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Abstract

We outline a new route to construction of structural
invariants for molecules viewed as molecular graphs or as 3-
dimensional objects. To a graph G, or a structure S, we
associate a matrix M(G) or M(S) respectively, the elements of
which are qualified molecular subgraphs or substructures. In
the case of molecular graphs the new invariants are derived by
selecting a matrix invariant of M and a graph invariant for
subgraph elements of M. In the case of molecular structure the
new invariants are derived by selecting a matrix invariant of M
and a structure invariant for the substructures that represent
elements of M. We have illustrated the approach on smaller
graphs.  In this article we consider matrices based on the
following definition: The matrix elements are given by the
induced subgraph Gij of G that contains all the shortest paths
between the vertices i, j.
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"But it is often a very difficult and
complicated question to decide in
what part of the theory the
improvement has to be made."

Max Planck
1 Introduction

Structure-property and structure-activity relationship remain one of
the central topics of theoretical chemistry. The first step in such studies is to
select suitable molecular descriptors. If the property of interest is bond
additive, or if the property is a function of molecular connectivity alone, ie.,
can be viewed as a result of "through-bond" interaction between the atoms
involved, graphs offer an adequate molecular model. If however, the
dominant description depends on "through-space" interactions modeling
will require descriptors that are sensitive on molecular geometry.

In the past two decades considerable progress was made in designs of
mathematical and chemical descriptors for molecular graphs [1].  These
descriptors are referred to as topological indices. Apparently over hundred
topological descriptors have been proposed to encode different features of
molecular graphs. In contrast, descriptors for 3-dimensional structure are
few, although this topic has received some attention recently. There is a
continuing need for novel molecular descriptors since present descriptors fail
to satisfactorily describe some molecular properties [2]. When several
descriptors are used simultaneously in multiple regression analysis (MRA)
one can often obtain satisfactory results. It has been found in most of the
reported studies that topological indices outperform the traditional QSAR
descriptors, like log P, etc. [3]. On the other hand, the long standing concern
about the instability of the regression equation in MRA has finally been
resolved [4]. The cause of the instability is interdependence of molecular
descriptors, and the same applies as well to the traditional QSAR descriptors.
Often topological indices are highly interrelated so that inclusion of an
additional descriptor, even if making a small contribution to decrease of the
standard error of prediction, can dramatically change the coefficients of the
regression equation for descriptors already used. With use of orthogonalized
descriptors this serious limitation of MRA has been lifted. This makes MRA
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again as one of the first tools of choice in structure-property and structure-
activity studies.

We are interested here in novel methodology that generates structural
invariants rather than design of novel descriptors. Of particular interest to
us are descriptors that (1) can be generalized to lead to a novel basis for
describing molecular graphs (structures); and that (2) can be generalized to 3-
dimensional structures. Both these desirable features have been for the most
part overlooked in the past. Historically, the early topological indices, the
Hosoya index Z [5], the connectivity index X (6], the Balaban's index J (7],
were used as a single descriptor in simple regression analysis. Later they
have been combined with other indices in MRA, often in gd hoc manner.
However, the connectivity index X could be generalized to set of descriptors
that have similar structural origin[8]. The so called higher order connectivity
indices MX facilitates comparisons when several molecular properties are
characterized by the same descriptors [9]. Only recently generalizations of
other leading topological indices has received attention [10]. These efforts
resulted in generalized Hosoya index [11] and generalized Wiener numbers
[12], the latter based on Wiener number [13], which deservingly received
considerable attention in the literature [14].

2 Matrices associated with graphs

For a long time the adjacency matrix was the only matrix associated
with graphs [15]. Then emerged Distance matrix in which the element dj;
gives the shortest distance between vertices i and j [16]. Laplacean matrix,
which has been known in linear algebra, received recently some attention
[17].  Conceptually similar to Distance matrix of graphs is the Euclidean
matrix for structures in 3-D space. In the former interatomic separations are
measured "through-bond,” by counting the number of bonds separating
atoms, while in the latter interatomic separations are measured "through-
space,” using Euclidean metric.

Construction of novel matrices for graphs (and 3-D structures) offers a
new route to design of molecular descriptors [18]. Several novel matrices
were introduced recently: the Extended distance matrix, (ED) [19], the
Electrotopological matrix (ET) [20], the Wiener matrix (W) [21], the
Resistance Distance matrix (RD) [22], the Hosoya matrix (H) [23] and
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Generalized Hosoya matrix (GH) [11], the Restricted Random Walk matrix
(RR) [24], the Distance/Distance matrix (DD) [25], and Detour matrix (DT) [26].
In this article we will introduce another class of matrices for graphs.
The approach is sufficiently general that it also extends to matrices
representing 3-D chemical structures. In contrast to all the matrices already
mentioned, the entries of which are numbers, the elements of the new class
of matrices are not numbers but matrices themselves. For the particular case
considered here the new matrix elements are submatrices of the matrix
considered to characterize the structure. We refer to this class of matrices as
Generalized Graph matrices, or briefly GG matrices. The GG matrices are a
source of a multitude of novel structural invariants. There are several
choices that one has to made before extracting such novel molecular
descriptor:
(1}  Select the algorithm for construction of elements gg;jj of GG matrix
(that are matrices themselves);
(2) Select the matrix to characterize the graph, such as A, D, ED, ET, W,
RD, H, GH, RR, DD, DT, and others;
(3)  Select an invariant of ggij; (this converts the elements of GG matrix to
numbers);
(4)  Select an invariant of GG matrix.
Because of the last two steps we have referred to the whole class of the so
derived invariants as double invariants. The new invariants are derived by
combining the two choices for selection of invariants. Each of the four steps
is totally independent of others, which allow combinatorial explosion of
novel invariants.

3 GG matrix based on minimal distances

We will consider a particular algorithm for construction of GG matrix
for graphs.  Motivation for this particular choice originates with some
unsatisfactory features of graph Distance matrix. As is well-known in acyclic
graphs (trees) there is a unique path between any pair of vertices. However,
in cyclic graphs there may be several shortest paths between a pair of vertices
Although the elements of D matrix are well defined (by the length of the
shortest paths), they do not reflect the distinction between the presence of a
single or several multiple shortest paths.
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To obtain a matrix M to be associated with a graph G one should define
to each pair of vertices i, j a numerical value mj;. In the case of adjacency
matrix mjj =1 if the vertices i, j are adjacent and zero otherwise. In the
distance matrix, as already mentioned, m;j is determined by the shortest
length between the vertices. Other graph matrices are obtained by selecting
other functions that can be defined for pair of vertices of a graph. For
example, mjj element of the RR matrix is defined as the probability that a
random walk initiated at vertex i will end at vertex j [24]. The
corresponding RR matrix is non symmetrical since the probabilities of
random walk from i to j and from j to i are in general different.

Here we will consider distances between vertices of cyclic graphs.
Instead of selecting the length, or frequency of shortest paths, that figure so
dominantly in D and RR matrices respectively, we will select the subgraph
that contains the shortest paths between vertices i and j.

The GG matrix is necessarily symmetric. On the main diagonal it has
paths of length zero, i.e., the diagonal entries correspond to individual
vertices. Without a loss of generality we can assume diagonal elements to be
zero, unless otherwise specified.  Below is GG matrix for graph of
bicyclof2.2.0}hexane:
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As we see from the example shown the matrix elements between adjacent
vertices are paths of length one. Othe entries include paths of length two, 4-
cycle and even the whole graph G.

As a consequence of the definition the elements of GG matrix can only
be bipartite subgraphs of G, because in odd cycles there is always a unique
shortest path between a pair of vertices, hence the induced subgraph is a path.
Therefore the GG elements for acyclic graphs and graphs having only odd
cycles are paths px (paths of length k, k=1 to kmax). Another interesting
feature of the GG matrix considered is the presence of graph G as one of its
elements. This is clearly not always the case and never happens for acyclic
graphs except for straight (unbranched) chains. Below we show GG matrix
for two simple graphs, one acyclic and the other having only odd cycles

S D

0 pp P, P3 Py P2 C P P Pz Py Py
0 p P P3Py O P P, P3 Ps

0 Py P> P2 0 P B P

(U T 0 p P

0 Py 0 Py

(=}
<

In Table 1 and Table 2 at the end of this section we show GG matrices for
several cyclic graphs. Because these graphs contain even cycles they have as
induced subgraphs cyclic components. Since GG matrices are symmetric
only elements above the main diagonal are shown. The last two graphs of
Table 2 include graph G also as one of its matrix element. Even, at this stage,
before we choose matrix form for G, choose subgraph invariant, and choose
matrix invariant, we can classify graphs. For example, classification can be
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based on whether their elements are only paths px or not. An alternative
classification can be based on whether they contain G itself as an element or
not.

Table 1 GG matrix for several cyclic graphs
0 p P, P3 P3 Py 0 P P2 PL P2 Py
0 P P P2 P U ST 2T T Ot
0 p P P 0 P P P
0 P 0 pn P
0 p LI
0 0
0 P P % P2 P 0 p P % P Py
O P P P P 0 P Py P
0 P1 P2 P 0 P, P LA
P K K LU S
0 p 0 p
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4 Selection of Invariants

Invariants of GG matrix, once matrix form for G is selected, will
depend on the selection of invariants of the subgraphs Gii as well as on the
choice of matrix invariant of GG. For example, we may choose to
characterize subgraphs by one of many topological indices and then continue
with a choice of matrix invariant, e.g., determinant of GG, the leading
eigenvalue of GG, etc. In general all invariants will be described as a double
function of the type FiFj(GG), ie., Fi{Fj(GG)}. This presumes that the
operations Fj and Fj are compatible, that is that the domain of F; is in the
range of Fj (and vice versu when the order of operators is exchanged). As
will be illustrated shortly the operations Fi and Fj do not commute, ie.,
generally Fi{F(GG)} # FiF(GG)}.

In some situations after construction of GG matrix we can continue to
generate expression for topological index without expressing numerically GG
matrix elements. For example, if we are interested in matrix determinant
we can manipulate matrix elements expressed as subgraphs without
specifying subgraph invariant. Consider a simple graph C4, for which the
determinant of GG matrix is:

0 P 4 P g =% w e
I e & m
@ P 0 P m e L B
B P 0 o g:g A

By first subtracting the second column from the last column and then adding
the second row to the last row we obtain a determinant which can be
expanding along the elements of the last column giving

0 Py ¢y O o—C g:g
gl 0 P or i:i gj 7 0
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By expanding the 3x3 determinant we can finally write:

o= (E3)($3 -2=)(13 +2°—)

The invariant det GG is a simple function of the invariants of €4 and py. Each
time we select an invariant of ¢4 and p1 we obtain a "double" invariant of GG.
For instance we may select determinant of the subgraphs as the second
invariant. Since det { €4 ) = 0, and this is one of the factors of det GG, we
obtain immediately that det det GG = 0. Alternatively one could first find the
determinants of all the subgraphs in GG and introduce these as matrix
elements of GG:

0 il 0 -1

-1 0 0 =1

and find the determinant of that matrix. The result, of course, is the same.
The above determinant has two columns (rows) the same and must be zero
necessarily.

5 Selection of Double Invariants

The det (det GG) is a simple illustration of an invariant obtained from
the novel GG matrix, the elements of which are various subgraphs of the
original structure. Using the expression: det GG = (¢4 2 (cq- 2p1) (cq +2p1 ),
we can construct additional descriptors by considering other graph invariants
or topological indices for the components p; and ¢4. We illustrate several
such choices in Table 3. We can represent descriptors listed in Table 3 as
K(det GG), X(det GG), y(det GG), 3y(det GG), Z(det GG), W(det GG), etc.
Often we can also consider descriptors obtained by reversing the order of
selection of the invariants, that is, we may consider descriptors det (K(GG)),
det (X(GG)), det (2((GG)), det (*¢(GG)), det (Z(GG)), det (W(GG)), etc. In
general det (F(GG)) # F(det{(GG)).
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Table 3 Selection of second invariants when the first invariant is det GG
1st invariant Symbol Contributions 2nd invariant
Kekule structures K 2402 0
Connectivity % 4-0-4 0
Connectivity 2y 2-42-\2 4
Connectivity 3 1l 1
Hosoya Index Z 43-3-11 1617
Hosoya Index 2z 25:5-5 625
Wiener index w 1226 192
Path ID Pip 144 -10- 14 2016
Leading eigenvalue A 4-0-4 0

In Table 4 we illustrate several matrices derived from the GG matrix
for the simple graph of bicyclo[2.2.0]hexane, each based on a different choice
of invariant for the components p; and c¢g. The cases include the
determinant, the leading eigenvalue, Wiener index, Hosoya index, the
connectivity index and path ID number, i.e., the total number of paths in a
graph. Other possibilities may be considered. From the derived matrices a
multitude of matrix invariants could then be considered in order to obtain
finally various "double” invariants for the bicyclic graph considered.
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Wiener matrix

The connectivity index
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A selection of the first invariants for bicyclo[2.2.0]hexane

2

1

0

-1 0
0 -1
-1 0
0 -1
0
25 4
4 25
1 8
0 1
0
2.966 1.414
1414 2.966
1 2
0 1
0
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The leading eigenvalue

0 1 2
0 1
0

Hosoya matrix

0 2 7
0 2
0

1+V2
V2
1

0

20

N2
1+V2
2
1
0

20

Path identification number

0 1 12
0 1
0

12

12
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6 Illustrations

In order to illustrate the diversity of topological indices that can be
obtained by the novel procedure we have listed in Table 5 a selection of
double invariants for graphs having six vertices (illustrated in Fig. 1).

Table 5 Double invariants for graphs of Fig. 1 based on the combination
of the determinant and the leading eigenvalue as primary and
secondary invariant

Graph Invariant Invariant Invariant Invariant

det det eig det det eig eig eig
1 0 3.0000 0 7.5687
2 -1 21584 -9.4020 59798
3 15 1.7321 -14.0470 6.3962
4 -1 1.9032 -16.4582 7.1678
5 5 4.5049 -11.1472 6.3233
6 -1 2.1701 1.8938 7.2169
7 0 27321 113.1831 7.9194
8 0 4.4495 0 6.5576
9 0 2.2361 1.2024 7.4291
10 0 2.0000 0 7.0000
11 0 2.0000 -106.0387 6.8284

12 0 3.0000 540 7.8990
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In order to discern regularities that may emerge for select double
invariants one should examine set of structurally closely related graphs,
rather than graph of the same size but of diverse structural features. Our
prime interest here was to outline the novel approach for construction of
mathematical descriptors for chemical structure. However, even though the
set of graphs of Fig. 1 is too small and too diverse, some general observations
are inescapable. Clearly det det, det eig and eig det invariants are not size-
dependent, while it appears that eig eig appears is size dependent. This
conclusion is based on the variation of the magnitudes for these invariants
for structures of the same size. Apparently the sign of the invariant det eig
discriminates between bipartite and non bipartite graphs, leaving the cases
det eig = 0 ambiguous, i.e., graphs having det eig 0 could be either bipartite or
non bipartite.

7 Concluding Remarks

Although we confined our exposition to molecular graphs it should be
emphasized that the outlined approach is applicable to chemical structures
viewed as 3-dimensional objects. Instead of generalized graph matrix GG we
start with Extended Euclidean matrix EE in which the entries of the matrix are
qualified substructures. Again we have four steps
(1) Select the algorithm for construction of elements ee;jj of EE matrix

(that are matrices themselves);

(2) Select the matrix to represent the graph, e.g., such as matrix based

on Euclidean distance, or the distance/distance matrix
(3)  Select an invariant of eejj; (this converts elements of EE matrix to

numbers);

(4)  Select an invariant of EE matrix.

The EE matrix is analogous to GG matrix. Once a selection of the first
structural invariant is made and a numerical form for the matrix is obtained
there is no difference between EE and GG in considering choice of the second
(matrix) invariants.

There is still one additional generalization that may be of interest
when considering application of here outlined procedure for construction of
new descriptors. After the selection of the algorithm for construction of the
elements of GG or EE matrix, one can consider different functions defined on
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matrix matrix elements. For example, the powers of the (i, j) elements

generate a sequence of novel descriptors, referred to as "molecular profiles’
[27].

In a similar manner GG and EE matrices can generate "GG molecular

profiles" and "EE molecular profiles" respectively.
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