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Abstract:

The equivalent bond index is defined especially for the
topelogy of the molecular skeleton of a saturated hydrocarbon,
i. e., branching and ring-closure in a molecule.

This index has such a remarkable characteristic that it can
show the topological nature of equivalent bond orbitals in
saturated hydrocarbons. The recursion formula of the
characteristic polynomials having relation with the index is
explained. The general expression for the value of this index
is also discussed.

1.INTRODUCTION

Many graph theoretical investigations have been performed

to study the total m-electronic energy of unsaturated
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hydrocarbons1-5) or thermodynamic quantities of
hydrocarbons 13'17)_

On the other hand, the electronic energy of saturated
hydrocarbons has not been well studied graph-theoretically,
because there are many parameters which are not suitable for
the graph-theoretical treatments.

Heilbronner et al. applied the equivalent bond orbital
method to calculate the ionization energy of saturated
hydrocarbons.6-8) At that time they supposed Koopmans'
theorem. According to them this simple method gave better
results than they had thought, because the calculated orbital
energy showed good agreement with the observed Cyg
ionization potential.

They did not calculate the total equivalent bond orbital
energy, E, because E depends only on the number of equivalen
bonds but not on the topology of the molecular skeleton of a
saturated hydrocarbon, i.e., branching and ring-closure in a
molecule.

Therefore instead of the total equivalent bond orbital
energy, E, we calculate the quantity o.

The quantity, O, corresponds to the total m-electronic
energy index Z* which has been introduced for n-electronic
syslcms.z) Let us call the index © the equivalent bond index.

A simple explanation is given in Section 2 and the
equivalent bond index is introduced in Section 3. The
o-values of many saturated hydrocarbons are shown and

discussed in Section 4.
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The recursion formula of characteristic polynomials having
relation with this value are explained in section 5 and the

general expression of the o-values is discussed in Section 6.

2. OUTLINE OF THE EQUIVALENT BOND ORBITAL

METHOD

Heilbronner et al.5-8) applied the equivalent bond orbital
method to calculate the electronic energy of saturated
hydrocarbons. First the outline of their method will be
explained.

1t is assumed that the delocalized molecular orbital P, is
expressed as the linear combination of the equivalent bond
orbitals % y's.

ij = 2 Cuv‘jX\w » (1)
u,v

where %,y is localized between two atoms u and v which are
bonded in the hydrocarbon molecule.

There are three kinds of the determinantal elements with
respect to the Hamiltonian H, i.e., the self-energy, interaction

element, and overlap integral:

Hyvuy =<Xuv|H|Xuv)=Auv (2)

Hyvyv =(Xuv|Hb{u' v'>=Buv,u’ v (3)

Suvw ™ (o) (4)
Let us apply the Hiickel approximation to Su\.'u,v..

St etk = Suv,u'v'. (5)

Now suppose that all kinds of the self-energy are equivalent:
Acc = Acy = A =constant, (6)

Assume that all the adjacent interactions are equivalent,
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Becee = Begen = Bengen (7)
If we neglect higher interactions,

Ccc‘('(: &= C(‘(.'.(_'H = CCH,CH =10. (8 )
From Egs.(6)~(8) we have

H=aE +bA, (9)
where E is the unit matrix of order n (the number of orbitals)

and A=[A!W] is the adjacency matrix. Let us assume as

follows:
=1 w,v adjacent

Auv = S“VL 0 i:lhcrw:sc (10)
If we define the orbital energy as

£, = a + bX;, (11)
we have

|A-XE]|=0, (12)
To solve Eq.(12) means to calculate a characteristic value of

graph G. In this case a vertex of graph G represents an

equivalent bond orbital of a given saturated hydrocarbon.

3. EQUIVALENT BOND INDEX
After solving Eq. (12) we can express the characteristic

polynomials as follows:

P(X) = Sa X" (13)
k=l)

with the definition that ag=1 and n is the number of equivalent
bond orbitals in a hydrocarbon. Using n roots of X P(X) can

be expressed as
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n
POO = [[(X - X,) (14)
k=1
Define the index Z* as

Z*E|P(i)l=‘ iaki“'k (15)
k=0

Let us call the square of Z* equivalent bond index (EBI) o,1
2 v
a=7% =|P(] (16)
From Eqs. (14) and (16) we have

o=|f1(i—xk) = Tla+xp, (17)
where n is ge:erally expr;:sed by the numbers of carbons (N)
and rings (r) as
n=3N+1-r. (18)
One can compute Z* and o from Eqgs. (13)-(17).
Decompose P(X) into the sum of even and odd functions,

S(X) and A(X), as

P(X) = S(X) + A(X). (19)
For odd n
/2] 5
s =3 Ay X" Y (204)
[n/2] s
A(X) = E any X' T, (20b)
k=0

while for even n

n/2 a2k
S(X) = L'EI an X" (20¢)

1 Alhara calls Z* the total TT-electron cnergy index (Sce Ref. 2).



- 230 -

n/2-1

AX) = E ag\ﬂ)(uf('.’,kﬂ). (20‘1)
k=0

According to Lgs. (16) and (19)

~ 2142
7k = {|S(i)|” +|A(i)|"} or
o=@ +|aGf (21)

For alternant hydrocarbons Z* is an integer, while for non-
alternant hydrocarbons not an imeger‘z) On the other hand ©
is always an integer because ak's, a2k's and a2k+1's tn Eqs. (13)
and (20) are all integers.

We use the EBI, o0, as an index which represents the
energy state of a hydrocarbon molecule instead of the total
sum, E, of the equivalent bond encrgies. The reason why we
do not apply E is that E cannot express the topological
characteristic of a saturated hydrocarbon, as follows. Namely,
E is shown to be merely the product of the number, n, of
equivalent bonds and Coulomb integral or self-energy a.
Namely,

E

Z(El +EE+"'+En)

2na + 2b()(1 + X2+ ...+xn)

n

= 2na (22)
Let us explain the case of ethane C2Hg (N=2, n=7), (See
FIGS. 1 and 2). FIGURE 1 shows the traditional chemical
structure of C2Hg which has 7 equivalent bonds and n=7.
FIGURE 2 shows the interaction among the 7 equivalent bonds

orbitals.
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FIG.1 Ethane
FIG.2 The Interaction of Equivalent Bond Orbitals

where a block circle expresses a bond orbital. In the case of

the graph in FIG. 2, Eq. (12) is as follows:

-x 0 1 1 0 1 0O

0 -x 0 1 1 0 1

1 0 -x 1 0 1 0

1 1 <=x g 1 1i{=0
0o 1 0 1 -x 0 1

1 0 1 1 0 -x 0

0o 1 0 1 1 0 -x

The characteristic polynomials, P(X), S(X), and A(X), of this
acyclic saturated hydrocarbon are given by developing the

above determinant:

PX) = X7 -12X% - 16X* +21X% + 60X2 + 46X + 12
S(X) =-16X"* +60X> +12

S(i) = —64

AX)=X7-12X° +21X% + 46X

A()=12i

o= 2" =|s(i)*|+|AG) = 4240
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The eigenvalues {X, X5 «-« X} are {3.6458, 2.000,
* 7 2
(-1.0000)%, -1.6458 }, therefore o= 27 = [[(1+ X} )= 4240.
k=1

Both values are naturally the same.

4. THE VALUES OF ¢'S
The numbers of carbons (N) and orbitals(n), the compo-
nents, S(i) and A(i)/i, of the characteristic polynomial,
and EBI of acyclic and cyclic saturated hydrocarbons are
shown in TABLES 1 and 2, respectively.
TABLES 1 and 2 show that the EBI increases rapidly
with the number, N, of carbon atoms.
For the case with equal N and n, the highly the graph is
branched, the smaller the EBI, as in the following fashion.
log 0 = -0.31586 + 0.56161n (r=0.99986, acyclic
paraffins),
log 0 = ,L26550 + 0.54875n  (r=0.99748, cyclic paraffins),
where r is a correlation coefficient. Except for the rapid
increase this inclination resembles to that of Hosoya's Z in-
e 09
In the case of acyclic hydrocarbons EBI, o, is nearly
proportional to I(IEN'I, but for N=5 and 6 it is a little bit
smaller than this. In the case of cyclic hydrocarbons the value
O is nearly proportional to IUZN'2 except for the case of N=3.
For acyclic and cyclic hydrocarbons the magnitudes of
[S(i)} and |A(i)] are comparable. On the other hand, as seen in

TABLE 3 the term A(i)/i is zero for the m-electronic systems
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TABLE 1. The S(i),A(i)/i and o of Chain Paraffins in Equivalent Bond
Orbital Method

N n Compounds* S(i) A/
1 4 1 4 -8
2 7 2 -64 12
3 10 3 344 304
4 13 4 192 -3232
2m3 120 -3088
5 16 5 -18784 12992
2m4 -17632 12848
22m3 -14896 12416
6 19 6 153856 47808
2m35 148096 42048
3m3 148384 41472
22m4 134560 27360
23m4 142912 35856
N n [} b.p.(K)
1 4 80 111.6
2 7 4240 184.5
3 10 210752 231.0
4 13 10482688 272.6
9550144 261.4
5 16 521630720 309.2
475958528 300.9
376047872 282.6
6 19 25757273560 341.8
23700459520 3334
23737738240 336.4
18854963200 322.8
21709492480 331.1

*2m3 means 2-methyl propane,for example.
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TABLE 2. S(i),A(i)/i and © of the Cycloparaffins in EBO Method.
N n Compounds S(i)
3 9 Cyclopropane 320
4 10 Tetrahedrane 135
11 Bicyclo[1.1.0]butane -1344
12 Cyclobutane -2224
12 Methylcyclopropane -2016
5 14 Bicyclo[2.1.0]pentane 11696
15 1,1-dimethyl cyclopropane 3200
15 1,2-dimethyl cyclopropane 2768
15 Ethyl cyclopropane 2624
15 Methyl cyclopropane 3632
15 Cyclopentane 3136
6 17 Bicyclo[2.2.0]hexane -43520
18 1,1-Methyl-Ethyl cyclopropane 62848
18 1,2,3-Trymethyl cyclopropane 66352
18 1,1-Dimethyl Cyclobutane 61728
18 1,2-Methyl-Ethyl cyclopropane 71920
18 Isopropyl cyclopropane 71872
18 Propyl cyclopropane 77824
18 1,3-Dimethyl Cyclobutane 70800
18 1,2-Dimethy] Cyclobutane 70368
18 Methylcyclopentane 75264
18 Ethyl Cyclobutane 76032
18 Cyclohexane 81920
T 21 Cycloheptane -53120
8 24 Cyclooctane 5050368
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TABLE 2. S(i),A(i)/i and o of the Cycloparaffins in EBO Method(continued)

N n A(i)i o

3 9 -128 118784

4 10 1080 1184625
11 948 2705040
12 -1152 6273280
12 -1120 5318656

5 14 2688 144021760
15 13952 204898304
15 15176 237972800
15 16064 264937472
15 16576 287955200
15 17120 302928896

6 17 -79360 8192000000
18 -79488 10268213248
18 -78936 10633480000
18 -88576 11656053760
18 -81792 11862417664
18 -83136 12077178880
18 -84480 13193445376
18 -90880 13271814400
18 -91456 13315855360
18 -90080 13779076096
18 -92704 14374896640
18 -92160 15204352000
21 -53120 755523731456

8 24 5050368 37593910149120
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TABLE 3. [S(i)| and o for Typical Alternant Hydrocarbons (t-electron

system)
N Compounds IS@) o
4 Cyclobutadiene 5 25
6 Dimethylene cyclobutane 13 169
6 Benzene 20 400
8 Cyclo- octatetraene 45 2025
8 Benzocyclobutadiene 49 2401
10 [10]Anulene 125 15625
10 Naphthalene 170 28900
12 Biphenyl 464 215296
12 Biphenylene 481 231361
14 Anthracene 1440 2073600
14 Phenanthrene 1489 2217121
16 Pyrene 4810 23136100

| AG) [0, o = 2*=| S(i) [

TABLE 4. | S(i)| , | A(i) | and o for Typical Non-alternant Hydrocarbons.

(m-electron systems)

N | Compounds 1 S() | A o
6 Fulvene 16 2 260
Pentalene 54 12 3060
10 | Azulene 149 10 22301
12 Heptalene 384 32 148480
12 Cyclopent[cd]azulene 464 66 219652
12 s-Indacene 469 108 231625
12 Acenaphthylene 522 52 275188
14 Aceheptylene 1236 28 1528480

o=7* = [SG)f + |AG)P
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of alternant hydrocarbons.

In TABLE 4 the |A(i)| values are shown for the n-
electronic systems of typical non-alternant hydrocarbons. In
this respect the situation is the same as in the case of saturated
hydrocarbons in TABLES 1 and 2.

According to TABLE 2 the o values of cyclic saturated
hydrocarbons are governed by some complicated rules with
respect to the size of rings and branching.

All the graphs in TABLES 1 and 2 are strongly non-
alternant and eigenvalues of them satisfy the following
inequality, because the maximum order of the vertices
(i.e., the equivalent bond orbitals) is six. From This we have

]<1+Xk2<37. (23)
n
Therefore 1< [[(1+X;)<37". Namely,
k=1

1< o< 37" (24)
The above equation gives the roughest upper limit of o's.
However actual values of EBI, 0, are smaller than this and

IN-
are almost 10'N 1

in acyclic hydrocarbons.

The value of EBI, @, of the linecar unbranched saturated
hydrocarbon is the biggest of the isomers.

The reason why the EBI is sensitive towards the branching
and ring-closure of molecular skeleton is probably associated
with the largest weight of X, (the largest eigenvalue) in Eq. 17
(See Ref. 18).

The following relation between the boiling points T(K) and

EBI of chain paraffins is obtained from Table 1:



- 238 -
T=89.12 + 23.98 log ©
1<Nx6; r=0.9858

The correlation coefficient r=0.9858 shows that there is a good
linear relation between the logarithm of o and one of physico-

chemical quantities, i.e., boiling points of chain paraffins.

5. RECURSION FORMULA OF CHARACTERISTIC
POLYNOMIALS
Hosoya and Ohkamil?2) developed a new method which
gives recursion formula of the characteristic polynomial P{x).
When the method is applied to the P(x)'s of some saturated

hydrocarbons the following expressions are obtained:

In linear saturated hydrocarbons
2

Py =¥ qiPy (25)

i=1
where q,=x'=35x=-4

g, == (x'+4x7+ 6x* + 4x + 1)

In 2-methyl or 3-methyl acyclic saturated hydrocarbons

Py =_§:1fiPN-i (26)
where r,-;—7x-6
ro=x'—2x' = 16x* = 22x - 9
ry =—=(2x> +10x* +20x +20x7 +10x+2)
In 2,2-dimethyl acyclic saturated hydrocarbons PN(x) is

shown as
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Py = _ilc;PN-; @7
where it can t.)e shown thatc 's are expressed by the functions
of x,q,'s andr's.

In the casc of cyclic paraffines the following equation is

obtained:

Py =_§1diPN~i (28)
where d = Ex + D(x* = 3)

d, =~ (x+ 1)(x" - 3)

d,=(x+1)°
The above equation shows that the coefficients of the recursion

formula of cyclic paraffins have not special relations with the

ones of linear hydrocarbons or branched acyclic hydrocarbons.

6. GENERAL EXPRESSION OF THE o-VALUES

Let us find the general expressions of PN(i) which appears

ay =| Py
Only the simplest case of linear saturated hydrocarbons is
considered here. If pure imaginary number i is substituted for
x in Eq.(25) the Py(x) is expressed as:
P (i)=cP_()+ P, () (29)
where c¢= -6i-4 and ¢'=4. If the above equation is treated as
Fibonacci series, the formula corresponding to Binet's one is

obtained:
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PPy (i) = ' [{(e - /2™ = (e +p)/ 2N 1P (D)
H{e-p)/ 2" e+ P12 IR ) (30)
where  p=dlc’ +4c’, P(i)=4~-8i and Pi)=- 64+ 12i.

On the other hand PN(i) is expressed as

Pr(i) = (@ + B) Py_y(i) - @f Py-z (i) (31)
where « and B are the roots of U —ct—c¢=10, and a + = ¢ and
aff = - ¢.

The following equation is obtained as in the case of
Fibonacci series:

(=B Py (D) = —af @™ BN P + @ =B P (32)
For example, in the case of N=4 the following formula is
obtained from Eq. (32);

Py(i)=—ap(a+B)P ) +{(a +f})2 - af}P; (i) (33)
From this we obtain

o, =[P (i) = 36864 + 10445624 = 10482688,
This value coincides with the one which was calculated by a
computer and shown in TABLE 1.

General cases are treated as in the same way as the above
simplest case according to the general treatment of the
recursion formula.

As a conclusion of this section physical meaning and
mathematical relation of 0 should be considered. As shown in
Eq. (17), ¢ equals to the n times product of the quantity which
is composed of one plus the square of eigenvalue Xg of the
equivalent bond orbitals, where n is the number of orbitals.

In Eq. (21), when A(i) is zero or is neglected compared
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with S(i), Z* becomes equal to m-energy index 7 of Hosoya.
According to TABLE 1, in the case of N greater than 5 of
acyclic saturated hydrocarbons [s(i)] > |a(i)| is established.
According to TABLE 2, in the case of N=3 or 4 of cyclic
saturated hydrocarbons [S(i)|>|A(i)| is found except for one
example. However in the case of N=5 or 6 |S(i)|<]A(i}] is

shown except for one example.
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