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Abstract. The concept of auxiliary graphs is introduced and
some theorems are given for the design of the upper and the
lower auxiliary graphs, especially the fundamental graphs.

Then, a novel approach is presented in order to estimate

total n-electron energies of cyclic alternant hydrocarbons.

1. Iptroduction.

The total n-electron energy, En y has been rigorously
studied for more than a couple of decades (1-15). It depends
on a variety of structural invariants of the respective
molecule. Coulson pointed out that a relationship existed
between En and the coefficients of the characteristic
polynomial of the molecular graph (16). McClelland’'s formula
which is based on the number of atoms and the number of bonds
is the simplest of all the topological formulas for total n-

electron energy (1). In the last decade very many upper and

lower bounds for En have been derived at various levels of
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sophistication (6-15,17).

In the present study, a completely different approach
is presented for the estimation of total n-electron energy
of certain alternant hydrocarbons which are structurally
convertible into their suitable partial graphs (18) again
of Hickel type (18,19). The approach is based on an upper
bound for En of alternant hydrocarbons reported previously

by L.Turker (7).

2. Theory.

Suppose, G(A) is a connected planar graph having e

edges, R rings and 2n vertices, such that the degree, di’ of

every vertex of G(A) is 1 ( d1 £ 3 {a Hickel graph
{17)). For alternant hydrocarbons the following equations
hold (18-20).
o,
En =2 > Xi (1)
i=1
n
e= > X? (2)
i=1
where, XI, x2,-.-,xn are eigenvalues standing for the

occupied molecular orbitals of the respective molecular
graph, ordered so that X1 > XJ for i £ j .
It is known that eq.3 holds for alternant hydrocarbons

(7).

Ens 2\,\J4ma4 + e -_-ET 3)

where a, is the respective coefficient of the characteristic
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polynomial of the given molecule expressed by eqs.4 and S
(7).

2. 22

a, = > x°x )
B = e M)
i<
[
a, = (2) v, = 3V3 - 2R, (5)

where, V2 . \af‘.5 and R4 stand for the numbers of vertices
having degree two, three and number of 4-membered rings,

respectively. In eq.3 , m is given by

m = (;) (&)

Although, the upper bound, ET (eq.3) is a suitable one to

estimate En of small and moderately large systems, it
diverges from the real n-electron energy for huge molecules.
Thus, for these systems an improvement of ineq.3 is needed.
Instead of deriving new but probably more complicated
formulas Jjust to obtain better bounds for En which require
many topological parameters sometimes difficult to get, below
a different approach is presented which enables one still to
make use of the same upper bound formula (ineq.3) for gross

systems.

Definition 1. A connected partial graph of G(A) , denoted

by GB(U), which posgesses an upper bound , ET(U) .

such that E > E is called an upper auxiliary graph.

T

Conversely, a lower auxiliary graph denoted by G(L) is

m{A)

defined such that E £ E

TL) ) -

Note that, G{(A) can have more than one upper or lower
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auxiliary graphs. Since, by definition G(U) is a partial
graph of G{(A) and therefore, has the same number of vertices

{2n) as G(A).

Definition 2. An upper auxiliary graph of G(A) having the

smallest ET(U) value is called the upper boundary graph of

G(A). Analogously, a lower boundary graph is a lower

auxiliary graph such that ET(L) is as close to En(A) as

possible.

All auxiliary graphs fulfilling the properties
of a boundary graph of G(A) and having the same ET(U) or

ET(L) values are upper or lower isoboundary graphs ( or
isoboundary structures).

Figure 1. shows the boundary graph and some auxiliary
graphs of pentacene. The isoboundary graphs and some
auxiliary graphs of coronene is illustrated in Fig.2 .

Note that , usually isoboundary structures have the same
number of vertices characterized by degree 2 and 3, besides
the same number of 4-membered rings because necessarily they
have to possess the same ET value. This constraint generally

does not allow respective a4 and e values to deviate from

each other for a set of isoboundary structures.

Definition 4. The lower auxiliary graph of G(A) having the
smallest possible ET value is called the fundamental graph of
G(A).

Note that G{(A) might have more than one fundamental

graphs. Fig.3 shows some fundamental graphs of coronene.
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GO0 aOClo

ET(U) = 32.46747 ET(U) = 32.6747

ET(U) = 30.7225

C0

En= 30.5440

et s

ET(L) = 30.0300

Fig.1 The boundary graph and some auxiliary graphs of

pentacene.
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Y

ET(U) = 34.8782 ET(U) = 34.8236

S
G

T(U) = 34.7962
T(U) = 34.6283 En= 34.5718
T(L) = 34.1170 T(L) = 33.4280

Fig.2 The upper and lower boundary structures and some

auxiliary graphs of coronene.
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ET(L) = 32.6963

Fig.3 Some fundamental graphs of coronene.

The theorems presented below enable one to design

various types of auxiliary graphs.

Lemma 1.. Let G(A) be a Hickel graph having 2n vertices, e
edges and R rings. Then, the maximum number of edges (kmax )
which can be removed to get a fundamental graph is determined
by the number of rings present in G(A).

Since, by definition, the numbers of vertices in G({(A)
and in any auxiliary graph are the same ,as the number of

edges decreases the number of rings has to decrease just to

fulfill the requirement of Euler equation (18), 2n = e -R +1.

Now, suppose vectors A and B in an n-dimensional
Euclidean space (21) are defined as follows,
A(Xl,xz,...,xn) Bll,1,...,1)

Then, the following is true for the scalar product ,(A,B) ,



of these vectors (22).

X, 7)
a_

>_ X cos O (8)
=1

where OA is the angle between vectors A and B. By using

eqgs.1,2,7 and 8 one gets

En(A) = 2/ ne cos DA ()

Theorem 2. Let G(A) be a Hickel graph having 2n vertices e

edges and R rings. Furthermore, suppose G(U) is a connected
partial graph of B(A) obtained by deleting certain number (k)

of edges (R » k » 1) and characterized by 2n vertices ,

e’ = e - k edges and r rings . If 2n 2 4R + 1 and

cos DA £ (1= k/e)l/2 then G(U) is an upper auxiliary graph of

G(A) such that E < E

rn(A) T -

SBuppose, k edges are deleted for the transformation of
G(A) ===> 6. Thus, the number of edges in G(U) is simply

e’ =e - k . The required condition E £ holds if

near € Eron

{using eg.? and ineq.3 ).

2 ‘/ne cos 0, ¢ 2\N4ma4 + e (10)

where a_, is the respective coefficient of the characteristic

4

polynomial of G(U). Rearranging ineq.10 ,

7
cos 0, < \/(\/4ma4+e )/ ne (an
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Since, 1ineq.12 holds for Hiickel graphs having r £ 0.2 e’
117y

a, < -1/ 2n (12

then by substituting ineq.12 into ineq.11, one obtains
cos DA £ Jt 1 - k/e ) (13)

On the other hand, in the light of lemma 1, the requirement,

r¢< 0.2 e’ for ineq.12 can be written as
R-kg 0.2 (e - k) (14)

Substituting e = 2n + R -1 ( Euler eq. ) into ineq.14 and
rearranging one gets,
4R £ 2n - 1 + 4k 15)

which holds if 2n 2 4R + 1 .

Corollary 1. Let G(A) be a Hickel graph having Zn vertices ,

172

e edges and R rings. If 2n 2 4R + 1 and cos 0O, £ (1 - k/e)

A

for k » 1 then there exists at least k upper auxiliary graphs
of G{(A).

Note that G(A) possesses at least R auxiliary graphs
(upper or lower type) and obviously acyclic graphs cannot

have any auxiliary graphs.

Theorem 3. Let G(A) be a Hiickel graph ( 2n, e , R ). Suppose

G(L) is a connected partial graph of G(A) obtained by

deleting certain number ( k { R ) of edges. If k > e 5in2 DA

then G(L) is a lower auxiliary graph of G(A) such that En(A)

7 Era ¢
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The theorem requires E &

na) . Since, for

172
L]

ET(L)

alternant graphs, McClelland’'s upper bound , E'I,1 = 2(ne)

is greater than the corresponding ET value (7) then EM(L) 2
ET(L) where EM(L) stands for EM value of G(L). On the other

hand, the condition , E > E

A requires that (using

ML)

eq.% and noting that e - k edges exist in a lower auxiliary

graph},
2 dne cos OA > 2 Jnte = k) (14)
solving for k ,
kyall - cos” 0, (7
k »e sin® 0, as

Theorem 4. Let G(A) be a Huckel graph having 2n vertices, e
edges and R rings. Then the fundamental graph(s) of G(A) is
an acyclic graph having the highest possible branching ( a
tree).

Since, the fundamental graph of G(A) possesses the
lowest possible ET value, then it is obvious from eq.3 that
the number of edges, e’ and i; coefficient Ffor the
fundamental graph have to be the lowest possible values and
Euler formula has to be Ffulfilled ( 2n=e" - r + 1 ,
where r is the number of rings in the fundamental graph). It

is evident that the minumum value of (;) is obtained for

r = 0 . Hence, a4 becomes

e
a,= (2) v, 3V (19)
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where V2 and V3 are the numbers of the corresponding types of

vertices of the auxiliary graph and e’ = e - R ( see lemma 1).

In eq.19 as V3 increases A, decreases more sharply than
2
possible to deduce that if it is structurally permissible,

the corresponding response to decrease in V Thus, it 1is

P
necessary requirement for the design of the fundamental

the fundamental graph should possess SV3> v Then the
graph(s) of G(A) involves the destruction of all types of
rings in such a way that one gets the maximum number of

vertices having degree 3.

Corollary 2. All the auxiliary graphs of G(A) have ET values
( ET(U) or ET(L) type ) lower than ET of the parent system,

G{(A) .

Conjecture. Polycyclic Hickel graphs possess at least one

fundamental graph .

3. Results and Discussion.

Although, there are many formulas and methods in the
literature to estimate the total n- electron energies of
molecules, each one has its particular drawbacks.
McClelland’'s formula (1) is the simplest one but it cannot
reproduce En accurately enough

All the above theorems, although stated for even
alternant hydrocarbons ( N = 2n ) in the present treatise ,
are adaptable to odd alternant systems having M vertices
simply by replacing M with 2n = M - 1, because inevitably

X(H+l)/2 = 0 for odd alternant hydrocarbons. Hence, all the
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summands in eq.4 including this eigenvalue vanish,
decreasing the number of summands, m , (7).

In the 1light of the above definitions and theorems the
following rules can be stated related to design of various

auxiliary graphs.

Rule 1: The auxiliary graphs are obtained by the destuction

of rings , successively.

Rule Z: The fundamental graphs are designed by destroying all

types of rings present so that the maximum number of vertices

having degree 3 is obtained.

The structures of the upper and lower boundary graphs
remain to be obscure as long as any information about the
value of cos UA is present . Although, recently the upper
and lower bounds of cos CIA have become available
topologically (17), the point in the present study is to get
accurate results by wusing a simple treatment as much as

possible. Therefore, two methods are given below to estimate

En of alternant hydrocarbons.

Method 1. Calculate the ET values of the given system and

its fundamental graph and then get the arithmetic mean of

Method 2. Inserting .92 into ineq.1& as the average value of

cos UA { McClelland’'s factor (1,17) ) one obtains an

approximate value of k . That is

k = 0.1536 e {20)
av
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Integer part (k) of kav is the number of edges to be deleted.
The resultant graph is used together with eq.3 to estimate
the total n-electron energy for the original system. Note
that by using integer k, increasing and decreasing it one by
one each time and getting the average of the corresponding ET
values, it is possible to device various approximation
methods for En of alternant systems.

Table 1. tabulates the real and the estimated total n-

electron energies of various systems, there E, and E stand

1 2
for the estimated values of E“ by methods 1 and 2,
respectively. E2 values in table 1. are based on the
structure characterized by the smallest possible a,

coefficient within the set of structures specified by k-
deleted edges. As it is seen in table 1. the comparision to
the precise n- electron energy of 17 benzenoid hydrocarbons
shows mean absolute errors of 1.46 and 1.70 % for methods 1
and 2 , respectively. Although, these results are inferior as
compared to some other approximation methods (14,15,23)
available for En , the advantage of methods 1 and 2 is rather

in the simple structural interpretation.

4. Conclusion.

Total n-electron energies of alternant hydrocarbons may
be calculated at different 1level of precision by wusing
various topological approaches. However, most of these
methods are either impractical or have low precision for

large systems. In the present study, the methods given for

cyclic alternant hydrocarbons are staightforward and require
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Table 1.

various alternant hydrocarbons.

Compound

Diphenylethylene 15 14

Coronene
1,2-Diphenylene

1,2-Benz-
antharacene

3,4-benz—
phenanthrene

2,3-Benzo—
biphenylenene

FPerylene

1 ,2-Benzo-
biphenylenene

Chrysene
Triphenylene
Bisanthanthrene

1,2,4,5-Dibenz—
pyrene

Feropyrene
Diphenylmethyl
1-Naphthylallyl
2-phenylbenzyl
1,92,2,3-Dibenz—

anthranyl

30

15

21

21

19

249

19

21

21

35

29

32

14

14

14

25

24

14

18

18

16

20

16

18

18

28

24

26

13

13

13

n-electron

energies o

£

Abs.% error
N E"(20,24)_ 51 E2 a E1 E2

18.815 19.25%946 18.5198 2.36 1.56
34.971 35.0467 34.7962 1.37 0.64
18.878 19.2528 18.4571 1.98 2.22
25.101 25.5606 24.8430 1.83 1.02
25.187 25.5373 24.8430 1.38 1.36
22.251 22.46912 22.6270 1.97 1.48
28.245 28.7047 28.3548 1.62 0.38
22.166 22,6912 22.6270 2.36 2.07
25.192 25.5373 24.8430 1.36 1.38
25.274 25.5837 24.8430 1.22 1.70
40.077 41.0109 40.3373 2.32 0.464
34.064 34.7035 34.0000 1.87 0.18
37.08%9 37.8195 37.5114 1.96 1.13
17.301 17.2495 16.5398 0.29 4.39
17.131 17.1919 16.4750 0.35 3.82
17.151 17.1919 16.4750 0.28 3.94
29.340 29.4434 29.1023 0.35 0.81

21

Based on the structure having the smallest

coefficient within the set specified by k—-deleted edges.

possible a

4
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very simple topological parameters ( N, e, R and a4, ). The
comparision of methods 1 and 2 implies that the former one is
characterized by absolute percent errors scattered
comparatively in much more narrow range. However , the second
method in most of the cases reproduces En values better,
especially for large condensed systems. On the other hand, it
would be interesting to develop the concept of auxiliary

graphs introduced above for the investigation of other

topological properties of cyclic systems.
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