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From different decompositions of the Wiener number, the
Altenburg polynomial gives the best results. The inverse matrix
technique gives exact correlations inside training sets and ac-
ceptable predictions for test sets, provided that all subgraphs
are used as topological descriptors together with distances.
The standard deviation is at heptanes greater than at hexanes.
Results show that physical interpretations of the original Wie-
ner correlation can be fallacious.

1. Introduction

Fifty years ago when Wiener [1] published his correlation
of parafin boiling points with a structural feature known as
distances, an era of topological indices began. They gained
a strong position between techniques used for correlating and
predicting physicochemical properties of molecules. Because of
its great economical importance for the pharmaceutical indust-
ry, the topic appeared in several thousands of publications.

Before computers, because linear correlations with one va-
riable are convincing and without technical difficulties, the
aim was to characterize a molecule by only one number. But no
universal index was found. Now it is customary to combine more
indices for obtaining good fits [2,3]. Another extreme appea-
red: too many topeleogical indices were introduced and they in-
tercorrelate [4-8]. Therefore, orthogonal sets of topological
indices are constructed [9-11]).
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Wiener index correlates successfully with boiling points
of alkanes and their other properties. Distances of different
length seem to have specific effect on physical properties
[1,4,5,12-14]. Distances between atoms correspond to moments of
electronic orbitals [14].

Trinajstic [15-21] with his coworkers calculated the geo-
metric analogue of the Wiener index, that is polynomial coeffi-
cients and eigenvalues of distance matrices of alkanes, topolo-
gical and geometrical ones. Some authors proposed the use of
the eigenvalues [2,22-24] of graph matrices and/or coefficients
of their polynomials [25-26] as topological indices.

Topological indices are objective invariants characteri-
zing molecules and that should be their advantage against subs-
tituent constants, derived from empirical correlations. Their
disadvantage is that they are usually not connected with pro-
perties by some physical theories which could be tested objec-
tively and therefore a sole criterion for their acceptance are
correlation coefficients between proposed indices and some pro-
perties of molecules.

Unique numbers characterizing molecules should overcome
problems of multiple correlations. Technical ones are now obso-
lete due to computers, but there remained problems connected
with the precision of such correlations.

2. Inverse matrix technique

A technique, how to surpass difficulties with the evalua-
tion of the significance of multiple correlations coefficients,
is the wuse of the training and test sets. The efficiency of
a correlation is simply verified as the prediction capability
of independent cases. It is mostly used in the case of neural
networks but it can be applied to the inverse matrix technique,
too. Since the inverting of singular matrices is a routine pro-
cedure, it is now usable guite easily.

If M is a matrix of some indicators (their row sums can gi-
ve an index), x is a vector of weights of the indicators, and
b is a vector of correlated properties

Mx = b
then
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x =M 1lb
provided that M is regular. In practice it must be well deter-
mined to give a reasonable inverse. It is essentially possible
to obtain exact correlations with physical properties within
the training set even with matrices of random numbers. But pre-
dictions will be erratic. If we weight row sums of random num-
bers, using an index known from linear correlations to be ef-
fective, e. g. by the Wiener index, then we get exact correla-
tions within the training set and predicted values will have
great random errors. Nevertheless they should be acceptable.
When a decompesition of an index into the indicators has a phy-
sical meaning then a linear combination of indicator weights
should give a good prediction for the test set.

As an example can be given the case of boiling points of
hydrogen and C,-C; alkanes, when all plain subgraphs of the mo-

lecular graphs are used as the indicators

Indicator H, € C-C c-C-C Cycle
Hydrogen il 0 o] o] 0
Methane 2 1 0 (o} 0
Ethane 3 2 1 0 0
Propane 4 3 2 t 0
Cyklopropane 3 3 3 3 1

vector boc

Inverse matrix 5 0 0 (o] 0 =259.2
-2 1 0 0 0 357.4

1 =2 1 0 0 =25.2

0 1 =2 1 0 -27.1

0 0 3 =3 1 -104.7

The last term represents the difference between the pre-
diction 137.7% of the boiling point of cyklopropane and its
experimental value -33%. The prediction 1is based on the fact,
that cyklopropane contains 6 hydrogens, 3 carbons, 3 C-C bonds
and 3 different paths of lengt 2. The effect of cyclization is
too great, to give a usefull prediction.



202
3. Indicator vectors

Between n atoms of a molecule there exist n(n -1)/2 dis-

tances. The topological distance d; is the number of bonds

between atoms i and j. Geometric di:tances between centers of
atoms depend on configurations of the molecule. They must be
calculated for some typical configurations of molecules.

The Wiener index W can be formulated as Altenburg polyno-
mial [27]

W = I nydy (1)

where ny is the number of paths of the length dy in a molecule.
Altenburg polynomial gives the gyration tensor of an alkane,
which roughly corresponds to its volume and is the sum of squa-
red distances. Recently Gutman and Kortvélyesi [28) claimed
that the Wiener index is a measure of the surface of molecules.
Values np were used by Kvasnic¢ka [29] as some of descriptors in
a neural network.

Another objective decomposition of the Wiener index is its
representation by eigenvalues of matrices which trace is twice
the Wiener index. The sum of eigenvalues is identical with the
sum of the diagonal elements. The distance matrix D of a mole-
cule is defined ([30] as a square matrix, the elements dij of
which are distances between the atoms. The diagonal elements
are zero. It 1is possible to formulate matrices (Q - D) having
on the diagonal sums of distances of the given vertex to other
vertices. At acyclic graphs two other kinds of matrices have
traces related with Wiener index, namely the quadratic form of
path and walk matrices wiw [31] and Eichinger matrices
E ({32-35]. Relations of different graph matrices are summarized
in TABLE I.

TABLE I Graph matrices

i the diagonal unit matrix

JT the transposed unit vector column

S the incidence matrix of an oriented graph
Sij = -1 the arc i is going off the vertex j
sjy =1 the arc i is going to the vertex j

sTs the Laplace-Kirchhoff matrix sTs =v-a

v the diagonal matrix of vertex degrees v,

]
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A the adjacency matrix ajy = 1 if vertices i and j

j
are adjacent, aij = 0 otherwise

W the path (walk) matrix, defined for trees3! as
incidencies of paths with arcs or edges

w'W the inverse matrix of nssT

D the distance matrix
dij the number of arcs on the path between
vertices 1 and j

Q the diagonal matrix of distance sums in D

E the Eichinger matrix, the generalized inverse32

EsTs = n1 - JaT

Distance matrices have one positive eigenvalue and (n-1)
negative eigenvalues which sum annihilates the positive eigen-
value. A sum of squared eigenvalues of the distance matrix is
equal to the sum of its squared elements, to it gyration tensor
[27,36,37], and these eigenvalues were included in the study.
Together with eigenvalues of distance matrices their inverse
values were tested. In the case of WIW matrices, they are ei-
genvalues of the matrix ssT  and simultaneously of the Laplace-
Kirchhoff matrix STS. In the case of topological distance mat-
rices, their inverses are the perturbed Laplace-Kirchhoff mat-
rices [33].

Another tested vectors were the polynomial combinations
of eigenvalues. They are the coefficients of the matrix polyno-
mial. Their sum, known as Hosoya [23] index correlates with bo-
iling points.

4. Correlations of alkane boiling points

At first we used heptanes as training and test sets. For
training sets we used k compounds with k independent values of
indicator vectors, which gave the matrix M. Multiplying the in-
verse matrix M1 with the vector column of corresponding boi-
ling points, we obtained the vector of weights x which, when
multiplied with rows of values characterizing compounds of the
whole set, gave predicted boiling points. If the matrix M was
well determined and had a reasonable inverse then the boiling
points of the training sets were reproduced always exactly till
rounding errors much smaller than the best experimental errors.
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The quadratic form of the difference between predicted and ex-
perimental boiling points vectors, normalized to one compound
{standard deviation), was used as the criterion of the fit.

The results obtained with heptanes are compiled in TABLE
II. From the training sets of 6 or 7 compounds 2 or 3 other we-
re predicted. The results for geometric and topologic distances
are not strictly comparable, because the training sets contai-
ned different heptanes as they were used in TABLES of original
papers [16-20].

TABLE II
Predictions of boiling points of heptane isomers

Used vectors Standard deviation (%c)

Eigenvalues of Wiw 22.11
Eigenvalues of WIW +c 2151
Ordered diagonal values of wWiw 75.95
Eigenvalues of (Q-D) 152.80
Eigenvalues of (Q-D) +c¢ *

Ordered diagonal values of Q 30.46
Inverse eigenvalues of(Q-D) 119.80
Inverse eigenvalues of (Q-D)+c 14.47
Eigenvalues of topol. D [21] 44.82
Squared eigenvalues of topol.D [21] 31.86
Eigenvalues of topol. D+c [21] 12.28
Inverse eigenvalues of topol. D+c [21] 4.44
Polynomial coefficients of topol. D [21] 252.04
Eigenvalues of geom. D [17] 9.61
Eigenvalues of geom. D+c [17] 6.95
Inverse eigenvalues of geom. D +c [17] 4.43
Polynomial coefficients of geom. D [17] 33.94
Polynomial coefficients of geom. D+c [17] 2.94
Altenburg polynomial *

Notes: +c = a unit column c = 1 is added to the matrix
* correlation matrix was singular or nearly singular.

Some erratic predicted values show that a causal relation
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of these indicators with the observed physical property does
not exist at all. The decompositions of Wiener number (eigenva-
lues and ordered diagonal values of WTW, Q, etc.) gave deviati-
ons greater than 10, which can be considered as a random re-
sult. The geometric indicators behaved better. Nevertheless, no
exact prediction of boiling points was obtained by any set of
eigenvalues. Results could be improved, as it will be discussed
later, by linear combinations, but this was not the aim of this
study.

The Altenburg polynomial was remarkable. It failed in hep-
tane tests because its matrix was singular. It was necessary to
remove the constant column of six C-C distances. Then from the
training set of 5 heptanes boiling points other 4 ones were
calculated with the standard deviation of 3.14%c. The Altenburg
polynomial was therefore tested futher.

For calculations of boiling points of all lower alkanes
till heptanes distance matrices of hydrogen depleted alkanes
were used, as customary. Here a constant column could be added
but results could not be improved by replacing it in the matrix
by the number of hydrogens, it means by the number of distances
C-H. An analysis of the inverse matrices M~! showed that their
first columns have elements 1, -2, +1, and 0.5, -1.5, +1, res-
pectively. It gives zero as the sum of the first 3 columns of
a matrix M. This conclusion was confirmed by introducing a dum-
my compound into correlations characterized by a variable boi-
ling point, instead of methane, which weighted the first co-
lumn. Variations of weights from -100 till 10 had no effect on
calculated beiling points of other alkanes.

When all 22 alkanes from methane till heptanes were calcu-
lated from a training set containing propane till n-heptane and
two other heptane isomers, the predicted ethane boiling point
was 870C and methane -141%c.

Attempts to increase training sets by introducing the num-
ber of distances H-C-H or H-C-C-H as indicators characterizing
additional compouns failed, the resulting matrices were always
singular. The information about these distances is redundant.
The numbers of such paths in a molecule are linear combinations
of C-C distances which is not obvious at branched alkanes.

Standard deviations in the whole set were very sensitive to the
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choice of a learning set and were rather high to be useful.

A linear combination of the Altenburg polynomial can not
reproduce boiling points of alkanes exactly. Let us suppose
that the set of intermolecular distances determines exactly bo-
iling points of hexanes. The difference of boiling points of
heptanes against their predecessors must be then a linear com-
bination of distance vectors. The difference of distances bet-
ween 2-methylpentane and 2,3-dimethylpentane is the same as
between 2,3-dimethylbutane and 2,2,3-trimethylbutane, it is
1%1, 2*%2, 3*3, but differences of boiling points are 29.51 and
22.86 0C, respectively. This is against the assumption of line-
arity.

Better results are obtained when alkanes are divided into
sets according to the length of their chains. The boiling point
of 2,2,3-trimethylbutane was predicted from the training set of
only 4 lower substituted butanes with 0.61% error, 3 heptanes
from the training set of only 5 substituted pentanes had stan-
dard deviation 1.580C, which is a half of the standard deviati-
on inside heptane set itself.

The correlation vectors are:

butane set = -27.25 +94.54n1 -6.60n2 +1.62n3

pentane set = -21.47 +76.63n, =-5.19n, +1.92n, -1.06n,
Correlations, obtained with one small training set can be

improved by a linear combination technique. Choosing another

training sets boiling points predicted with errors are determi-

ned exactly (provided that their correlation matrix is not sin-

gular) and the mean of the correlation vectors from different

training sets gives the middle of the predicted and true boi-

ling points.

5. Correlations with all subgraphs

To the distances, or linear chains subgraphs, all sub-
graphs including the graph itself can be added. The value of
its vector of weights is error of the prediction. It is decrea-
sing with n, see TABLE III, where alkanes are divided as the
training set and two test sets. At first branched hexanes valu-
es were predicted from lower alkanes matrix, then branched hep-
tanes values were predicted.
TABLE III
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Values of the additive scheme for lower alkanes

Alkane value b%

The training set: The test set I:

Me =161.00 2-MePe 0.92
Et 233.37 3-MePe 0.83
Pr =26.04 2,2-diMeBu 0.36
n-Bu -4.53 2,3-diMeBu 1.35
n-Pe -5.20 Mean and standard deviation:
n-Hex -3.75 0.865 +/- 0.352
n-Hep -3.39

i-Bu 10.29

i-Pe 2.40

neo-Pe -3.90

The test set II

2-MeHex 1.63 3-MeHex -0.02
2,2-diMePe 0.49 3,3-diMePe -0.56
2,3-diMePe -1.66 2,4-diMePe 1.56
3-EtPe -0.71

Mean and standard deviation: 0.104 +/- 1.123

The inverse matrix technique was found to be effective.
The standard deviation of 7 branched heptanes boiling points
prediction was 1.123 Oc from the 13 parameter equation. The
number of parameters it were possible to decrease to 10, using
for all branched hexanes their mean value 0.865. Since other
13 boiling points were reproduced exactly, it means that the
standard deviation was 0.375 %C for the whole set. Adjusting
sone vectors b, to decrease the greatest differences, it were

possible to improve this result somewhat.
6. Geometric wiener indices correlations

The inverse matrix technique presumes that all weights
x are equal for all molecules, as at the topological Altenburg
polynomial the distances dy. In contrast the distance weights
at the geometric Altenburg polynomial, except the first two
ones, depend on configurations of the molecules. The distance
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weights of consecutive bonds are changed by rotations through
bonds. This effect can be compared with a neural network. Each
isomer has its own network, which works slighly differently
from other ones when a molecule pursues its optimal configura-
tion. The interatomic distances are always in some ranges which
are at greater distances wider because there can appear unclo-
sed rings which shorten distances. The coefficients dy of the
geometric Altenburg polynomial are arithmetic means of true
distances and a calculation of the geometric Wiener index using
the Altenburyg polynomial investigates the neural network model
of molecules. Or otherwise, the geometric Wiener index which
correlates with physical properties can be used as their model.
For example at n-pentane the polynomial has the coefficients in
the range [17]

W= (1'534—1'537)n1 + (2.543—2.574)n2 + (3.138—3.941)1‘13 +

(3.766—5.087)n4

When the lowest distance weights of unsubstituted pentanes
which apply for (g+g+) conformer (it is energetically strained
against the (aa) conformer) are used for calculation of their
alkyl substituted derivatives W, then too high estimates are
obtained. Distances between atoms in branched alkanes are smal-
ler than in linear ones. Nevertheless even in the most strained
molecules they can not be less than the distance between adja-
cent atoms.

When I tried to calculate the geometric Wiener indices using
the inverse matrix technigue with the Altenburg polynomial,
I obtained, for example, at two different training sets of sub-
stituted hexanes weights
1.7597c - 3.0682ny + 2.43n, + 3.210n; + 6.1963n, + 5.1825ng
1.2453¢c + 0.0182n1 + 2.43n2 o O.905n3 + 8.2538n4 + 5.1825ng
which exactly reproduced the training sets and satisfactorily
the test sets, at best when both weight sets were pooled. Be-
cause the distance weights must be positive, as shown above,
the result with negative weights is physically unacceptable.
Identical weights at n, and ng in both sets are remarkable.

It is not a fault of the inverse matrix technigue that it
gives false weights but it is a result of the properties of the
system. When the topolegic Wiener index for pentanes was calcu-
lated, the computed weights were exact, provided that the input
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data were exact. An error of about 6 % in one value {(error vec-
tor: 2, 0, 0, 0, 0) changed the weight vector dramatically:
correct 1lc + 0.9999n; + 2n, + 3n5 + 4ny
error 8.5c - 24n, + 4n, + 5ny + 6ny

A bundle of multidimensional weight vectors is replaced by

a vector which does not lie inside them but crosses them.

7. Discussion

Randic [11] chalenged chemometricians, medicinal chemists
and graph theorists to answer questions what are the best
k-parameter regressions. Since in the literature till now the
best result was 2.240C as the standard deviation, the inverse
matrix technique gives good results.

Unfortunately, the standard deviation is increasing from
branched hexanes to branched heptanes, despite the fact that
the difference against subgraphs 1is relatively smaller at hep-
tanes than at hexanes and the mean difference (experimental bo-
iling points - predicted ones) is smaller at heptanes than at
hexanes, too.

It is necessary to explain it. A plausible answer is that
heptanes have a greater freedom. Their confeormations can be mo-
re varied and so are their physical properties. Moreover they
have more roots. The distances in a molecule are not equiva-
lent. They are splitted into distances from different atoms.
Even collective physical properties, as e. g. the boiling point
is, can be weighted sums of properties of individual atoms. At
monosubstituted alkanes (alcohols), their boiling points corre-
late with distances from the oxygen atom ([38]. Distances betwe-
en carbon atoms can be neglected.

The development of sciences is not a straight way. If so-
mebody, say a hundred years ago, could predict from the know-
ledge of 7 boiling points of alkanes, from propane till hepta-
nes, their structures and from the simple fact that ethane has
6 distances hydrogen-carbon and 1 distance C-C, that its boi-
ling point should be about —87°C, and methane's boiling point
with its 4 C-H bonds should be about —1410C, such a prophesy
would have been considered by chemists as an accomplishment
comparable with a calculation of the position of a new planet.
But at that time such computations were difficult, because they
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are based on inversions of comparatively large matrices. The
achievement of today is only technical.

Sophisticated polynomial coefficients and eigenvalues of
different matrices representing molecules gave no improvement
against the simplest representation of topological distances,
the Altenburg polynomial. If correlations are poor with all ei-
genvalues they can not be improved by choosing only some speci-
al values because discarded values could only mend a correlati-
on or they should have negligible weights.

Boiling points of alkane molecules depend on topological
distances between all their carbon atoms. The number of hydro-
gen atoms behaves as a constant but it gives a different weight
to C-C distances in correlations.

Boiling points of alkanes correlate satisfactorily with
their Altenburg polynomials only inside narrow sets characteri-
zed by the length of the chain. This together with the results
with the modelled property, the geometrical Wiener index, leads
to the conclusion that atoms in a molecule behaves as a molecu-
lar neural network. Weights which each molecule gives to diffe-
rent inputs, here distances, depend on the structure of the
network. Therefore the output properties, here boiling points,
are not and can not be a strictly linear function of the in-
puts. Trinajstic et al. [20)] observed better correlation of bo-
iling points of alkanes with the topoleogical Wiener index than
with the geometric one. This can be explained by the fact that
topological weights are constant for all isomers and the final
correlation with their sum is more uniform.

Molecular networks having a similar structure can be suc-
cesfully modelled by neural networks as shown by Kvasnicka
[39]. The inverse matrix technique gives an opportunity to test
descriptors before their applications in neural networks or
constructions of topological indices if they are effective. It
can even replace these methods.

A somewhat wunfortunate finding is that even a successful
multiple correlation does not guarantee a physical meaning of
found parameters if different molecules behave differently.
Therefore discussion of physical effects of special distances
on alkane boiling points should be based on arguments other
than on correlation results alone.
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