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Abstract

Genetic algorithms (GAs) have excelled in locating global minima. but in many
instances other low-lying minima are sought. A method is introduced here which has
the analogue of predation in natural evolution, and which is linked to a variational
theory on a metric space. The method is used to find the two most stable structures
of small Morse, Al, and Cy, clusters.

1 Introduction

The Genetic Algorithm (GA) is an optimization technique [1, 2] based on the principles
of natural evolution [3]. The technique involves familiar evolutionary operations snch as
crossover, mutation and natural selection. In principle, the GA can be applied to any
problem in which the quantity to be minimized (such as a potential energy, 17) can be
written as a function of a list of variables. Genetic nomenclature is eploved in deseribing
GAs, so the lists of variables are called chromosomes (each determining one individual),
and each variable within a list corresponds to a gene.

GAs have been very successful in determining global minima, but in a munber of physi-
cal applications, structures corresponding to higher local minima are very often of direct
importance. For example, carbon cluster ions formed in laser-ablation experiments [4]
are observed in several different geometries. distinguished by mobility, Also kinetically
favoured, higher energy isomers may be formed. and the distribution of and interconver-
sion between isomers is of great interest [5]. Finally, in aiming towards the optimization
of protein structures, it is worth noting that the biologically active forms are often not at
the global-minima [6, chapter §].

*To whom correspondence should be addressed
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Like the original idea of genetic algorithms [1], many of the subsequent developments have
been inspired by natural evolution. For example, self-optimization [2. chapter 4] is clearly
motivated by the way in which there are genes in nature which determine reprodnction, for
example by specifving mutation rates [7]. The relaxation of individuals into local minima
corresponds to the pre-reproductive lifetime of the genetically determined individual (see
for example [8]).

In this work the analogy is taken cone step further by considering the use of predators to
remove unwanted (although potentially minimal) individuals or traits from the population.
Sometimes unwanted members of a population can be removed by imposing a constraint to
the fitness function (figure 1a), however, in seeking minima other than the global minimum
(figure 1b), where the derivatives of the original (unmodified) smface are required to
vanish. a modification of the fitness function is not possible. An alternative solution is
presented below.

Figure 1: Two different kinds of constraint. In (a) the constraint can be incorporated by
modifying the fitness function f, but in (b), where a higher minimum in sought, there is
no practical or general modification of the fitness function.

(b)

2 Theory I: The standard GA

Before considering the introduction of predators, the approach and notation for the GA
will be summarized. Consider first the set of all possible individuals T, of which the
population at generation 7 is a subset

P = {Pf")li =1...,mupt C L

Lot P be the set of all populations (the power set of ), then PU) € P. Consider also
an operator v for which #P™ = P+D Each individual " e P comprises an Ngenes
tuple of objects from some set D; as this work is applied to cluster geometries, D will be

identified with B?, and nyene With nggem

The operator v. which yields a new generation, is completely determined hy:

I. The surface, V: T 2 R

2. The fitness function, f = fimel" 2 T — (0, 1]
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3. A selection operator, o: P — & where 8 is the power set of {(p.p/)|p,p € L,p #p'}
4. The mating operator, m: § - P

5. The mutation operator, p: P — P

6. The relaxation operator, p: P = P

7. The sorting operator, s: P — P

V is typically a potential energy surface in a chemical application, and will in this work
be identified with the Morse pair-potential [9]) or the Murrell-Mottram potential [10]. The
fitness function f is defined here in terms of

frme (1) = exp (ﬁ%vmi" Sl )

Vinin
Ymax — Pmin

where v = V(p) for some p € P,

Umin = min V(p) and
pep)

Umax = max V(p').
pepin

The parameter 3 determines the shape of the fitness function.
The selection operator randomly selects 7pairs = Yipop pairs from the population with a
probability determined by their fitness. Thus
P = {(Pnpj) pi = randP™, p; = randP™, i # 4,
F(@i) < rand(0,1], f(p;) < rand(0, 1], npuies = Vi }-

The parameter v determines the proportion of the old population that will be allowed to
survive: at least [1p0p(1—7)] individuals from P™ survive to form part of P»+1. In all
calculations here v = 4/5.

The mating operator m is based on single-point erossover at a random point (sce figure 2),
and operates on oP™ 1o give

maP™ = (p™ x pMi(p™, pi) € oP™)

where p x p' denotes the crossover of the two individuals. Specifically, writing p =
(P1sB2> - - - s Prigens) a0 & similar expression for p', the crossover is given by

PP = (PL P Phgy - Pag)
where k = rand|1, nyen. — 1.
The mutation operator g may randomly alter one individual in the population according
to a probability parameter pue. S0

plu) if rand (0, 1] = 10,
P = (n) . - (n) 4
{p™ e P £ YU {ap™} otherwise
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Figure 2: The crossover of two individuals p; and py to a form a new individnal p' = pyxpa.

"

where b = vand[L v1,0,). The effect of 72 on an individual is to replace [, /3] (randomly
chosen) elements of the nyg,e-tuple with random values from D.

The relaxation operator p performs a quasi-Newton minimization of the individuals on
the surface 17, and the individuals are then sorted (s) in order of deercasing fitness. The
overall operator ¢ for the standard GA is given by

V=s-p-p-m-ao.

3 Theory II: The predatory GA

The standard GA, defined above in terms of an operator v, is modificd to incorporate
a predation operator 7@ P — P to yield the predatory GA (PGA), v, = = 1. The
predator removes individuals fron a population based on proximity to a fixed individual.
This necessitates some metric on Z, d: 7% — [0, 00), forming the metric space (Z,d).
Then the predation operator @ removes individuals from the population il they are closer
than some threshold €, to the fixed individual pg. The action of 7 on P is then

7P = {p € PPd(p, po) > e}

The strategy is to find pg. the individual at the global minimum, using the standard GA,
then to nse the PGA to compute the second lowest minimum.

The PGA is related to a variational theory for higher eigenvalues. The lth eigenvalue
of an operator cau be computed by impesing orthogonality constraints hetween the ith
cigenfunction and the / — 1 fower eigenfunctions [11, 12]; in this work a higher energy
minimm is computed by ensuring a large distance from pg. As in the eigenvalne problem,
one need not stop at the second lowest minimum, the {th lowest oue being given by

P = {pe Pd(p.po) = €pr-.s dip.pi-i) = e}

with p; arising from the PGA requiring only ;. In this way finding snccessive minima
of V7 by building 7 (ie the identity). m (ie the predator operator applicd in this work),
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7y, ete, amounts to a variation theorem on a metric space. The orthogonality constraint,
imposed in a variational theorem on Hilbert space by a vanishing inner product, is replaced
by a distance constraint on a metric space. Indeed, if the minimization is taken to require
that the derivatives of V' with respect to all variable directions vanish, then the threshold
¢, is arbitrary, except that ¢, > 0.

In the present calculations the GA and PGA are applied to cluster geometry optimization,
where each individual consists of i, genes, cach being a 3-vector specifying the location
of an atom: D = R*. The GA is based on the work of Deaven ef ul. [8], wherein the
mating (crossover) procedure is accomplished by ‘slicing’ a pair of clusters and joining
together the complementary fragments. Here, the clusters are subjected to a random re-
orientation, and the slicing is performed with respect to atom positions along the z-axis.
To prevent the generation of clusters having pairs of atoms very close together, a partial
local minimization is carried out on each child cluster (by the relaxation operator, p). The
method, including a number of modifications that we have introduced, will be described
more fully in a forthcoming publication [13].

Two forms for the surface, or potential encrgy function, V' are considered in this work:
the two-body Morse potential 9], and the (2 + 3)-body Murrell-Mottram potential [10].
The Morse potential is defined with D, = ~1 and 7. = 1 to give

1";3 = ffﬁ(l—ru)[r,,n(l-r‘j) B 2]

and the scaling parameter « is set to 6. The coeflicients of the Murrell-Mottram potential
EIU} are taken from Eggen et al. [14] for carbon clusters, and from Lloyd and Johnston
15, table 1] for the aluminium clusters. The exact form of the MM potential and values
of the parameters for a number of elements can be found in a recent review [16).

The metric function d then needs to be constructed for the special case of cluster geome-
tries, and this presents a problem: the clusters produced in the (P)GA have a random
orientation, and reorientation to minimize the deviation of atomic positions would be an
extremely time consuming step. However, consider the interparticle distance matrix D for
asingle cluster, having elements Di; = [(x; — 2;)% + (i — 4;)° + (2 — 2;)%]"/?. Note that D
is invariant under all rotations of the cluster. But a problem still remains: the atows are
arbitrarily labelled. In other words, direct comparison of D-matrices for clusters is only
realistic to within an unknown permutation, P. Thus one should consider PTDP where
P is the matrix representing P. But permutation matrices are real and unitary and so
PTDP = P~'DP, and it is immediately clear that P7DP is similar to D. Conscquently,
the eigenvalues of D are invariant not only under rotations but also under permmtations
of the labelling scheme.

It is then an easy step to construct an appropriate metric d. Writing D(p) for the inter-
particle distance matrix for the individual p, and denoting by spec D the (ordered) list of
eigenvalues of D, the metric is defined

Tatoms

dpipj) =N [ > (Ispec D(w)]k - [SP“’“D(::])]A.)“] 12

k=1
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where SV s some suitable normalization constant. The efficacy ol this metrie will be
demonstrated helow in numerous examples.

4 Results

The vesults are presented in terms of potential energy and veerage binding energy. that is
the binding energy per atom, defined as Ey, = —V(p)/ rtaom-

he GA and PGA Las been applied to Morse clusters with 1,4, = 8.9, 10 and with o = 6.
The two most stable isomers (those with the highest £, values) are listed m table 1 and
their structnres are shown in figure 3. The structures and energies of the global minima
are identical with those reported by Doye et al in an earlier study [17], but note the error
i table ot [17], in which the energy for the 9B cluster (pg = 6) is given incorrectly. (The
correct value is shown in table 1), For nyem = 9 both isomers are bicapped pentagonal
bipyramids, with a marked preference for the 1,2-isomer in which the two capping atoms
are bonded to cach other.

The two most stable isomers for the aluminium clusters with n,,,,, = 5 10 are listed
in table 2 and their structures are shown in figure 4. The structures and energies of
the global minima are identical to those obtained previously, using a combination of
random scarching and Monte Carlo Simulated Annealing. by Llovd and Johnston [15]. It
is interesting to note that the PGA has enabled the identification of the pseudo-spherical
bicapped square antiprism as the lowest metastable isomer of Al,. This geometry is the
ground state structure of the [BygH o>~ anion and is also found to be the global minimum
for ¢lusters bound with long-ranged (ie small-a) Morse potentials [17].

The two most stable isomers for several carbon clusters with 5 to 20 atoms are listed in
table 3 and their structures are shown in figure 5. The lowest energy 1somers are, in all
cases, at least as stable as those found previously by Eggen ef al. [14] and hy another
GA study (using the same potential) [18]. In the case of Cyg our global minimum has a
higher binding energy than that reported in [18]. The PGA also shows that, for C; and
Cy Cyy, fragments of the pentagonal dodecahedron (the smallest fullerenc and the global
minimum for Cyy) correspond either to the most stable or second most stable isomers —
with the exception of Cig. It has been confirmed that the dodecahedral fragment isomer of
Cyg lies at a higher energy than those reported in table 3 and figure 5. Further studies are
ewrrently underway to explore the potential energy surface of carbon clusters (especially
fullerenes) using the Murrell-Mottram potential and the PGA [13].

5 Conclusions

A GA-based method has been introduced for computing minima other than the global
minimum. and has been shown to be a valuable method for computing low-lving structural
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Table 1: Potential energies, binding energies and geometries of the lowest and second
lowest M, Morse clusters for n = 8,9 and 10 and with & = 6. Note that the enevgy values
are dimensionless as D, = —1. The notation 1.2 and 1,1" denotes capping on adjacent
sites above the plane, and opposite sites above and below the plane vespectively. The
diagrams in figure 3 clarify the meaning.

n Energy Ey Geometry

8 —10.32742 24159 C,  capped pentagonal bipyramid
—19.16186 2.3952 Dy dodecahedron

9 —=2341719 26019 Cz 1.2-bicapped pentagonal bipyvramid
—22.48804 24986 C,, 1,1-bicapped pentagonal hipyramid

10 —-27.47328 2.7473 C;, tricapped pentagonal bipvramid
—26.58405 2.6584 Dy hexadecahedron

Figure 3: Geometries of the lowest energy (left) and second lowest energy (vight) clusters
using the Morse potential with « = 6.

n=2§
n=9
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Table 2: Potential energies. binding energies

clusters for n = 5-10.

and geometries of the two most stable Al

" i Energy/eN Stability/eV Geometry
5 —6.62332 1.3247 Dy, trigonal bipvramid
6 —9.02323 1.5038 Oy, octahedron
1.4509 Cye  bicapped tetrahedron
7T —11.23139 1.6044 Dy, pentagonal bipyramid
—~11.09304 1.5847 Cyy  capped octahedron
8§ —13.53835 1.6922 D3y dodecahedron
~13.31247 1.6640 C, capped pentagonal bipyramid
9 —15.87643 1.7640 Dy, tricapped trigonal prism
~15.82299 1.7581 Cy,  bicapped pentagonal bipyramid
10 —18.28230 1.8282 Cy,  tricapped pentagonal hipyramnid
—18.19711 1.8197 Dig  bicapped square antiprism

Table 3: Potential energies, binding cnergies and geometries of the two most stable isomers
of selected C,, clusters.

Stability/eV  Geometry

n  Energy/eV
5 ~27.80570
—23.42532

6 —33.72028
—33.71246

7 —39.78155
—39.41532

8 —47.78822
—47.75892

9  —53.96306
~53.93408

10 -62.12397
—62.00199

12 -76.35192
—76.20957

14 —950.89410
—90.37457

15 —99.03808
—098.87779

16 —105.9045
—105.7367

18 —121.5245
—121.4569

200 —140.5065
—136.9234

5.5611
4.6850
5.6200
5.6187
5.6830
5.6307
5.9735
5.9698
5.9958
5.9926
6.2123
6.2001
6.3626
6.3507
6.4924
6.4553
6.6025
6.5918
6.6190
6.6085
6.7513
6.7476
7.0253
6.8461

pentagon
distorted kite
chair hexagon
boat hexagon
bicyclo[2.2.1]
chair heptagon
bicyclo[3.3.0]
bieyclo[2.2.2]
bieyclof3.2.2]
bieyclo[3.3.1]
T4 adamantane
dodecahedral fragment,

Cay

dodecahedral fragmeut
CZV

dodecahedral fragment,
Dy,

dodecahedral fragment
Cs

Cy

Ca

dodecahedral fragment
dodecahedron

Cy
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Figure 4: Geometries of the lowest energy (top) and second lowest energy (bottom) Al,
clusters, using the potential described in the text. Note that there is only one minimum
for Als.

n=_8 n=9 n=10




Figure 5: Geometries of selected €, clusters. The lowest energy clusters are shown on
the left, and the second lowest on the right.
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isomers of clusters. In addition to this application, the predator can considerably enhance
the convergence of a GA if a structure is suspected not to be the global minimum,
despite being the result of a GA optimization. a predator to remove it will often result
in convergence to the true global minimum. In other words, the predator can be used to
prevent. premature convergence into deep. but non-global minima.

An alternative application would be to the problem of shape selectivity: it is possible to
use a predator to remove individuals from the population if they show (or fail to show)
certain topological pre-requisites such as sphericity, ring size and adjacent /non-adjacent
pentagons. Future work will include the use of such shape-selective predators to compute
the structure of isomers with specific features.
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