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SUMMARY
An algorithm for the recognition of molecular shape is presented which is based on
linguistically formulated shape descriptors. Fuzzy logic strategies are used in order to
subdivide molecular surfaces into surface patches and to define scoring functions for the
detection of shape complementarity. The strategy partly mimics the “eyeball” technique used
by human “searchers”. It is demonstrated with three examples (trypsin-PTI, HLE -
ovomucoid inhibitor, a-chymotrypsin - ovomucoid inhibitor) that the proposed method can
be very effectively used for the prediction of initial guesses for biomolecular complexes,
particularly in those cases where the binding sites are not known.
Keywords: molecular recognition, molecular shape, fuzzy set theory, linguistic variables, shape
complementarity
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I INTRODUCTION

The specific recognition of molecules by other molecules plays a key role in the biological
activity of chemical catalysts and supermolecular chemistry. Biochemical specificity. for
example, relies on the selective binding of molecules 10 a given protein in a well-defined
orientation. Specific recognition forms the basis for computer aided strategies within the field of
rational drug design. Only a few receptor sites are known today in full detail, even a smaller
number of structures of biomolecule-ligand complexes (mostly protein-protein complexes) are
available from experimental studies. It is a challenge to researchers from different fields to find
model scenarios on one side, and conceptional and computational strategies for an effective

simulation of the molecular recognition process on the other.

The general problem to be solved can be easily formulated as follows:

1) Find structures for complexes AB built from two molecular components A and B in
solution for which the free energy AG;;;"ﬂ = Gap-Ga-Gp takes a (relative or absolute)
minimum, and

ii) For a given receptor (say A) find those molecules B’ for which AG,e"® << AG,"®
holds for {B'}<{B}. {B""}<{B} and {B’}{B"’}={B}, wherein {B} is the set of all
molecules in consideration as potential docking partners and {B’} are those which bind
10 A very specifically.

The solution of the general problem has two components, the ¢ ional co (related to

\p P

the computation of free energy differences AGy™® ) and the classification component (the

definition of the set B*).

In principle, the solution of the computational problem is straightforward. Based on a local
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force field for both the intramolecular interactions within the molecules A and B as well as all
intermolecular interactions between A, B, and the solvent molecules, the AGyss " values can be
calculated at least in an approximate way using standard simulation techniques (molecular
dynamics (MD) or Monte Carlo (MC)) or minimisation technologies. Unfortunately, the
numerical effort for all of these techniques grows with N', where N is the number of degrees of
freedom which are taken into account within the model scenario and ¥ > 4. For example, if two
molecules A and B are considered as rigid objects with a well-defined potential energy function
V(Ras8ap) wherein Rap and 8ap are the relative location and orientation respectively of
molecule B with respect to A, the minimum search has to be performed in a six-dimensional
space. The search cannot be performed analytically, i.e. one has to calculate the energy
V(Rag.8as) on a grid and to find the minima by numerical standard techniques. Already for
medium size molecules one has to determine about 20° ~ 10° potential values in a systematic
sereening procedure. Standard force fields contain several thousand two-body, three-body and
four-body terms, i.e. for the interaction of two medium size proteins one has to calculate 10" -
10° interactions per grid point. These numbers show that a systematic screening of the
configuration space is enormously time consuming even on massive parallel computer
architecture. The situation becomes even worse when molecular flexibility is taken into account,

Le. when the two molecules are no longer treated as rigid bodies.

In recent years, considerable effort has been devoted to surmount the computational barrier,
ie. the design of computational procedures for the prediction of stable structures of molecule-
ligand complexes (molecular docking).[1-13] In these methods simplified assumptions are
made on the intermolecular recognition process. Simple representations of molecular surfaces
are used in order to describe shape similarities and complementarities. Local positions for

hydrogen bond donor or acceptor atoms, areas of hydrophobic interactions as well as charge
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complementarities are taken into account for effective docking procedures. There is no doubt
that all of these components contribute to the selectivity in the molecular recognition process.
Nevertheless, hydrogen bonds, hydrophobic binding areas and strong electrostatic
intermolecular interactions can only take place if surface atoms of the considered molecules
come close enough, i.e. if the shapes of the molecules are approximately complementary to
each other (at least in the configuration of the final complex AB). We will restrict the
discussion here to the surface matching problem, since in a first trial we are mainly interested
in finding out whether searching strategies of the human searcher can be transferred
effectively into an algorithm., A systematic study of the other components within this

framework (most energetic) will presented in a subsequent paper.

An effective search for complementarity of molecular surfaces is obviously a prerequisite for
solving the classification problem. This problem deals with the question of how to define fora
given molecule A and a reference set B the set B’ of possible docking partners. This problem
is strongly related to the question of molecular similarity or molecular complementarity of the
molecule A to those from the set B'in the region of a receptor (if this is known). We are thus
looking at the molecules from the point of view of a “molecular inspector” and trying to
discover which may belong to a certain class of possible “keys™ to fit some given “lock”. The
search becomes even be more complicated when the “lock™ cannot be specified. In this case
one is looking for complementarity between arbitrary regions of one molecule and regions of a
second molecule without any knowledge of the search patterns. A variety of papers have been
published in recent years dealing with the question of molecular surface complementarity and

shape matching. [6,14-21]

A prominent example for a shape matching procedure is the DOCK program of Kuntz and

coworkers [14] which has been one of the earliest docking methods frequently applied in
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particular when the binding site of the protein is known. The algorithm calculates a “negative
image” of the protein, consisting of a set of overlapping spheres. Groups of overlapping
spheres are referred to as clusters. One or more of the clusters containing the largest number
of spheres are then selected for docking.[15] Then orientations of the ligand are generated by
matching subsets of ligand atoms onto subsets of protein sphere centers. The minimization of
these orientations [16] and the docking of flexible ligands using a genetic algorithm is
possible [17] in the latest versions of DOCK. The algorithm of Lenhof [6] is also based on a
fitness function for evaluating the surface matching of a given conformation, defined as the
weighted sum of a geometric and a chemical contact measure. The geometric contact measure
desctibes the size of the contact area of two molecules, and depends on the atom pair building
the van-der-Waals contact. Helmer-Citterich and Tramontano {18] introduced an algorithm
where the geometric shape of the surfaces, represented by knobs and holes, is described by a
2-dimensional matrix. The search for complementary regions on the surfaces of the protein
and the ligand in a given orientation can be reduced to the comparison of sub-matrices. The
comparison has to be repeated for all possible relative orientations of the protein and of the
ligand and results in a list of docking configurations. These configurations can be evaluated
and scored according to a given criterion, ¢.g. surface area, electrostatic interaction or
potential H-bond formation. Within the algorithms of Connolly [19] and Nore] et al. [20,21]
the surface is represented by critical points, describing knobs and holes. Connolly matches
quartets of critical points of the two surfaces. This approach failed since some docking regions
do not possess four knob and hole matches. Norel et al. match only two critical points. The
surface normal vectors at these critical points serve as the third and fourth criterion for

calculating the transformation.

In all of these papers molecular complementarity and matching are based on an “atomistic”

point of view, where the word "atomistic”™ is used as a term to characterize a basic element of
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amotif which should be recognized without any context to other “atoms”. An example could
be a proton donor group given by the local position and a unit vector for a favorite hydrogen
bond direction or a surface atom characterized by its position and the radius for the onset of
repulsion (van der Waals radius). The recognition motif is then composed out of atomistic
elements in a certain geometric arrangement. Similarity and complementarity are quantified

using standard (Euclidean) measures.

In this paper we follow in principle a similar strategy, however with one substantial
difference: the elements for the composition of a pattern are given in a linguistic way. The
motivation for such a scenario is based on the strategies of a human pattern-searcher. There is
no doubt that the most effective search procedure - for those instances in which it can be
applied - is still the “eyeball” technique used by human “searchers”. It is easy to see by
inspection that a regularly shaped object (the key) “probably fits” into a rigid surface of

complementary shape (the lock).

A variety of papers deals with the question of how to transform the molecular scenario into a
representation for which the “eyeball” technique can still be used, i.e. in which human patterm
recognition abilities can be successfully applied. New instruments of man-machine
communication in molecular science have been developed based on the concept of molecular
surfaces. These surfaces are envisioned as the interface between different molecules or
between a molecule and its solvent. The visualization and interactive treatment of molecules
have been very successfully used in order to study the complementarity problem, which forms

the fundament of specific molecular recognition.

However, it is well known that the “eyeball” technique has a variety of limitations. These are

significant in all those cases when there is no way of transforming the scenario into a
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representation where the human senses are able to recognize data or feawres. Another
limitation is related to the large numbers of objects within a search. If one has to check all
molecules stored in a structural database (I()J»l()5 molecular structures) in order to find those
molecules which, in principle, can be considered as possible “keys” for a given receptor (set
B', see above), the “eyeball” technique will no longer be applicable, simply for pragmatic
reasons. Such a search can be done only using the increasing power of modern computational

technology.

How can strategies based on human recognition be used for the development of algorithms
which can be applied in molecular recognition processes, at least in a pre-selective manner, It
will be demonstrated in this paper that fuzzy set theory offers some promise for a solution.
Fuzzy set theory has already been successfully applied in different areas of pattermn recognition
and at different stages of the recognition process.[27] We shall demonstrate in particular that
the concept of linguistic variables can prove very useful in molecular similarity search

processes and in the study of complimentarity.

This article is organized as follows: In the second section the basic principles of fuzzy set
theory and fuzzy logic are reviewed. In section III the procedure for generating the molecular
surfaces and calculating the topographical properties of these molecular surfaces is reported.
Then the matching algorithm is discussed in detail. The results obtained for three protein-
ligand complexes are presented and discussed in the "Results” section. The last section

provides some concluding remarks and a short preview of future developments.

11 BASIC PRINCIPLES OF FUZZY LOGIC

The concept of fuzzy logic was introduced in 1965 by Zadeh.[29] By now, fuzzy set theory has

many applications in many different fields. Because the field is quite complex and under
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permanent development, the basics of fuzzy logic can not be discussed fully in this paper. Here,
we only present the concepts we actually use. We refer to the literature [27] for more detailed

information.

2.1 Fuzzy Sets

Fuzzy set theory may be regarded as a generalization of classical set theory. A fuzzy set A is
denoted by a set of ordered pairs, the first element of which denotes the element x in the
definition space X and the second the degree of membership. The latter is defined by a
membership function i, (x), with values lying within the range 0 < 1, (x) <1 between zero and

complete membership. This normalization is not necessary but very helpful for the application

described in this work.
A={xu0)xeX } ()

Fuzzy logic allows almost all types of functions for membership definition. The crisp set of

elements that belong to the fuzzy set A at least to the degree « is called the a-level set:

At={xeX|u(x)2a} @

2.2 Linguistic Variables

One of the basic tools for fuzzy logic is based on the concept of linguistic variables (LV’s),
whose values are not numbers but words of a natural or artificial language. LV’s are groups of
fuzzy scts with partially overlapping membership functions over a common (crisp) basic
variable x. In order 10 represent several classes (terms) within a LV, the membership functions
should cover all the relevant space of the crisp basic variable x. Generally a linguistic variable L,
classified by n fuzzy sets A,, can be defined as:

L=t el (3)
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2.3 Decision Making in Fuzzy Environments

Usually, the information on which a decision should be based is a set of given crisp function
values, like the topographical properties of a molecular surface. Also the decision itself shall
again lead to a crisp value (the considered configuration is a docking configuration or not). Thus

decision making in fuzzy environments requires three steps

o, fuzzification of crisp variables into linguistic variables
». fuzzy decision from different LV using fuzzy operators

o. defuzzification back to crisp values

Many fuzzy operators have been suggested for fuzzy decisions. These suggestions vary with
respect to the generality or adaptability of the operators as well as to the degree to which and
how they are justified. The details are discussed as far as necessary in the application section.

For further details see Zimmermann.[27]

I FUZZY SHAPE DESCRIPTION BASED ON THE MOLECULAR SURFACE

In this paper the treatment of shape similarity and complementarity is based on linguistic
variables describing the shape properties of both docking molecules. To represent the molecular
shape the concept of molecular surfaces is used. The preparation of molecular surfaces follows a

well-known process. Therefore only a short description is given here.

The atomic coordinates of the complexes and of the unbounded components are taken from the
Brookhaven Protein Data Bank (PDB). The receptor (labeled R) and the ligand (labeled L) of the

complexes stored in a common PDB file are separated. Only a few entries of the PDB provide
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hydrogen position. Therefore the missing atomic coordinates are added using a standard

procedure implemented in the program SYBYL (v.6.2, Tripos Associates Inc., St. Louis, MO).

For both molecules R and L a solvent accessible surface is generated using the MS algorithm
proposed by Connolly.[31] This algorithm is based on the idea of rolling a test sphere along a
CPK model of the molecules and produces a set of points representing the molecular surface.
We used a probe sphere with radius 1.4 A for a water molecule throughout the calculations. The
set of points of the molecular surface is triangulated for a better graphic representation of the

molecular surface.[32] For each surface point a normal vector is calculated.

3.1 Surface Topography

The topographical properties of a solvent accessible surface [31] can be quantified
mathematically by the two canonical curvatures at each surface point. Since our interest is
focused on binding sites of protein surfaces, we use here the definition of global curvatures
introduced by Zachmann et al.[33] The global curvatures may be interpreted as average
curvatures of the corresponding surface region and are denoted as C, and C; for the larger and
smaller global curvature, respectively. All surface points can then be classified according to the

signs of the corresponding curvatures:

1. two positive curvatures, i.e., the surface point belongs to a concave surface region.
2. one positive, one negative curvature, i.e., the surface point belongs to a saddle-type region.

3. two negative curvatures, i.c., the surface point belongs to a convex region.

These curvatures can be mapped to a single quantity describing the degree of convexity,

increasing continuously through five basic shape descriptors (0 - 4) plus a flatness value (-1) if
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the two curvatures are equal to zero.[34] This quantity is labeled surface topography index (T).

T is calculated as follows:

T= (C,-G)C ifC >0and C>> 0, = Cal
T= 1+ +C.)iC) ifC;>0and C> <0, IC11>1Ca
T=2+(C,+C,)/C, ifC;>0and C, <0, [Ci| £ 1CH)
T=3+(-(C+C.)C,) ifC) <0and C2<0, IC|<1C
T= -1 ifC=C=0

T can be selected as the basic variable for the definition of a linguistic variable Ly termed
topography.[34] This linguistic variable is defined by six classes, denoted as bag, cleft, saddle,

ridge, knob and plateau.

(T, 1, (T));
(T B (T
(Tt e (T
(T, 540, (T
(T, 1y on (T
(maxQC LICs Dﬂ il G Cs ))

The membership function of the class plateau is calculated on the bases of both global
curvatures themselves, because T doesn’t include any information on the values of the global

curvatures. All membership functions of the linguistic variable Lt are shown in Figure 1.

3.2 Segmentation of Triangulated Surfaces

A method to subdivide molecular surfaces into discrete domains has been introduced in an
carlier work.[34] This approach using linguistic variables calculates the boundary of a surface
domain around a certain reference point. The dissimilarity Dyy defined below is used as the

criterion for determinating surface domain boundaries.
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Figure 1: Linguistic variable topography Ly

(a) membership functions of the classes bag, cleft, saddle, ridge and nob
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Figure 1: Linguistic variable topography Ly

(b) membership function of the additional class platean derived from the maximum of

absolute global curvatures
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with
A, B: linguistic variables of the same type
wi:  weighting factor for class i

n:  number of classes in A, B

Sequentially working its way through all triangle node points of the molecular surface, the
method achieves complete segmentation of the triangulated surface. The size of the resulting
domains was chosen in the range between 200 and 800 triangle node points, corresponding to a

surface area between 30 and 150 A”, respectively (see Heiden et al.[34] for more details).

IV MATCHING OF MOLECULAR SURFACES
4.1 Complementarity of Surface Domains

Within the matching algorithm we present here, each domain 1s represented by a reference point.
This point is defined by the center of gravity of the surface points of the corresponding domain.
A surface normal vector is assigned to each domain by calculating the average of the normal
vectors of the surface points belonging to this domain. The averages of the surface topography
indices and the global curvatures as well as the sizes of the domains are calculated to
characterize the shape of the domains. These values are then used to define the degree of shape

complementarity of the receptor R and ligand L.

For the matching procedure the surface of R is transformed to a complementary image R*. R" is
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built up by domains, which have the same absolute global curvatures as the original domains of
R but with the plus and minus signs reversed. The T-value of R’ can be calculated as:
T(RY=4-T(R) (6)
with
R: domain of the receptor

R’: domain of the negative image of R

The values of the membership functions are calculated for each domain of R’. These values are
compared with the membership values calculated for each ligand domain L. The set of domains
of R” and L under consideration in one algorithm step are labeled as main domains. Every
domain having a common border with the main domain is called its neighbor domain. If the
areas of the main domains of R" and L differ significantly, points of a neighbor domain are
added to the smaller domain. The neighbor domain with the best similarity to the smaller main
domain (smallest value of the dissimilarity function Dyv) is chosen. The decision is made on the

basis of two different concepts:

1. In the first trial the dissimilarity function introduced by Heiden et al.{34] (equation 5) is used.
The complementarity of a receptor with a ligand domain is defined as the fuzzy complement of

the values of the dissimilarity function of the ligand and the complementary image:

Comp, ,(R,L)==D,,.(R’,L) N
with

Heomp), (R.L)=1- Hp, (R,L)

R: domain of the receptor

R’: domain of the complementary image of R



L: domain of the ligand
Comp, v: complementarity of R and L
Dyy: value of the dissimilarity function of R” and L.

“Dpv: Complement of Dy y

2. In a more sophisticated procedure the values of the global curvatures are compared. Two
linguistic variables L¢) and Ley are defined to quantify the complementarity of the global
curvatures of R and L. L¢y and Le» are classified by only one fuzzy set and the quotient and

difference of the global curvatures are used as definition spaces, respectively:

La(R.LY={{Cta)/|c(B)

e C@.CB)) ®

Ly (R.D) ={C@)|-[C(B), ne(C@r.CB)} )
with
o convex domain of R or L

B: concave domain of R or L

The membership functions pic1 and pe- are shown in figures 2 and 3, respectively.

Main domains of the receptor R and the ligand L are idemtified as complementary if the
"weighted average” of Compyv, L¢y and Lea is a member of the a-level set with a0 =0.99. The
weighted average is defined by equation 10. L¢) and Le» must be calculated for the larger and

smaller global curvature of the receptor ligand combination:
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Figure 3: Membership function of the linguistic variable L,
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uavrr =- N (] 0)
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izl
with
pi: value of the membership function of Compyy, L¢) and Lez
w;: weighting factor

N: number of linguistic variables

The complementary domains can be ranked by the value of their weighted average.

4.2 Matching Algorithm

The reference points of the main domain of the receptor and of the ligand are matched, and the
ligand is rotated until the normal vectors of the main domains are antiparallel. The position of
the centers of gravity of the neighbor domains of R and L are projected on one plane defined by
the reference point and the normal vector of the main domain. The angles between the
projections of the neighbor domains are calculated to characterize the relative position of the

neighbor domains (figure 4).
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The ligand is rotated in discrete steps of 45” around an axis defined by the normal vector of the
main domain. In this way 8 complex configurations are produced for each pair of main domains.
The angles between each projection of the neighbor domains of R and each projection of the
neighbor domains of L are calculated for these configurations. For each neighbor domain of R
the neighbor domain of L making the smallest angle with the R domain is determined. This is
done until each neighbor domain of R is combined with a domain of L. These combinations are
called neighbor domain combinations and are compared in the same manner as the main
domains. The values of the weighted average (equation 10) are computed for cach neighbor
domain combination and the average is built over these values. The docking configuration with

the largest average is retained as a possible docking structure of the protein ligand complex.

neighbor domain 1

neighbor

5 neighbor domain 2
domain 4

reference point of
main domain

neighbor domain 3

Figure 4: Calculation of the angles between the neighbor domains
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In order to demonstrate that the linguistic formulation of recognition patterns can indeed be used
for the molecular shape matching problem we tested the algorithm with the structures of three
complexes of serin proteases and their inhibitors. The selected complexes were trypsin -
pancreatic trypsin inhibitor (PTI), a-chymotrypsin - ovomucoid inhibitor and human lenkocyte
elastase - ovomucoid inhibitor. In the case of the trypsin - PTI complex both the separated
components of the known complex structure and the components determined separately by x-ray
investigations were used. In the other two examples only the structures of the complexes were

used.

The structures of the protein ligand complexes were taken from the Brookhaven Protein Data
Bank. We used the entries 2PTC for the trypsin-PTIl-, 1CHO for the a-chymotrypsin -
ovomucoid inhibitor and 1PPF for the HLE - ovomucoid inhibitor-complex. For the unbounded
components of the trypsin - PTI-complex the entries 2PTN and 4PTI were used for trypsin and
PTI respectively. The missing hydrogen atoms were added by the SYBYL program (v.6.2,

Tripos Associates Inc., St. Louis, MO) and the solvent accessible surfaces were generated.

The values of the topographical properties of the surfaces were calculated and a segmentation of
the surfaces was carried out as described above. The numbers of domains, which were

generated, are shown in table 1. Figure 5 shows five exemplary domains of surface of PTI.
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Table 1: Number of domains of the protein-ligand-complexes

Complex PDB-file number of
domains

Trypsin 2PTC 86
PTI 2PTC 35
Trypsin 2PTN 109
PTI1 4PTI 44
HLE IPPF 150
Ovomucoid IPPF 46
Chymotrypsin 1CHO 120
Ovomucoid ICHO 44

The matching procedure described here selects less than 100 possible docking configurations for
cach protein ligand pair out of a set of several ten thousand of trials. For each complex the
number of docking configurations is listed in table 2. The root-mean-square (rms) derivation of
one of these configurations is less than 10 A from the original x-ray structure. The values of the
weighted averages (¢f. equation 10) and of the rms derivations are also listed in table 2. In the
case of the HLE - ovomucoid inhibitor-complex, the rms value is less than 3 A. The structures
determined by X-ray analysis and by the matching algorithm are drawn in figure 6, showing a
good agreement between predicted and experimental structure. In figure 7 the structure of the
trypsin— PTI complex and the predicted structure of the unbounded components are compared.

In this case, the docking areas are predicted correctly (amino acid Lysin 15 of PTI). but
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conformational changes of the ligand must be taken into account by further investigations.

Figure 5: Segmentation of the surface of PTI (solvent accessible surface)
Five representative domains are shown. The domain in the lower left

corner corresponds to the binding region.

The configurations suggested by our matching program can be used in a minimization procedure
1o generate a reliable prediction of the structure of the complex. Within many minimization
procedures,[35-37] a large number of random docking positions are produced if the active side

of the receptor is not known. These docking positions are then optimized to find the optimal
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docking position. The preliminary docking configurations produced by the method we presented
2 P p ) 2 g ) pi

here

Figure 6: Docking configuration of the HLE - ovomucoid inhibitor-complex
The backbone of HLE from PDB-file | PPF is shown in ribbon representation
(black) configuration of the ovomucoid inhibitor form PDB file |PPF

(light gray) predicted configuration of ovomucoid inhibitor

could also be used with these algorithms. The advantage of this procedure is that only a small
number of configurations must be tested since the configurations are preoptimized, allowing a

quick investigation of the best docking configuration.



Figure 7: Docking configuration of the trypsin - PTI complex

The backbone of trypsin is shown in ribbon representation, PT1 as balls and sticks

and the binding region of PTI (amino acid Lysin 15) as CPK model.

(a): predicted configuration of the unbounded components from the PDB-files
2PTN and 4PTI

(b): configuration from PDB-file 2PTC



Table 2: Matching results

Complex weighted rms-values number of docking number of
average configurations possible
Paver 2 0.9 combinations
Trypsin (,9947 10,8 28 15050
PT1
Trypsin 0,9964 50 23890
PTI
(unbounded)
HLE 0,9992 25 91 34500
Ovomucoid
Chymotrypsin 0,9964 6,5 80 26400
Ovomucoid

The data in table 3 clearly show that the algorithm is able to produce a small number of possible
docking configurations in a very short time. Therefore the algorithm can also be used as a first
step for the prediction of protein-ligand configurations in cases where the active side of the

receptor is not known.



b 4

*~]

Table 3: Performance on a Silicon Graphics INDIGO R4400

Complex CPU time (min:sec) memory (MB)
Trypsin
* 26:30 142
PTI 1
HLE
56:25 18,2
Ovomucoid
Chymotrypsin
pHRRE 4120 18.6
Ovomucoid
VI CONCLUSION

In this paper a formalism is presented for the representation and classification of elements of a
molecular surface within a scheme based on fuzzy set theory. Surface patches are described
therein with the aid of linguistic variables. It is demonstrated that this scenario is well suited for
generating similarity and complementarity motifs, and that fuzzy logic treatments can be used in
the prediction of structures of biomolecular complexes at least to produce first guesses for a
more detailed molecule-molecule matching. A large number of algorithms for effective
matching of molecules has been published recently, based both on rigid structures [3,6,8,13,16]
and flexible molecular structures.[1,2,5,10,37-40]. We do not consider the present paper as a
continuation along the lines of these works. It is an initial trial to transform the strategies of a
human searcher (following an “eyeball” procedure) to a computer-driven algorithm, which
mimics the pattern recognition ability of the human searcher. The incorporation of properties in

addition to shape properties into our linguistically-controlled strategy is underway.
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