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Abstract

In this paper a software package is described that allows using the MM?2 force field to
compute the energy of three-dimensional conformations of molecules; this energy is
minimized, the resulting structures are automatically classified. Thus we get an im-
pression about the set of all low-energy three-dimensional conformations of a given
molecule defined in terms of two dimensional connectivity information. The accu-
racy of the resulting information can be tuned by changing input parameters for the
method presented. This is a hybrid which is built from a method for classification of
three-dimensional molecules, from a conjugate gradient method for local minimiza-
tion and from operators stemming from evolutionary algorithms. The latter have
proven successful in the solution of difficult optimization tasks (not only) in mathe-
matical chemistry. They are of special importance for the approximate solution of

problems where global optima of multimodal functions in high dimensional spaces
are sought.
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The paper is organized in three sections. The first one gives a formalization of
the problem and shows in which way this problem was solved up to now. In the
second section the evolutionary algorithm is introduced after a short presentation
of a genera) formalization for this kind of algorithms. Each operator of our method
is shown in a separate subsection. A definition of the function which determines the
transition from one generation to the next generation concludes this section.

The last section shows trials and corresponding results obtained with the presented
method. The summary of trials is followed by listing average energy values of re-
sulting three-dimensional molecule conformations. The results of the classification
incorporated are presented, too, as well as time consumption and complexity of the
algorithm. A section of conclusions summarizes results and observations.

1 Introduction

The algorithm presented in this article makes fundamental use of the MM2 energy
model to get as many conformations of a single (defined topologically in terms of
a labelled multigraph, that means two dimensional) molecule as possible. These
molecular structures should be stable, i.e. carry low energy in respect to the model.
By choosing this approach we are able to get corresponding conformations without
incorporating any heuristic information concerning substructures being more likely
found than others. The method of Sadowski and Gasteiger is an example for the
latter approach, cf. [GCJ90] and [SGI3].

Opposite to quantum mechanical methods the MM2 model is easier to manage from
the computational point of view. The original energy model and the various refined
versions tailored for special types of molecules work by attaching an energy level to
each of the possible spatial conformations.

Provided that a molecule is the more stable the lower its energetic level is, we can
distinguish structures likely to be found from others hardly found in nature by nu-
merically minimizing the energy function. Because we do not want to collect mul-
tiple isomorphic structures which are close together on the energy landscape, an
additional classification routine will be employed. This task of minimization and
classification is formalized in the following manner.

1.1 Formalization

In order to model the three-dimensional structure of a molecule M containing m
atoms (including H-atoms), a 3m-vector x = (X;);_; 1,, is used which holds the
atoms' coordinates. These coordinates are known as object parameters of the opti-
mization problem. A function pa(x) combines these parameters with topological
information, information about the types of atoms etc. The image of this function is
the three-dimensional molecule:

par(x) = M.

The amount of energy held by a conformation defined in terms of a vector x is
computed with the help of the MM2 model, which comprises bond lengths, bond
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angles, torsion angles and van-der-Waals forces within the molecule. This energy of
M resulting from the MM2 model is indicated by

E(um(x)) € R*.

1.2 Posing the Problem

The task that should be fulfilled by our program is like this: For a given function gy
three-dimensional structures x are sought whose energy is as close as possible to
the stable minimum of energies

argmin{ E(un(x)) | x € R3™}

So the energy surface consisting of all possible three-dimensional representations
pn(x) is scanned for global minima without using heuristic information being avail-
able a-priori. We call this an unconditional search for a minimum point x* with
respect to a E o py. In the context of evolutionary algorithms this function is also
called the fitness function of the problem.

The following approach for approximately solving this problem has already been
tested. It consists of starting a reliable iterative algorithm for local minimization,
e.g. the conjugate gradient algorithm, very often at randomly generated points in
the domain R3™,

1.3 Previous Approach

This method known as ‘random-starts'-method works on a bounded set G ¢ R3™,
e.g. G = [-10,101%"; u(G) describes the Lebesgue-measure of G:

« Compute x € R3™ randomly according to a uniform distribution 1/u(G);

» Start the local minimizer at the point x and get an approximation for a local
minimum x” of the objective function, where the following holds:

Je>0Vx € Uex') : E(um(x")) < E(um(x)).
Here /¢(x') stands for a neighbourhood of x’ with radius ¢.

« Repeat this process and save the minimum solution that was found during the
iterations.

It is supposed that at some time a global minimum is reached within these iterations,
if they are only run sufficiently often. Besides the fact that this cannot be known for
sure at any time of the algorithm, the absolutely independent restarting in each
iteration is an essential drawback of this approach. This means that information the
algorithm discovers during one iteration is not used in the following cycles. This
information is just forgotten. The algorithms might make the same mistakes all the
time, e.g. restarting at a point where a minimum is not supposed to be. This leads
to the highly time consuming behaviour of random starts methods.

Although the algorithm that will be presented in the sequel also starts from some
absolutely randomly chosen vectors of atom coordinates, it maintains vectors of



140

successively improving approximate solutions for the problem during the steps of
evolution. Those are used to get even better ones in each step of this iterative pro-
Cess.

2 Algorithm and Structure of Solutions

This section is dedicated to the presentation of the method used to evolutionary
optimize the energy of molecules in respect to the MM2 force field. The optimiza-
tion algorithm changes a population of individuals generation by generation; those
individuals undergo a selection operator, which implements selection by individual
fitness values. The fitness values are essentially determined by the objective func-
tion of the optimization problem, so here the fitness values are mainly determined
by the MM2 force field.

For sake of presentation we use a formalism that was introduced by Back ([Bac96),
S.63ff.). It puts Evolutionary Strategies, Evolutionary Programming and Genetic Al
gorithms into one formal frame, and it subsumes all these approaches under the
term of ‘evolutionary algorithms’. According to Back an evolutionary algorithm is
defined as an 8-tuple:

EA = (G, 9,0, Y, 5, 1,14, 7).

Object parameters mentioned in the previous section specify the coordinates of the
atoms belonging to a molecule. Each of these 3m object parameters is accompanied
with a so-called strategy parameter. Later the values of these strategy parameters
will be used as standard deviations for a normal distribution N(x;, 7;).
Analogously to evolutionary programming the pairs of vectors x of object parame-
ters and o of strategy parameters form the individuals g = (x, o) to be processed
during the course of the evolutionary algorithm; every individual is a member of the
set G defined by:

G:=1{g=(x0) |eR" geRM]

Note that the parameters are used as continuous variables directly; unlike genetic
algorithms this algorithm neither needs nor performs any kind of discretization
step. Every iteration of our algorithm ends up with a new vector containing new
candidates for an approximate solution of the problem; this vector of length y is
said to be the primary population P(t) at a particular time t (t € Nu {0}):

P(t) = (Q(HJ‘ L ]gﬂ.u)) e Gﬂ_
All these populations are considered to be ordered; having g'"# = (x!"+) g'"#)
P(xt) < P(x"Y) Vji=1...u-1,t eNU{0}, (1)

where ® := E o uay defines the fitness function of the evolutionary algorithm.

The termination criterion t steps the evolutionary algorithm if a certain predefined
number of generations P{t) has been produced.

Other components of the 8-tuple displayed above, i.e. the selection operator s, the
set () of genetic operators, the generation transition function ¥ and the size A of
temporary populations, will be explained in the following subsections.
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Figure 1: Flow Chart of the Evolutionary Algorithm with Local Search and Classifica-
tion.
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2.1 Initialization

I'he evolutionary process that was used to iteratively generate populations P(t) is
displayed schematically in figure 1. At the beginning of this process a starting pop-
ulation P(0) is needed. It is created by randomly setting every component x '/ and
a2 of every individual g'*' for j = 0,..., u. This uniformly distributed random
selection was done with the values chosen according to

.\’:u"” € [43\2]
o\ e (0.2,1.2).

This has proven useful with respect to the duration of evolution necessary to get
good results. In case of setting these parameters disadvantageously, we could ob-
serve that more generations were necessary for good results. The built in self-
adaptation mechanism of strategy parameters prevents from getting bad results,
if only the evolution is allowed to run long enough. So the values given as bounds
above are used only for the initialization of the individuals. These values are irrele-
vant to all operators that will follow.

2.2 Ranking of Individuals in P (t)

We have mentioned above that populations are always considered to be ordered.
From this arrangement we derive a constant distribution on populations; this distri-
bution will be applied within the expansion operator w, and within the selection of
the second operands for crossover. According to Grefenstette and Baker ([Bac96]) let

1 el ,
o= & [pFaipf=nItstY ¥isi... 2
P, u(” (n ”)u~1) J u @

supposed that 1 € n* € 2 holds with = := 2 - n*. Because of this restriction a
discrete possibility distribution ensues:

e 2t -1
pi=nt - "N o
20 = 5

The value of 7 controls selection pressure between individuals showing different
values of fitness. Typically it is about n* = 1.1; the resulting selection strategy
would be close to ‘random walk’, i.e. an uniformly distributed selection from the
individuats of a population.
During the trials we made, setting n* = 1.4 has proven worthwhile; since we pre-
vented similar individuals from showing in the same population more than once by
the use of a classification step, we could even choose population sizes quite small
The classification protected against ‘premature convergence’ of the evolutionary pro-
cess, this is convergence of the population as a whole against sub-optimal, local
minima. Generally, having u' := [u/2}:
+Pr T Py

2
holds, so the possibility for selecting the best individual of a generation is just n* as
much as the median of the discrete distribution defined above.

pi=n
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2.3 Expansion Operator wg

The expansion operator wy : G¥ — G* serves to expand a primary population P(t)
containing p individuals to a temporary population P'(t) with A > g members. For
that a sequence (X;);., , of A random variables X; € {1,...,u} is evaluated, being
distributed according to (2); then P’({) is generated:

P(E) = (@) iy 3)

Notice that, unlike P(t), P'(t) in (3) is not supposed to be ordered. Let g’ be
defined g’ := "% in canonical manner.

2.4 Crossover Operator w,

Uniform crossover w; is the first really genetic operator that is discussed in this
paper. [t implements uniform crossover between each of the individuals of P'{t) and
amember of P(t) chosen randomly at a time. w; is defined using a given crossover
possibility 9, € [0,1] and an operator w; : G* x G* — G* defined below. From now
on {X;) ;.. are random variables distributed according to (2); let Y and (Z;};.,__ ym
be random variables uniformly distributed in [0, 1], which are calculated each time
w) is evaluated. We propose i = 1,...,3m and define:

| ((x', 0", (x",d"”)) := (x,0) with

(x{,0)) ifY<1/2and Z; < $,
(xi, 00 i=qy . . -
(x;',0/") otherwise

This determines in which way v, operates on the above-mentioned population:
w1 (P(1),P'(1) = (w} (g, g ")),y s

Obviously this crossover operator always works on object parameters and strategic
parameters simultaneously. By this a self-adaptation of the strategic parameters
shall be achieved. This is based on the following consideration: the better an indi-
vidual performs with respect to the objective function the better the strategic pa-
rameters are suited to the particular environment of the individual; remember that
good performance causes a high possibility that the individual will have offspring
in later generations, this resulting from the ranking distribution defined above and
being ensued from the selection operator discussed in another subsection below. So
not only the individuals themselves are improved during the evolution, but also the
strategy for creating new individuals.

During the trials that were made within the framework of this project, we used
9, = 0.8; it controls the frequency for the crossover operator coming into action.
Like the ranking parameter n* its level was chosen quite high. This produces high
rates for the mixture of best individuals from P(t) with best individuals from P’(t).
Since the latter quite frequently are copies of the best ones from P(t) because of the
expansion operator, this method prefers the production and testing of combinations
of coordinate values from the best individuals in P(t).
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2.5 Mutation Operator w-:

Now a mutation operator w: : G* — G" is presented. It is very similar to operators
used in the context of evolutionary strategies. Since it is an asexual operator, we
can define it componentwise using ) : G — G. Like in subsection 2.4, suppose Y
and (Z;), | s, are uniformly distributed in [0,1]. If Y > &3, we set w’ ((x",07)) :=
(x, o), where (x,0) = (x',0"); here 3, € [0,1] is a given mutation possibility.
Otherwise the object parameters x, are chosen according to the normal distribution

xi~N(xj,00) Vi=1...3m;
in this case strategic parameters are determined by

. ool ifZ;i<1/2
""" | Bo! otherwise

il ey B—

Mutation of object parameters and strategic parameters at the same time results in
self-adaptation of parameters to the optimization problem (cf. [Bdc96}). In our trials
the constants were set to « = 1.3 and § = 1/a. As a whole the mutation operator
we used can be written as:

W (P'L0) = (wi(g"M)

2.6 Local Conjugate Gradient Optimization w3

While testing the evolutionary program we realized that we could not get reliable
classifications of conformational isomers (cf. subsection 2.7) , if the energy values
of individuals to be classified were too far away from the global optimum of the
MM2-energy function. So, to get there, a lot of time had to be spent on the evo-
lutionary process which only allowed a low convergence rate. Because of this we
have combined the evolutionary approach with a deterministic local minimization
method, namely a shortened version of the conjugate gradient search. It works just
in between the application of the presented genetic operators on one side and the
application of the selection and classification operator on the other side. The line
search included in the conjugate gradient method uses the Goldstein-Armijo crite-
rion to guarantee sufficient descent (cf. [Spe93)).

Normally, when using a conjugate gradient method for optimization without our
additional modules, the number of iterations equals the problem dimension (here:
3m); but here this method and the genetic or selection operators are used in turn, so
only a fraction of that number of loops is executed. The conjugate gradient iteration
is started all over again, after the genetic operators have been in charge.

Observe that the presented method could be interpreted as a conjugate gradient
algorithm working in parallel, which tests after some steps if the individuals involved
are equivalent. If there are two or more equivalent solutions, only one of them (ie.
the best one) is kept for further enhancement. All the others are thrown away. Then
empty locations in the population, which are result of such deletions, are filled with
individuals derived from existing individuals by the genetic operators, i.e. mutation
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and crossover. After that, this ‘parallel evolutionary conjugate gradient method’ is
started again.

The operator w3 : G x G* — G¥ x G* for local search consists of $3 € N U {0} steps
of the ordinary conjugate gradient method for every individual in P(t) U P’(t). The
results discussed in section 3 arose from trials with 33 € {%, "%, 3m}. Generally we
observed that together with growing values of &3 the results of classification became
sharper, too.

2.7 Selection Operator s

Now an elitist, deterministic (g + A}-selection s : G¥ x G* — G* is described which
includes information about the individuals' objective function values as well as in-
formation about their mutual three-dimensional equivalence. Benecke's [Ben98] clas-
sification routines, that serve for the discovery of equivalence, are encapsulated in
the function k : G x G — {0,1} ; here k ((x',d'),(x",0")) = 0 holds if and only if
pum(x’') and pa(x") are equivalent in the sense of Benecke's program detecting full
structure isomorphism.

For the sake of formulation of the selection operator, the following recursive defini-
tions are needed; remember that we will write ®(g) instead of ®(x) for any individ-
ualg = (x,0):

pitly

g = argmin{®(g) | g € P(t) UP' (1)}
ki(t):={gePtyuP ()| kg, g) =0} )

if k;(t) C P(t) uP'(t) (j € N) we go on with setting recursively:

g = argmin{@(g) | g € PO UP (1) \ kj{t)}
K () 1= k() U {g € P UP'() | k(g ", g) = 0) (5)

The number of minima, and hence classes we have defined now shall be j;. If j; > p,
the image s(P(t), P'(t)) of the selection operator is defined as:

S(P(I).Pr(t)) e (gn([.!)””,gm(!.u!)’

Otherwise new individuals are created in accordance with subsection 2.1; the result-
ing vector of individuals is sorted (2) to get the image s(P(t), P'{t)) of the selection
operator in this case.

The selection operator that has just been described is elitist (see citeBaeck:1996)
since

'-b(t]"“ Lll) & @(g(l.ll)

holds for each t € N u {0}. It is called deterministic because it is strictly based on
classification and comparison of fitness values without any randomness affecting
the selection process.
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2.8 Population Transition Function ¥

The population transition function ¥ summarizes all the functions that determine
transition from population P(f) to an offspring generation P’(t). Using previous
definitions, we are able to write now for ¥ : G* — Gg*:

Y(P(t)) := 5 o 3(P(t), w2 0w  (P(L), we(P(E))).

Compare this with figure 1 showing a flow chart of the discussed algorithm.

We can define now what ‘evolution' or ‘sequence of populations’ means in the context
of the upper definitions. Let #, € N; then we call a vector P = (P(t)},_, s, a0
evolution, if:

Pt +1y=Y¥(P(t)}, Vt=0,...,9,

So an evolution is just a sequence of populations produced by iteratively applying ¥
to a randomly created starting population.

At the beginning of this section a termination criterion t was discussed. In all of our
trials it made the evolutionary process stop after 30 generations had been created
by V.
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Figure 2: Constitutional isomers of the molecule CgH;s having served as test cases.

3 Trials and Running Times

In the last section a hybrid algorithm employing evolutionary, gradient and classify-
ing methods has been discussed. On 900 trials this algorithm was thoroughly tested
and its performance precisely examined. Ten constitutional isomers of the molecule
CsHyg built a fundament for these tests. They were chosen so that as many types
of substructures (rings, multiple bonds etc.) were represented as possible; in fig-
ure 2 those ten isomers are shown. Every molecule in this figure is labelled with
two numbers. The first number gives the position of the corresponding isomer on
a list produced by the program MOLGEN 3.5. The second number that was put into
braces represents the number of stereo isomers corresponding to the constitutional
isomer. The isomers are named by M, to M, from upper left to lower right side of
the figure.

3.1 Test Problems and Parameters

It has been our purpose to get three-dimensional representations of the molecular
isomers of CgH ¢ show in figure 2. For this we run the algorithm discussed in the sec-
ond section of this article with various values for parameters 3z and for population
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Figure 3: Development of average values taken over 10 population sequences of
individuals in P(Mg, 1,1, .) (left hand side) and in P(Ms, 3, 1,.) (right hand side).

sizes it and A respectively.

The problem size amounts to 3m = 72 since the molecule under consideration con-
tains 24 atoms (including all the H-atoms). For the number of conjugate gradient
steps a value from the triple (93‘_,)#&“"_3 = (18,36, 72) was chosen; population sizes
were set to one of the pairs of values in ((ui,A));, 5 = ((4,6),(8,10),(16,20))
during each trial. The population sequences that were produced during the trials
are labelled in a canonical manner with P(M,, 1, j, k) with indices 7 and j referring
to different population sizes and to different lengths of conjugate gradient iterations
respectively.

To catch statistical fluctuations there were ten evolutions consisting of 31 genera-
tions each (since 94 = 30) for every constitutional isomer and each of the 9 possible
combinations of values for 93 and (u, A); this is shown by the existence of an addi-
tional index k € {1,...,10}.

The last population of the fifth evolution, for example, which was produced by evo-
lutive MM2-energy minimization of an isomer having MOLGEN 3.5-number 22 using
parameter values (u;,A;) = (4,6) and 33> = 36 is denoted by P(M,1,2,5)3.

3.2 Single Examinations

In order to get a first impression of the objective function values' evolution please
take a look at figure 3. It shows the development of fitness values on positions 1
through 4 in generations 11 through 31. The values are averages taken over ten
population sequences that were evolving for P(Mg, 1,1,.) (left hand side) and for
P{My,3,1,.) (right hand side).

These population sequences differ in the values used for population sizes only. The
figure on the left hand side is derived from populations of 4 individuals, the figure
on the right hand side is a derivation from populations containing of 16 members.
A comparison of these two sequences of averages shows that variations in objective
function values seem to be damped when population sizes are growing.

Worst individuals of small populations vary very much. This could be regarded as
a hint for population sizes, especially the size A of temporary populations having
been chosen too small. One comment on this high variability could be that since
too few new individuals are generated for P’(t) there are too few being comparable
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to the best ones in the primary population P(t). This, together with subsequent
selection and classification, might cause the observed high variability in the values
of the worst individuals of P(t + 1).

It has been our purpose however to get results being satisfactory as to both objec-
tive function values and sharp classifications by computations consuming as little
time as possible. Besides, we wanted classes close to minima once found in a tempo-
rary population to get members of consecutive primary populations and not to get
wasted just because population size y may have been chosen too small compared to
population size A.

That is why temporary populations P’(t) were chosen to be only 50% and 25% big-
ger than primary populations P(t); so some kind of statistical fluctuation had to
be accepted in the sequence of objective function values of high order individuals
in small populations. It is possible however to enlarge primary as well as tempo-
rary populations to reduce these fluctuations, at the expense of an increasing time
consumption, of course.

On the other hand premature convergence and stagnation of populations could be
prevented by using the conjugate gradient method in conjunction with classifica-
tion between genetic operators. Small populations often entail those phenomenona
when ordinary algorithms of evolutionary programming are in use. So these algo-
rithms mostly use parameter values of (u, A) such that A is about five to seven times
as large as p. Premature convergence is an undesirable effect which occurs when
high selective pressures and small populations are in use; it emerges from a very
good individual exponentially taking over all the positions in subsequent genera-
tions, assumed this individual stays better than average in these generations. And
the latter is the case especially if there are only few newly generated individuals in
each generation, hence small A. Here on the opposite the parallel optimization of all
the fellow individuals and most of all the deletion of isomorphic molecules prevent
this dangerous effect which yields stagnation instead of further evolution.

3.3 Values of the Energy Function

All of the evoluticnary processes that had been run were analysed according to val-
ues of the objective function produced in the last, i.e. the 31st populations. These
are the values that would be observed in real world applications where the evolu-
tionary process that lead to these values will be discarded. Averages

= ()
SRR ,,Z *

were calculated for every ten-tuple P(M,, i, j, k)31 = (gi"....,4"") of populations
{(k=1,...,10). Corresponding statistical deviations § were determined, too. Table 1
also contains the best values # of the MM2 force field that could be achieved during
evolutionary iterations.

me=min{x;" | j=1,....uk=1,...,10}.
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I ; 5 m x 3 " X ] wm
@6 142677 434924  125.399 | 134.721 42.8669  124.747 | 126,773 787127 124673
(8,0} | 140,956 43,7527  124.591 | 137.311 29.4504  124.678 | 132.942  25.6125  124.699
(16,20) | 177.207  76.78] 124.696 | 157.174 57.5804  124.675 | 149.434 458427 124679

(@,6) 171%7.827 20,4697 ~ 145.305 | 150.229  5.16504 145.276 | 155.078  27.8875 745394
(8,10) | 184.479 67.7222 145.277 | 181.7 80.462 145.269 | 168.015  43.4763 145.292
(16,20) | 207.785 68.236 145.287 | 186.862 52.4538  145.263 | 180.992  43.8119  145.298
4.6) | 221.734 280142  206.615 | 213.307 11.2948  206.401 | 214,588 219 206.148
(8,10) | 243.589 80.3413  206.199 | 226.012 32.6836  206.536 | 221.868  29.1775  206.07
(16,20) | 252.341  50.5876  206.744 | 246.79  41.8442  206.271 | 245.225  50.307 206.208

(4.6) 133511 12,7065 127.946 | 128.431 11.29 121.765 | 132.786 35.3137 127.998
(8,10) { 130.393 8.51669 121.802 | 128.924 12.316 121,756 | 125.579 4.47907 121.734
(16,200 | 134.213 20749 121.895 | 129.604 9.88545 121.43 125.159 3.45673  121.515

{]

(4.6 203.655 60.7655 160.495 | 199.429 58.4659 160.583 | 247.094 189.064 160.556
(8,10) | 239.913 76.502 160.61 234,944  74.5437 160.48 234.526 66.7302 160.529
(16,20) | 270.494  82.7946 160.515 | 260.13 69.5188 160.558 | 264.831 70.0881 160.565

)

4

4,6) T47.725 22.2858 133.561 | 144.861 23.9266 133.554 | 138.69 3.16951 133,549
(8,10) | 160.906 61.962 133.877 | 142.222 8.15394  133.559 | 140.505 4.80386 133.527
(16,20) | 178.686 68.9278 133.532 | 161.489  41.9203 133.533 | 160.657 57.1597 133.566

(4.8) 186.247 54.9959 156.924 | 174.432 35.7513 156.947 | 165.488 27.5154 156.756
(8,10) { 210.624 68.2593 156.784 | 203.447 61.2632 156.795 | 208.74 68.6633 156.794
(16,20) | 248.607 79.6498 156.726 | 229.136  59.5561 156.788 | 237.049 78.4861 156.756

4.6 153.28 37.3461 140.305 | 146,505 24.6583 140.311 ] 142.957 2.13568 140.213
{8,10) 162.406  51.3329 140.19 147.841  33.0719 140.139 | 143.547 8.52481  140.215
(16,20) | 188.584 65.1431 140.244 | 183.362 62.4722 140.135 | 178.626 61.1839 140.134

(4,6 228.779 29.1868 206.442 | 215.774 13.0871 205.52 209.777 3.69471  205.264
(8,10) | 224.514 23.3703 205.028 | 215.862 13.0416 205.651 | 213.091 10.7428 205.425
(16,20) | 233.267 32.6374 205.454 | 222.908 19.6878 205.444 | 219.104 17.9315 205.003

@6) 216737 11.4492  204.599 | 210.447 38052  203.339 | 209.985 3.76558  204.244
(8,10) | 215.768 11.5566  203.994 | 211.471  6.18994 204.522 | 209.006 4.53537  202.61
(16,200 | 214.698 12.6357  204.018 | 210.848  5.16541 203.011 | 208.346 3.25108  203.009

Table 1: Averages, variances and minima collected in last generations.
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Now some of the effects shown in table 1 have to be interpreted. First of all it indi-
cates that an enlargement of the values for parameter 93, i.e. the number of loops
performed during conjugate gradient iterations, resulted in partly considerable im-
provement of averages X. The latter decrease in 29 out of 30 trials if 72 instead of
18 conjugate gradient steps are done; the decrease amounts to an average of 6.4%
compared to particular values got for 18 conjugate gradient steps. If there are 36
instead of 18 steps performed this decrease amounts to average 4.8 %; again it has
occurred in 29 out of 30 trials.

It is remarkable that changing the value of $; does not noticeably influence the best
values m ever achieved. So it is very likely that even those trials which spent least
time on conjugate gradient computations revealed very good approximations to the
absolute minimum intrinsic to the MM2 force field of the according molecule. This
means that 18 conjugate gradient steps per generation can be enough if only a rough
approximation to the absolute minimum is sought.

The same is valid for changing the values of y and A, i.e. for enlarging the population
sizes. As far as possible this leaves absolute minima »1 found during the iterations
untouched, too.

Averages of energy values however grow quite much if populations are enlarged;
here they have grown in 27 out of 30 test cases. On an average this growth totalled
18% when population sizes have been raised from (y¢;,A;) = (4,6) to values of
(u3,A3) = (16,20).

Compared to the results obtained by ordinary evolutionary or genetic algorithms
this conduct seems astonishing at first glance. Since these methods do not allow
stable subpopulations developing on distinct minima of the objective function it is
observed that the individuals of generations they produce increasingly concentrate
on one minimum. So the result of ordinary evolutionary algorithms is one best indi-
vidual, and all of the other individuals are crowded around this one. Our algorithm
however incorporates a classification step (cf. definition of selection operator s in
subsection 2.7); there is only one individual allowed on each peak of the energy func-
tion. All the other individuals which are equivalent to this best one are discarded.
They are substituted by other individuals that may perform worse since they are
generated by genetic operators. Equivalence of individuals is defined in terms of Be-
necke's method that detects full structure isomorphism between three-dimensional
molecular structures. So the individuals in all of the generations P(t) are kept apart;
each of them belongs to another equivalence class.

Assuming that the number of stereo isomers of a molecule in a certain way refers to
the number of minima whose objective function values are near the absolute mini-
mum we can explain the differences of population averages x in trials P{M;,1,3,.)
and P(Mq,1,3,.),for example (with i = 1,...,3). When discussing figure 10 it will
be obvious that all of the tests we made yielded only four clearly distinguishable
classes of three-dimensional conformations for the constitutional isomer M: of
CgHys. Their energy values were in about 10% around ; all of the other confor-
mations’ values were beyond 172. The former four minima represent stereo iso-
mers of Mjy; they have been found in each of the ten trials we made. All the other
conformations showed essentially worse energy values; but because of the classi-
fication these local minima are also included in populations when their sizes 9,
are greater than 8 > 4. This consideration explains the sequence of growing val-
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Figure 4: Development of average values taken over 10 population sequences of
individuals in P(M;,2,3,.).

ues (165.448,208.74,237.049) for growing parameters (u;, A;) for the molecule M;.
Please take a look at figure 4 showing the corresponding courses of values.

The second above-mentioned trial is somewhat different. The best values for aver-
ages x and deviations § were obtained when the biggest populations had been in use.
Those values were 208.346 and 3.25108 respectively. All of the averages that have
been obtained for &35 are very close to the particular absolute minimum. These ob-
servations reveal that this molecule has lots of low energy isomers which are found
the more easily and the more precisely the higher the values (u;, A;) are. And in-
deed MOLGEN 3.5 gives 8 stereo isomers for molecule Mq. Comparing pictures 4
and 5 shows that all of the sequences of average values for M,; behave much more
uniformly than those for M;.

generations 20
45547

o

energy
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Figure 5: Development of average values taken over 10 population sequences of
individuals in P(Mg, 2,3,.).

We have observed that the numbers listed in table 1 are too much dependent on
the particular problems as to allow any statement about the algorithm itself when
the population sizes are changed. That is why we put together table 2. It contains
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18 36 (. 72
§ X $ X §
(4,6) [ 142,677 434923 134721 T428669 | 126.773 187127
M, (810) | 126.389  1.11027 | 125.91 1.01631 | 125.84 0.817922
(16,20) | 125.996  0.900844 | 125.434  0.573709 ' 125.418 0.642924
@6y | 157.927 20.4697 | 150.229  5.16504 | 155.078  27.8875 |
Ma  (810) | 148518  3.3805 148.196  6.10003 | 147.071 1.90898
(16,200 | 147.436  2.12088 | 147.042  1.85606 : 146.94 1.77573
(4,6) | 221.732  28.0142 213.307 11.2948 | 214598  21.9358 |

My (8.10) | 212.326 2.85202 210.768 2.44315 209.906 2.62462

(16,20) | 210.858 2.5769 210.574 2.59856  § 209.763 2.48124

@6) | 133511 127065 128431 11.29 1132786 35.3137
My (810) | 124:906  2.03223 | 124.263  2.18545 | 123.486 1.32591
(16,20) | 123.637  0.918487 | 122.741  0.9683 122.279 0385971 |
@6) | 203.655 60.7655 199.429  58.4659 247.094  189.064 |
M;  (8,10) | 181.707 28.703) 181.52  27.9834 184.355  30.083 i
(16,20) | 174.683 18.2179 176.096 18,1107 178.674 22,4954 !
4,6) | 147.725 222858 | 144.861 23.9266 | 138.69 3.169§ﬁ
Mg (8.)0) | 138.833  2.33664 | 137.621 221671 | 137.25 2.12473
(16,20) | 137.1 2.45957 | 136.474 199771 | 136.38 1.88386
@.6) 786.247 54.9959  174.432 35.7513 | 165.488  27.5154 |
M (8,10) | 162,002  7.46624 i 160.183  2.43969 | 159.777 2.18594
(16,20) | 160.416  2.65655 | 159.968  2.41481 159.767 2.24274
@6) [ 15328  37.3461 146.505 24.6583 142.957 2.13568
My (8,10) | 141.623  0.891722 | 141.36 0.701238 | 141.363 0.745844
(16,20) | 141.423  0.744183 | 141.147  0.724842 | 141.151 0.722835
TUTTTU(48) | 228.779  29.1868 215774 130911 209.777 389471
Mg (810) | 211,792  3.48048 | 209.225  2.38418 | 208.599 2.26878
(16,20) | 209.457  2.06792 | 208.082  1.38289 | 207.206 1.3283
46) [ 216.737 11.4492 210,447 3.8052 209.985 3.76558 |
Mo (8,10) | 208921  3.03477 | 207.845  1.94724 | 206.069 1.75985
(16,20) | 207.161  1.85451 | 206.003  1.36616 | 204.786 1.06135

Table 2: Averages, variances and minima over the particular best individuals of last
generations.

average numbers

for every generation of the sequences of populations created. Statistical deviations
are also listed again. The table indicates in which way enlarging the gene-pool to 8
or 16 individuals per population affects the best four approximate solutions found.
So any impact of classification is ignored. The fact that possibly worse individuals
are forced to be kept in populations just because of the enlargement of populations
is left aside since x is affected only by the best four individuals.

It is obvious that enlarging populations has advantages even if only the best classes
are subject to observation. A growth of populations from 4 to 16 members results
in an average 6.4 % improvement of the particular value X; it was present in all of the
30 trials. Doubling population size to 8 individuals still has resulted in an average
5.6% improvement again in all of our trials. Deviations § also improve drastically,
often this improvement is as big as whole orders of magnitude.

3.4 Results of Classification

In this section insight is given into the results of classifications that were done for all
of the trials. Each individual in each generation of the evolution calculated by our al-
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gorithm represents an equivalence class of three-dimensional molecular structures.
They are indicated by the definition of Benecke's method for detecting structural
isomorphism. An important question about our evolutionary approach is whether it
is able to find a representative for certain classes in nearly every run. Only if this is
true our algorithm can be useful for practical applications since then it should give
reliable results after at most a few (possibly one) evolutions. Statistical evaluations
like the ones performed in this work should not be necessary then, either.

In order to get an answer to this question the final results P(M, 1, j, k)5 with
k =1,...,10 were successively classified in the following way. For brevity indices
i,j and I shall be kept fixed; a set 7 shall contain all of the 10y, final results of a
particular trial; like above ®(x) will be written instead of ®{g) having an individual
g = (x,). Like when defining the selection operator s in equations 4 and 5, the
definition

g1 = argmin{d(g) | g € P},
k1= (g eP| kigg) =0} (6)
is followed by
LS
e i=argmin{@(g) | ge Py |kl

=1

i
ki =19 e? | k(g9 =00\ |« ]

F=1

with having Uj,:l kj C P for j € N. We define j to hold the number of g; of this

oo

kind, i.e. UL Ky = P.

individuals
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4 4 4 3
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0 0 0 [}
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2 4 6 8 10

Figure 6: Class affiliations of individuals in P{M3, 2,3, .)31.

Figure 6 has ensued from classification of all the individuals of ten populations
P(M+,2,3,.)3 in this way. These populations are grouped as columns in the upper
figure; individuals are arranged in the columns ordered in accordance with their MM2
force field values, e.g. the bottom row of small boxes comprises the best individual
of every population. A number in each single box represents the class this particular
individual stands for according to the formulae 6 and 7.
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Obviously the best individuals all belong to one class, namely class 0 in figure 6;
70% of all second-best individuals are members of class 1. For individuals with
worse objective function values there is no exact statement that can be made, as
they belong to various classes. Observe that this perfectly fits the fact that M; has
two stereo isomers.

In figure 7 a link is established between different classes, which individuals (x, o)
are affiliated to, and their particular objective function values ¢ (x). Data underlying
figure 7 have been taken from the same trials as the data for figure 6. In the figure
these data points having ordinates greater than 0 belong to individuals whose energy
is enumerated as abscissa values. The figure contains the 50% best individuals of
the last generation of the trial. Every point mentioned above corresponds to one
point with ordinate value less or equal to 0; with the the ordinate values such points
designate the class the corresponding individual is member of. Because there are
ordinate values from -6 to 0 every individual shown in figure 7 belongs to one out
of 7 different classes.

There are exactly 12 individuals lying on the first branch of objective function values
between 206 and 208; they are members of class 0. The second branch between 208
and about 210 almost exclusively contains individuals of class 1. On the right hand
side of these two branches there are individuals that belong to various classes; their
objective function values begin ascending steeply. Observations like these agree with
M3 having two stereo isomers, too.

40} Individuals and =
class affiliations s
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O wee “e ma, e T &
o * ety
energy
207 208 209 210 211 212 213

Figure 7: Class affiliations and values of the objective function for the best 50% of
the populations of P(M3, 2,3, .)31.

On the following pages there are figures for molecules having one, three and four
stereo isomers, showing similar results like figure 7 shown above. However the
molecule M, having only one stereo isomer shows four sharply separate classes in a
quite narrow range of energy values; this is opposite to naive expectation. It means
that our evolutionary method is able to compute results being more subtle than
just a count of stereoisomers. It is exactly here where our approach of optimizing
energies without incorporation of any a-priori heuristic information proves valuable.
At the end of the presentation of our results a rather small table shall be discussed.
It contains the number Jj of classes which were ‘hit’ at least 9 times by individuals



- 156

i 1 2 | 3
jlr 2 331 2 371 2 3
M |1 1 333 3[4 24 6
M3l 1 3|2 3 4|4 5 6
My |1 2 22 4 4,5 5 5
My 0 0 0lO0O 0 2(0 3 4
e |22 2l 2 234 d
Mg .0 O O]t 3 3|7 7 8:
My |1 2 3|4 4 4:4 4 4
Mg |O O 0:3 5 5|6 8 7
My |O O 11 1 2|3 7 9
M0 0 0/0 0 0[O0 0 O

Table 3: Number of classes containing at least 9 individuals.

of 31st generations of every trial; so we have got the numbers listed in table 3 by
counting the members of the following sets:

Jr=1<i<i| Ikl 2 9.

In fact these j different classes occurred in at least 90% of the trials with the particu-
lar values of parameters. Note from that table that in case of M;, none of the classes
was big enough to be counted in any trial. A population size of 16 individuals seems
to be too small to find stable classes in enough, i.e. in at least 9, of the population
sequences.
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Figure 8: Class affiliations and values of the objective function for the best 50% of

the populations of P(M,2,3,.)3.
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Figure 9: Class affiliations and values of the objective function for the best 50% of

the populations of (Mg, 2, 3, .)3;.
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3.5 Running Times and Complexity of the Algorithm

All the tests that have been run have shown that the time required for all the compu-

tations clearly was dominated by the running time of the conjugate gradient method.
Computations made by evolutionary operators can be neglected, as they only per-
form simple tasks like computation of pseudo random numbers or sorting individ-
uals according to their objective function values. Therefore the complexity of our
hybrid evolutionary algorithm is summarized by O({A+)}3,C(m)), supposed C{m)
determines the complexity of the conjugate gradient method, which depends on the

individuals' length m [Spe93].
The tests we presented in the previous subsections have been run on a quite out-

dated Pentium-150 machine. The computation of trials with indices i = j = 1 has
taken about 40 seconds, for i = 2, j = 1 about 80 seconds as expected, for i = 1,

j = 2 about 85 seconds etc. These running times are very much shorter than those
Benecke had to spend on his detection routine for conformational isomers.

40 individuals and
class affiliations J&
30 & *
20 ;
0 .- )
i & .
ener
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Figure 10: Class affiliations and values of the objective function for the best 50% of

the populations of P(M;,2,3, )4



4 Conclusions

In this paper we have presented a hybrid algorithm combining three modern meth-
ods for optimization and classification of energy levels of molecules. The usage of
Back's formalism for the description of evolutionary algorithms made it possible
to unite those methods on a formal level, too. There have been many tests which
yielded very good energy levels and stable classifications simultaneously. Running
times were fast; they could be accelerated even more if our algorithm was made to
work in parallel. Such an attempt is possible particularly since the hybrid method
works on vectors of approximate solutions.

As far as the three-dimensional classification is concerned, our results indicate that
it does have a counterpart in an diversification on the scale of energy values, but to
observe this a quite precise analysis is necessary.
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