorithm [1]

In this scheme, P(t) denotes a population of W individuals at generation t. Each of the
members of the population represents (or encodes) a trial solution to the problem in hand. The
algorithm commences by initializing the population, usually with random values. Each of the
population members is then assigned a fitness score using an objective function that assesses
the “goodness™ of the solution the individual represents. The population of offspring P’(1)



containing A members is then generated by the application of variation operators to the parent
population P(t). Typically, the variation operators used are mutation (in which a random
perturbation is applied to an individual) and/or crossover (in which two parent individuals
combine to generate two offspring). The offspring population members are assessed using the
fitness fungtion and then a selection process takes place to determine the members of the next
generationf(t+1). In Figure 2, Q denotes a special set of individuals that might be considered
for selection. Possible values for Q could be Q=P(t) or Q=&. The selection procedure is
based upon the fitness of the individuals available for selection and is done in such a manner
as to promote the chances of survival of fitter individuals. In this way, the algorithm proceeds
towards better and better solutions until some termination criterion is attained. Varying the
value of A allows the formulation of steady-state (A=1) or generational (A=pL) evolutionary
algorithm variants [1].

Historically, three classes of evolutionary algorithm have been distinguished based upon the
manner in which individuals are represented, the type of variation operator(s) applied to the
population and the way in which selection is accomplished. These three types are: genetic
algorithms (GAs), of which genetic programming (GP) may be considered a subset,
evolutionary programming (EP) and evolution strategies (ESs) [3]. However, it is generally
recognised that the traditional barriers differentiating these classes are being rapidly broken
down as researchers combine ideas from each to develop customized and improved
algorithms. Today, many prefer to classify all evolution-inspired algorithms under the general
heading of “evolutionary algorithms” or “evolutionary computation” [4].

It is not the purpose of this article to provide a detailed review of the applications of
evolutionary algorithms in Computer-Aided Molecular Design - a number of such reviews
exist for consultation by the interested reader [5-9]. Rather, a perspective is sought from the
point of view of the EA community, examining some of the current trends and issues in EA
research and illustrating them with applications from the field of CAMD.

2. Current Areas of Research in Evolutionary Algorithms

In what follows, a number of areas of research within the field of evelutionary algorithms wilt
be highlighted. The list is not exhaustive but it does cover most of the interesting
developments that are beginning to find their way into CAMD applications. A more thorough
discussion of many of the current research areas within evolutionary computation can be
found in an excellent and comprehensive publication that has appeared recently [10].

2.1 Basic Theory

One of the most pressing needs at the present time within evolutionary computation is for a
more secure theoretical framework to guide users of current applications and upon which to
base future research. As Baeck ef al. remark: “We know that [evolutionary algorithms] work,
but we do not know why” [1]. A major consequence of this lack of theory is that there are few
rules of thumb to guide the design and parameterization of evolutionary algorithms. This
point is expanded upon by Fogel who, while highlighting the limited usefulness of current
theoretical analysis (such as the “schema theorem” [11]) for providing practical guidance in
devising parameter settings or conditions for improving EA performance, appears somewhat
gloomy about the prospects for progress in this area: “Although the hope of improving



evolutionary algorithms in general function optimization on the basis of mathematical theory
appears dim. such results would be most valuable™ [12].

From a CAMD viewpoint, there is probably little that can be contributed directly to the
solution of this dilemma, although the types of problem encountered routinely in molecular
design and recognition studies can provide a challenging testbed for any new theoretical
proposals from EA researchers. Close collaboration between the two communities of
scientists should be mutually beneficial in this regard, a point that will be touched on again
later.

2.2 Domain-specific Representation and Operators

For any evolutionary algorithm, the representation (or encoding) of the individuals
comprising the evolving solution population and the set of operators applied to them to
generate offspring are perhaps the two most important components of the system, in many
cases being crucial in determining the success or failure of the algorithm. Clearly, there is a
strong link between the representation chosen and the operators that can be employed (or vice
versa) and so considerations about one will inevitably affect the choices made about the other
[13). Traditionally, evolutionary algorithms have represented the individuals comprising the
evolving solution population by binary strings (GAs) or vectors of real values (EP, ESs) and
the archetypal variational operators have been developed with these in mind. However, in
more recent times, there has been much enthusiasm for the employment of more “natural”, or
problem-specific, representations (and thus, operators). In general, the guiding principle today
seems to be “mould the algorithm to the problem, not the problem to the algorithm™ [14,15].

There are at least two reasons for this. Firstly, as evolutionary algorithms have been applied to
a wider range of problems, it has been increasingly found that many do not map well into a
binary string- or vector-based representation. Thus, workers have been driven to experiment
with more natural representations and operators and have often found success by doing so.
Secondly, and more fundamentally, the recent “No Free Lunch” theorems of Wolpert and
Macready [16] state broadly that, for any algorithm, any elevated performance on one class of
problems is exactly countered by poorer performance on another class. Thus, an evolutionary
algorithm tailored for a specific application by the incorporation of problem-specific
knowledge in the encoding and operators is likely to outperform a canonical, “black-box”
implementation,

There are a number of examples from the molecular design literature that illustrate the points
made above. In developing a GA for protein folding simulations, Moult and Unger opted not
to use any form of encoding of population members but rather to allow genetic operators to
act directly upon the conformations of the protein model [17]. In the area of de novo
molecular design, both Westhead et al. [18] and Glen and Payne [19] adopted a similar
philosophy, having the evolving molecular structures as the population members and
developing crossover and mutation operators to suit the problem representation. In the latter
wark, two different types of crossover and no fewer than twelve different mutation operators
were employed for the manipulation and variation of molecular structures.



2.3 Self-Adaptation

One of the major difficulties in using an evolutionary algorithm is in deciding on the settings
for the (many) adjustable parameters that are associated with this class of algorithm. Thus,
another key area for evolutionary computation research identified in [1,12] is that of self-
adaptation.

Most research on self-adaptation has emerged from the ES and EP communities and has thus
been primarily concerned with the mutation operator, which is the main variational operator
for these two classes of EA. The driving force for developing self-adaptive techniques was
the realisation that, given a population of real-valued vectors, the optimization performance
of the algorithm can be improved by applying perturbations of different magnitude to each of
the variables in the vector, i.e., each dimension of the search. This is particularly so when the
variables have different units of dimension, e.g. pressure and temperature [20]. To try to
determine a priori optimal values for these mutational step sizes is virtually impossible,
especially as the optimal values may alter during the course of a search as the algorithm
traverses the fitness landscape. Self-adaptation seeks to counter this problem by allowing the
mutational step sizes to adapt themselves as the evolutionary search progresses.

Two main methods for self-adaptation have been proposed: that due to Schwefel [21] and
another independently developed by Fogel [22]. Of these, the former has become more widely
accepted as it has demonstrated a generally superior optimization performance across a series
of standard test functions [20,23]. The method of Schwefel is as follows: Each of the real-
valued vectors of variables x comprising the population is given an accompanying vector of
strategy parameters, ¢, where o(i) denotes the standard deviation to use when applying a
zero-mean Gaussian mutation to component x(i) of the parent vector. Then:

o'(i) = o(i) exp(TN(0,1) + TNG)O,1))
and
X'(1) = x(i) + N(0,0(1))

where the constant © = 1/[2(n"1"?, 15 = 1/(2m)'?, N(0,1) is a standard Gaussian random
variable sampled once for all n dimensions and N(i)(0,1) is a standard Gaussian random
variable sampled anew for each of the n dimensions [20]. Thus, under the Schwefel scheme,
at each generation, the strategy parameters for the individual are mutated and the new values
are used to generate the offspring (the “sigma-first” method [247).

Two groups of CAMD researchers have experimented with self-adaptive mutation in the
context of nsing EP algorithms for the conformationally flexible docking of ligands to
proteins. In the development of their EPDOCK program [24-26}, Gehlhaar and co-workers
have used both the sigma-first method outlined above and a variation they term “sigma-last”
in which the parent ¢ values are first used to create offspring and then mutated. They found
that the sigma-first method was superior probably because the offspring positions in the
search space are determined by the offspring strategy parameters. This avoids the situation
that can occur with the sigma-last method whereby offspring may be generated that have
useful position vectors but poor strategy parameters [24]. Westhead et al. [27] also employed
a sigma-first method but in their work found that better results were obtained using Cauchy,



a0

rather than Gaussian, mutation to perturb the x vectors - a tactic suggested by Yao and Liu
[28].

According to Michalewicz [4], some attempts have been made to develop a self-adaptive
form of the crossover operator, whereby the algorithm retains a record of the crossover points
used and the fitness of the resulting individuals but this does not seem to have been widely
adopted.

It is also worth briefly mentioning an alternative approach to the problem of setting parameter
values - that of meta-evoluiion. In meta-evolution, one EA controls a population of other
evolutionary algorithms each of which is initiated with different parameter settings. As this
population of algorithms operates on the problem in hand, it becomes apparent over time
which are performing well and thus, what are good sets of parameters. This type of method is
being pioneered in programs such as DAGA-2 [29]. Such an approach also lends itself
naturally to parallel architectures, of which more will be said in the next section.

2.4 Parallel Algorithms

In the execution of an evolutionary algorithm, it is invariably the fitness evaluation step that is
the most computationally expensive. However, the fact that this step is decoupled from the
rest of the algorithm makes it highly amenable to parallelization, creating a parallel
evolutionary algorithm. The various kinds of parallel EA have been classified by Cantu-Paz
[30]. For the purposes of this review, two types of parallel EA are of particular interest.

The first kind is what Cantu-Paz terms “coarse-grained” parallelism. In this formalism, the
population is divided into a small number of subpopulations which are kept relatively isolated
from one another, evolving on separate processors or machines. The introduction of a
migration operator permits the exchange of individuals between subpopulations at specified
intervals. At least two models of coarse-grained parallelism are possible: the first is termed
the “island model” and the second is known as the “stepping stone” model. Both partition the
population into subpopulations in the same way, the difference between them being that,
while the island model allows migration between any two subpopulations, the stepping stone
model allows migration only between neighbouring subpopulations [30]. When using coarse-
grained parallelism, there is an additional benefit on top of the speedup gained from
distributing the fitness calculations over a number of processors. The partitioning of the
population into subpopulations may also help to maintain genetic diversity in the population
as a whole. This can help search efficiency by ensuring good sampling of the search space and
may also help prevent premature convergence to suboptimal solutions. This benefit of coarse-
grained parallelism can be taken advantage of even on serial processors, as will be
demonstrated below. A thorough discussion of island models can be found in [31].

The second type of interest for the purposes of this review is “fine-grained™ parallelism. In
this kind of parallel EA. the population is subdivided into a large number of very small
subpopulations. In the limiting (and ideal) case, each individual is assigned to its own
processing element in a massively parallel computer [30].

Both types of parallelism have been experimented with in CAMD applications. The island
model has been successfully employed by Jones and co-workers in developing genetic



91 -

algorithms for protein-ligand docking [32] and molecular superposition and pharmacophore
identification {33). These algorithms were run on a serial machine with the subpopulations
residing on the same processor. Nonetheless, in experiments comparing the use of a single
population of 500 individuals to the use of 5 subpopulations of 100 individuals, it was found
that the island model gave equivalent results in slightly shorter run times [32]. This would
seem to indicate that the maintenance of genetic diversity through distributed populations can
aid search efficiency as well as the quality of the final solution. Beckers er al. obtained a
similar result using a stepping stone model in their GA for structure determination from NMR
spectra [34]. Their parallel GA was run over a local area network of workstations and
significant speedups compared to a sequential implementation were observed arising from
both the parallelization of the fitness evaluation and the fact that the parallel runs required
fewer fitness evaluations to reach convergence (indicating a more efficient search). A
stepping stone model was also used by Del Carpio in work on protein folding in which a
network of five transputers was employed [35].

There have been fewer applications of massively paralle]l evolutionary algorithms in CAMD,
presumably because of a lack of suitable machines. However, Shapiro and Wu have
developed a GA for RNA folding predictions that runs on a MasPar MP-2 16384-processor
machine [36]. This GA begins by initialising a population of simple RNA structures, one for
each processor. At each generation, for each processor, the GA selects two parents from the
structures stored on the processor in question and its eight neighbours. This step takes
advantage of the eight-way interconnected mesh structure of the MasPar machine. Mutation
and crossover operations are then performed to generate two child structures and the best of
these replaces the current structure for the particular processor. All these operations take place
in parallel, generating 16384 new structures at each generation [36].

Finally, Wild and Willett discuss a number of different models of parallelism in the context of
a GA for similarity searching in databases of 3-D chemical structures [37]. In their work, a
Kendall Square Research KSR-1 machine with 64 processors was used and a simple strategy
of assigning single molecules to single processors was found to be the most successful.

2.5 Hybrid Algorithms

While evolutionary algorithms can often yield excellent results when applied alone to a
problem, additional benefits can often be derived from their combination with other
computational methods. There is often considerable synergy to be exploited between
evolutionary algorithms and optimization methods from mathematical programming, greedy
or local search algorithms or other heuristic search algorithms such as simulated annealing
(SA) and tabu search (TS) [38]. Evolutionary algorithms have also been successfully
hybridized with neural and fuzzy computing methods [39,40].

Given that evolutionary algorithms are often viewed as global optimization methods, one of
the most common hybridizations is with a local optimization method. This has been
frequently employed in CAMD applications. Gehlhaar et al. [25] and Westhead et al. [27)
employed the Powell minimization algorithm [41] to refine the final solutions generated by
evolutionary docking algorithms. In studies of the conformational search of large molecules,
McGarrah and Judson found that frequent gradient optimization of the conformational energy
during the course of a GA search gave a marked advantage over methods in which the energy



92

was optimized by the GA alone [42]. However, in studies on molecules having smaller
conformational search spaces, the same workers indicate that the GA was capable of locating
good solutions without the computationally expensive optimization step [43].

Neural networks have been usefully combined with evolutionary algorithms for the
generation of Quantitative Structure-Activity Relationships (QSARs). The most advanced
example of this is the Genetic Neural Networks (GNN) method of So and Karplus [44,45].
GNN employs an EP for feature selection and a neural network for the generation of
coefficients for the equation relating the feature values of the molecules under study to their
observed biological activities. Other work in this area is reported in [46].

More recently, a K-nearest-neighbours {KNN) classification algorithm has been hybridized
with a GA to form the CONSOLV program developed by Raymer et al. [47]). This program
derives and applies rules to decide whether a given water molecule in a protein active site is
likely to be involved in or displaced by ligand binding. The same group of workers have also
experimented with a KNN-genetic programming hybrid and found it to give superior results
to the GA variant [48].

Finally, while there have been no fully published accounts in CAMD of the hybridization of
an evolutionary algorithm with another heuristic search algorithm, two groups of workers
have hinted that, in the context of ligand-protein docking, such hybrid algorithms (GA/TS
[27], EP/SA [49]) can yield superior performance to either of the algorithms used in isolation.

2.6 Collaborations and Commercial Applications

Two final trends that can be identified in gelation to evolutionary algorithms and CAMD (and
which may be true for other application domains as well) are firstly, the increase in
collaborative research between EA experts and CAMD scientists and secondly, the rise in the
number of commercial software products incorporating EA methods.

In terms of research collaborations, two fruitful examples are the pairing of scientists from
Natural Selection Inc. and Agouron Pharmaceuticals Inc. in the development of the EPDOCK
program [24-26), and the combined efforts of researchers from the Computer Science and
Biochemistry Departments of Michigan State University in the creation of CONSOLV
[47.48]. In both cases, the former groups supply EA expertise while the latter bring in-depth
knowledge of the problem in hand. As evolutionary algorithm methodologies continue to
develop and as CAMD researchers seek to gain maximum value from their EA applications,
such collaborations are likely to become more common bringing benefit to both communities.

It is no great surprise that EA applications have not taken long to appear in commercial
CAMD software - one of the great strengths of evolutionary algorithms is that they represent
a methodological framework that is easy to understand and work with. Commercial programs
using evolutionary algorithms or principles are now available for de novo molecular design,
ligand-protein docking, molecular superposition and pharmacophore identification [50] and
QSAR [51]. Given the large rise in CAMD applications of evolutionary algorithms (see
Figure 1), it is likely that the number of commercial applications will continue to increase.



0 -

3 Future Directions

The sections above have attempted to delineate some of the current developments in EA
research and to show how they have often been very rapidly taken up by applications in
CAMD. The ficld of evolutionary computation is still a young one and, as Baeck et al. note:
“..we are convinced that we are just beginning to understand and to exploit the full potential
of evolutionary computation™ [1]. In looking to the future, there are a number of promising
research directions that have been identified by EA practitioners as being likely to receive
much attention. One of these is the further development of the most recent class of EA,
genetic programming, which is concerned with the evolution of computer programs for the
(approximate) solution of problems [52]. This field has grown rapidly since its inception in
the early 1990s and some applications of relevance to CAMD are beginning to emerge
[48,53,54). Directions for future work in GP research are presented by Koza [55]. More
generally, workers are keen to try to incorporate into evolutionary computation more of the as
yet untapped phenomena and mechanisms observed in organic evolution, in the hope that this
will lead to more useful and robust algorithms [1,12,56]. Ideas such as including individuals
of different gender in the evolving population and applying operators and selection rules
differently to different sexes, or taking account of co-evolutionary phenomena are being
considered with the aim of making evolutionary computation a more faithful mimic of its
organic analogue.

A quote from [56] provides an excellent close to this section: “Many more ideas for
improving EAs may come forth when biologists and computer scientists or
engineers/managers using EAs in design, control, and management or other decision-making
processes, sit together without prejudice concerning the scholarliness of their points of view.
Obstacles to further success do not lie in the real world; they lie only in the heads of those
who try to stay self-contained within their narrow single disciplines. The field of “directions
for future research’, in principle, is wide open and - certainly - full of chance and surprises”.

4 Conclusions

The field of evolutionary computation has already had a significant impact upon computer-
assisted molecular design. (An extensive bibliography of evolutionary algorithms applied to
CAMD can be obtained from the author in either Microsoft Word or HTML format). In this
article, some of the current trends discernible in EA research have been reviewed and
illustrated by applications from the realm of CAMD. There appears to be great potential for
developing improved evolutionary algorithms through interdisciplinary collaboration and
research; this promises even more powerful and robust applications for CAMD scientists in
the future.

Acknowledgements

I should like to thank the editors for inviting me to contribute this article and also my
colleagues in the Computer-Aided Drug Design group at Rhone-Poulenc Rorer, Drs. Richard
Lewis, Stephen Pickett and Paul Bamborough. for reading and commenting upon the
manuscript while it was in preparation.



94

References

[1] BAECK, T., HAMMEL, U., AND SCHWEFEL, H.-P. Evolutionary Computation:
Comments on the History and Current State. IEEE Trans. Evol. Comput., 1997, 1, 3-17.

[2] MILNE, G.W.A. Mathematics as a Basis for Chemistry. J. Chem. Inf. Compui. Sci., 1997,
37, 639-644.

[3] BAECK, T. AND SCHWEFEL, H.-P. An Overview of Evolutionary Algorithms for
Parameter Optimisation. Evol. Comput., 1993, 1, 1-23.

[4] MICHALEWICZ, Z. Genetic Algorithms + Data Structures = Evolution Programs,
Springer, Berlin, 1996.

{5] JUDSON, R. Genetic Algorithms and Their Use in Chemistry. Rev. Comput. Chem,
1997, 10, 1-73.

[6] MADDELENA, D.J. AND SNOWDON, G.M. Applications of Genetic Algorithms to
Drug Design. Exp. Opin. Ther. Patents, 1997, 7, 247-254.

[7] PARRILL, A. Evolutionary and Genetic Methods in Drug Design. Drug Discovery Today
1996, 1, 514-521.

[8] DEVILLERS, I., editor, Genetic Algorithms in Molecular Modelling, Academic Press,
New York, 1996.

[9] CLARK, D.E. AND WESTHEAD, D.R. A Review of Evolutionary Algorithms in
Computer-Aided Molecular Design. J. Comput.-Aided Mol. Des., 1996, 10, 337-358.

[10] BAECK, T., FOGEL, D.B. AND MICHALEWICZ, Z., cditors, Handbook of
Evolutionary Computation, IOP Publishing and Oxford University Press, Bristol/New York,
1997.

[11] GOLDBERG, D.E. Genetic Algorithms in Search, Optimization and Machine Learning,
Chapter 2, Addison-Wesley, Reading (MA), 1989.

[12] FOGEL, L.J. Future Research in Evolutionary Computation. In BAECK, T., FOGEL,
D.B. AND MICHALEWICZ, Z., editors, Handbook of Evolutionary Computation, Section
H1.2, IOP Publishing and Oxford University Press, Bristol/New York, 1997.

[13] MICHALEWICZ, Z. Introduction to Search Operators. In BAECK, T., FOGEL, D.B.
AND MICHALEWICZ, Z., editors, Handbook of Evolutionary Computation, Section C3.1,
1OP Publishing and Oxford University Press, Bristol/New York, 1997.

[14] LUKE, B.T. An Overview of Genetic Methods. In DEVILLERS, 1., editor, Genetic
Algorithms in Molecular Modelling, 35-66, Academic Press, 1996.



[15] FOGEL, D.B. AND ANGELINE, P.J. Guidelines for a Suitable Encoding. In BAECK,
T., FOGEL, D.B. AND MICHALEWICZ, Z. editors, Handbook of Evolutionary
Computarion, Section C1.7, IOP Publishing and Oxford University Press, Bristol/New York.
1997.

[16] WOLPERT, E.D.H. AND MACREADY, W.G. No Free Lunch Theorems for
Optimization. JEEE Trans. Evol. Comput., 1997, 1, 67-82.

[17] UNGER, R. AND MOULT, J. Genetic Algorithms for Protein Folding Simulations. J.
Mol. Biol., 1993, 231, 75-81.

[18] WESTHEAD, D.R., CLARK, D.E., FRENKEL, D., LI, J., MURRAY, C.W., ROBSON,
B. AND WASZKOWYCZ, B. PRO_LIGAND: An Approach to De Novo Molecular Design.
3, A Genetic Algorithm for Structure Refinement. J. Comput.-Aided Mol. Des., 1995, 9, 139-
148.

[19] GLEN, R.C. AND PAYNE, AW .R. A Genetic Algorithm for the Automated Generation
of Molecules within Constraints. J. Comput.-Aided Mol. Des., 1995, 9, 181-202.

[20) FOGEL, D.B. Mutation: Real-valued Vectors. In BAECK, T., FOGEL, D.B. AND
MICHALEWICZ, Z., editors, Handbook of Evolutionary Computation, Section C3.2.2, IOP
Publishing and Oxford University Press, Bristol/New York, 1997.

[21] SCHWEFEL, H.-P. Numerical Optimization of Computer Models. Wiley, Chichester,
1981.

[22] FOGEL, D.B., FOGEL, L.J. AND ATMAR, J.W. Meta-evolutionary Programming. In
CHEN, R.R., editor, Proceedings of the 25th Asilomar Conference on Signals, Systems and
Computers, 540-545, Maple Press, San Jose (CA), 1991.

[23] SARAVANAN, N, FOGEL, D.B. AND NELSON, K.M. A Comparison of Methods for
Self-Adaptation in Evolutionary Algorithms. BioSystems, 1995, 36, 157-166.

[24] GEHLHAAR, D.K. AND FOGEL, D.B. Tuning Evolutionary Programming for
Conformationally Flexible Molecular Docking. In FOGEL, L.J., ANGELINE, P.J. AND
BAECK, T., editors, Evolutionary Programming V: Proceedings of the Fifth Annual
Conference on Evolutionary Programming, 419-429, MIT Press, Cambridge (MA), 1996,

[25) GEHLHAAR, D.K., VERKHIVKER, G.M., REITO, P.A., SHERMAN, C.J. FOGEL,
D.B., FOGEL, L.J. AND FREER, S.T. Molecular Recognition of the Inhibitor AG-1343 by
HIV-1 Protease: Conformationally Flexible Docking by Evolutionary Programming. Chem.
Biol., 1995, 2, 317-324.

[26) GEHLHAAR, D K., VERKHIVKER, G M., REJTO, P.A., FOGEL, D.B.. FOGEL, L.J.
AND FREER, S.T. Docking Conformationally Flexible Small Molecules into a Protein
Binding Site Through Evolutionary Programming. In McDONNELL, J.R., REYNOLDS,
R.G. AND FOGEL, D.B., editors, Evolutionary Programming IV: Proceedings of the Fourth
Annual Conference on Evolutionary Programming, 615-627, MIT Press, Cambridge (MA),
1995.



u6

[27] WESTHEAD, D.R.. CLARK. D.E. AND MURRAY, C.W. A Comparison of Heuristic
Search Algorithms for Molecular Docking. J. Comput.-Aided Mol. Des., 1997, 11, 209-228.

[28] YAO, X. AND LIU, Y. Fast Evolutionary Programming. In FOGEL, L.J., ANGELINE,
P.J. AND BAECK, T., editors, Evolutionary Programming V: Proceedings of the Fifth
Annual Conference on Evolutionary Programming, 257-266, MIT Press, Cambridge (MA),
1996.

[29] WANG, G., DEXTER, T.W. AND PUNCH, W.F. Optimization of a GA and Within a
GA for a 2-Dimensional Layout Problem. In GOODMAN, E., PUNCH, W.F., USKOV, V,,
editors, Proceedings of the First International Conference on Evolutionary Computation and
Its Applications, 18-29, Russian Academy of Sciences, 1996.

[30] CANTU-PAZ, E. A Summary of Research on Parallel Genetic Algorithms. [lliGAL
Report No. 95007, Tllinois Genetic Algorithms Laboratory, University of Illinois at Urbana-
Champaign, Urbana (IL), 1997.

[31] MARTIN, W.N., LIENIG, J. AND COHOON, J.P. Island (Migration) Models:
Evolutionary Algorithms Based on Punctutated Equilibria. In BAECK, T., FOGEL, D.B.
AND MICHALEWICZ, Z., editors, Handbook of Evolutionary Computation, Section C6.3,
TOP Publishing and Oxford University Press, Bristol/New York, 1997.

[32] JONES, G., WILLETT, P, GLEN, R.C.,, LEACH, AR. AND TAYLOR, R.
Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol,
1997, 267. 727-748.

[33] JONES, G., WILLETT, P. AND GLEN, R.C. A Genetic Algorithm for Flexible
Molecular Overlay and Pharmacophore Elucidation. J. Comput.-Aided Mol. Des., 1995, 9,
532-549.

[34] BECKERS, M.L.M., DERKS, EP.P.A., MELSSEN, W.J. AND BUYDENS, LM.C.
Parallel Processing of Chemical Information in a Local Area Network. III. Using Genetic
Algorithms for Conformational Anatysis of Biomacromolecules. Comput. Chem., 1996, 20,
449-457.

[35] DEL CARPIO, C.A. A Parallel Genetic Algorithm for Polypeptide Three-Dimensional
Structure Prediction: A Transputer Implementation. J. Chem. Inf. Comput. Sci., 1996, 36,
258-269.

[36] SHAPIRO, B.A. AND WU, 1.C. Predicting RNA H-Type Pseudoknots with the
Massively Parallel Genetic Algorithm. CABIOS, 1997, 13, 459-471.

[37] WILD, D.J. AND WILLETT, P. Similarity Searching in Files of Three-Dimensional
Chemical Structures: Alignment of Molecular Electrostatic Potential Fields with a Genetic
Algorithm. J. Chem. Inf. Comput. Sci., 1996, 36, 159-167.

[38] IBARAKI, T. Combinations with Other Optimization Methods. In BAECK, T., FOGEL,
D.B. AND MICHALEWICZ, Z., editors, Handbook of Evolutionary Computation, Section
D.3, TOP Publishing and Oxford University Press, Bristol/New York, 1997.



[39] PORTO, W.V. Neural-Evolutionary Systems. In BAECK, T., FOGEL, D.B. AND
MICHALEWICZ, Z., editors, Handbook of Evolutionary Computation, Section D.1, 10P
Publishing and Oxford University Press, Bristol/New York, 1997.

[40] KARR, C.L. Fuzzy-Evolutionary Systems. In BAECK, T., FOGEL, DB. AND
MICHALEWICZ, Z., editors, Handbook of Evolutionary Computation, Section D.2, IOP
Publishing and Oxford University Press, Bristol/New York, 1997.

[41] POWELL. M.J.D. A Restart Procedure for the Conjugate Gradient Method.
Mathematical Progr ing, 1977, 12, 241-254.

[42] McGARRAH, D.B. AND JUDSON, R.S. Analysis of the Genetic Algorithm Method of
Molecular Conformation Determination. J. Comput. Chem., 1993, 14, 1385-1395.

{43] JUDSON, R.S., JAEGER, E.P., TREASURYWALA, AM. AND PETERSON, M L.
Conformational Searching Methods for Small Molecules. II. Genetic Algorithm Approach. J.
Comput. Chem., 1993, 14, 1407-1414.

[44] SO, S.S. AND KARPLUS, M. Evolutionary Optimization in Quantitative Structure-
Activity Relationship: An Application of Genetic Neural Networks. J. Med. Chem., 1996, 39,
1521-1530.

[45] SO, S.S. AND KARPLUS, M. Genetic Neural Networks for Quantitative Structure-
Activity Relationships: Improvements and Application of Benzodiazepine Affinity for
Benzodiazepine/GABA(A) Receptors. J. Med. Chem., 1996, 39, 5246-5256.

[46] KYNGAS, J. AND VALJAKKA, J. Evolutionary Neural Networks in Quantitative
Structure-Activity Relationships of Dihydrofolate Reductase Inhibitors. Quant. Struct.-Act.
Relat., 1996, 15, 296-301.

[47] RAYMER, M.L., SANSCHAGRIN, P.C, PUNCH, W.F., VENKATARAMAN, S.,
GOODMAN, E.D. AND KUHN, L.A. Predicting Conserved Water-Mediated and Polar
Ligand Interactions in Proteins Using a K-nearest-neighbors Genetic Algorithm. J. Mol. Biol.,
1997, 265, 445-464.

(48] RAYMER, M.L., PUNCH, W.F.,, GOODMAN, E.D. AND KUHN, L.A. Genetic
Programming for Improved Data Mining: Application to the Biochemistry of Protein
Interactions. In KOZA, J.R., GOLDBERG, D.E., FOGEL, D.B. and RIOLO, R.L., editors,
Genetic Programming 1996: Proceedings of the First Annual Conference, 375-380, MIT
Press, Cambridge (MA), 1996.

[49) BOUZIDA, D., GEHLHAAR, D.K., REITO, P.A., VERKHIVKER, G.M. AND
FREER, S.T. Efficient Configurational Search Methods for Flexible Ligand Docking.
Abstracts of the 11th European Symposium on Quantitative Structure-Activity Relationships:
Computer-Assisted Lead Finding and Optimization, P-37.D, Lausanne, 1996.

[50] LeapFrog, FlexiDock, GASP. Tripos Inc., 1699 S. Hanley Road, St. Louis (MO), USA.

[51] C2.GFA. Molccular Simulations Inc., 9685 Scranton Road, San Diego (CA), USA.



98

[52] BANZHAF, W., NORDIN, P., KELLER, R.E. AND FRANCONE, F.D. Generic
Programming: An Introduction on the Automatic Evolution of Computer Programs and its
Applications, Morgan Kaufmann, San Francisco, 1997.

[53] HANDLEY, S. Automated Learning of a Detector for Alpha-Helices in Proteins via
Genetic Programming. In S. Forrest, editor, Proceedings of the Fifth International
Conference on Genetic Algorithms, 271-278, Morgan Kaufmann, San Mateo (CA), 1993,

[54] KOZA, 1.R. Classifying Protein Segments as Transmembrane Domains Using Genetic
Programming and Architecture-Altering Operations. In BAECK, T., FOGEL, D.B. AND
MICHALEWICZ, Z., editors, Handbook of Evolutionary Computation, Section G6.1, IOP
Publishing and Oxford University Press, Bristol/New York, 1997.

[55] KOZA, J.R. Future Work and Practical Applications of Genetic Programming. In
BAECK, T., FOGEL, D.B. AND MICHALEWICZ, Z., editors, Handbook of Evolutionary
Computation, Section H1.1, IOP Publishing and Oxford University Press, Bristol/New York,
1997.

[56] SCHWEFEL, H.-P. Challenges to and Future Developments of Evolutionary
Algorithms. In BAECK, T., FOGEL, D.B. AND MICHALEWICZ, Z., editors, Handbook of
Evolutionary Computation, Section H1.3, IOP Publishing and Oxford University Press,
Bristol/New York, 1997.



