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Abstract

An effective algorithm and a program for a generation of all nonisomorphic molecular
graphs from a set of labeled vertices with a given valence are described. The algorithm allows
apriori specification of information about forbidden and necessary fragments in the graphs to
be generated. Examples of applications are given.

1. Introduction.

The problem of the generation of chemical structures is of much interest. It arises, for
example, in structure elucidation of chemical compounds with the help of their molecular
spectra, or in the design of structural formulas of compounds hypothetically having a given
type of biological activity or some other property. In both cases a researcher needs to
construct a complete set of structural formulas corresponding to the given molecular formula
and satisfying structure limitations. For the computer-aided handling of structural formulas
researchers widely employ the structural representation as a molecular graph (labeled
multigraph) whose vertices correspond to atoms or microfragments, and the edges to honds
of a chemical compound.

There are some published algorithms and programs for molecular graph
generation [1-4]. However, due to importance of this problem, there is constant interest in
developing more efficient algorithms providing structure generation using various starting
data. This paper describes an efficient algorithm for the generation of all nonisomorphic
molecular graphs (their canonical adjacency matrices) from a set of labeled vertices with a
given valence, and reports the results of the generation of certain classes of isomers.

The suggested algorithm of molecular graph generation is based on the enumerative
variant of the branch-and-bound method [5]. The main idea consists in choosing from each set
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of mutually isomorphic graphs one graph (canonical graph) satisfying a certain criterion, Only
canonical graphs in the process of generation are constructed. An advantage of this approach
is that the researcher need not verify the structure for isomorphism with the previously
constructed graphs.

2. Definitions.

Let G=(V,E) be a multigraph (undirected, without loops but with multiple edges),
where V is the set of labeled vertices (|V!=n). and E the set of edges. For brevity G
below is called a graph. The number of incident edges of the vertex is called valence.

Let us divide all vertices of V into classes of vertices having the same labels and
valences. Define some order of the classes: Vi<V <..< Vp. We assume below that the order
of the classes remains fixed. Each class is specified by a label and the valence of its constituent
vertices. We'll consider only the graphs specified by a given set of vertices V and having the
same ordered classes.

Let us number the vertices of the graph. The vertex numbered i will be denoted by v;
and its valence by val;. Clearly, the graph vertices may be numbered by n! different ways.

DEFINITION 1. We call the enumeration of the graph vertices admissible if the vertices
of the lower class have a smaller index.

Below we'll consider only admissible enumerations. Thus, the set N={1,2,..,n} is
divided into the classes N),N,...,Np, where Ny is the set of indices of the vertices of V.

A graph may be represented by it adjacency matrix A:(aij ), which is a symmetric square
(nxn) matrix, where ajj equals the multiplicity (the number) of edges between the vi-th and
the vj—lh vertex, in particular a;=0 if the vertices are nonadjacent. Evidently, the sum of the
elements in each row of the matrix equals the valence of the corresponding vertex:
I%““ijw"ii for each i €N. The representation of a graph as an adjacency matrix is not
unique, it depends on the way of enumeration of vertices.

DEFINITION 2. The adjacency matrix corresponding to the admissible enumeration of
vertices is called admissible.

Now we introduce a linear order on the set of matrices of the same size. The matrix
A=(aij] is assigned the n?-component vector W(A)=(a,,,@,,....ap,), by concatenation of the
rows. We say that A<B if and only if W(A)<W(B), where the order of the set of vectors is
specified lexicographically.

Let S(Ny) be the symmetric group of permutations whose action on the adjacency
matrix leads to the same permutation of rows and columns of the matrix with indices
from Ny, ie. to renumbering of vertices from Vj. Then the action of the elements of the
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group S{N):?S{Nk) on the adjacency matrix leads to the admissible renumbering of the

vertices of the graph.

DEFINITION 3. The graphs G and H are called isomorphic if there is a one-to-one
correspondence between vertices of the graphs with preserved adjacency and labels of
vertices.

It immediately follows from the definition that G and H are isomorphic if and only if
there exists a permutation geS(N) converting their adjacency matrices into each other:
A=gBg"!, where A and B are the adjacency matrices of G and H respectively.

DEFINITION 4. The adjacency matrix A of a graph is called canonical if it is not
increased by any permutation from S(N), i.e. A 2 gAg™! for every ge S(N).

Clearly, two different canonical adjacency matrices correspond to nonisomorphic graphs.

Let us consider partially filled matrices B=(bij ). which are symmetric square
(nxn) matrices with a zero diagonal, where bij is either a number or a special symbol § [6].
The matrix elements equal to & are assumed to be undefined. We call the element ”ij filled if
""ij is a number, and unfilled if bij=5~ The row (column) is called filled if all the elements are
filled, and unfilled otherwise.

Let Iy=I(B), Jy=/(B) be the sets of indices of the filled and unfilled rows of B in the
class Ny, where N = UJy. Let 1(B)=U1y, J(B)=UJy be the sets of indices of the filled and
unfilled rows.

DEFINITION 5. A partially filled matrix A is called a complement of the partially filled
matrix B if they coincide on the filled elements of B.

DEFINITION 6. A partially filled matrix B is called admissible if there exists an
admissible adjacency matrix A being its complement.

Obviously, there are the following conditions of admissibility for the partially filled
matrices:
CONDITION 1. The sum of all elements of each filled row i€l(B) is equal to the

n
valence of the corresponding vertex: X bij="“li'
1=1

CONDITION 2. (Minimal admissibility). The sum of filled elements of each unfilled

row i€ J(B) does not exceed the valence of the corresponding vertex: qzs,& biJSvaIi,
j

Define R=(rij) to be a matrix of maximal possible multiplicity of edges between graph
vertices. We assume the maximal possible multiplicity of edges between all vertices of the
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classes Ny and N to be constant: ryj = const for any ieNy and jeN). In particular,
using R one can forbid the formation of edges between some vertices (er-=0). As the
multiplicity of edges between two vertices does not exceed the valence of each vertex, then
rij < min( vali, valj )
Denote by fv; = val; -525 bij the free valence of the vertex v;. Let bij be the unfilled
i
element of B. Clearly, "'ij the maximal multiplicity of edges between the v;-th and vJ-~th
vertex does not exceed min( Tijs s va- ). Define
min( ry fop o), =3
-
bij 3 bij?éa
Let us formulate a third condition of admissibility for the partially filled matrix.

CONDITION 3. (Maximal admissibility). The sum of all maximal multiplicitis of edges

n
of the vi-th vertex, i€ J(B), is not less than its valence: X r'ijz val;.
1=1

Let  S(fy). S(Jy) be symmetric groups of permutations whose action consists in
permutation of filled and unfilled rows and columns of the partially filled matrix B with
indices from Ny. Consider the permutations group S(1.J) = ?(S(Ik)+S(Jk)) permuting
independently the filled and unfilled rows and columns of B within the classes.

DEFINITION 7. The partially filled matrix B is called strongly canonical if it is not
increased by any permutation from S(/,J), i.e. B > gBg™! for every geS(1,J).

STATEMENT. Any adjacency matrix being a complement of a not strongly canonical
matrix is noncanonical.

The proof immediately follows from the fact that S(7,J) is a subgroup of S(N).
3. Algorithm of Graphs Generation.

Obviously, it is necessary and sufficient that the following conditions are satisfied for the
existence of a graph consisting of a given set of vertices:

n
1) The connection of edges: the sum of valences of all vertices X val; is even;
J=1

2) The absence of loops: the valence of each vertex does not exceed the number of edges

n
of the graph equal to % lz‘ val;.

Let B=(bij) be a partially filled matrix, m = min J(B) the first unfilled row. Introduce on
the set J=J(B)\m the equivalence relation:
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i~iy® Jk:ij.j,e g and Vi:i<m By, = b, .

i.e. the unfilled rows are equivalent if they belong to the same class and the first m-1 elements
of the corresponding columns in them coincide. Then J is divided into equivalence classes
{Y;1, called in (7] “pieces of stability". Let S(Y;) be a symmetric group of permutations,
whose elements permute the rows and columns of B with indices from ¥, Consider a group
S(Y)= QrB S(Y}), whose elements permute the unfilled rows and columns independently and
similarly within all pieces of stability, in particular, the elements of its m-th row within pieces
of stability. Denote the m-th row of A by A,

DEFINITION 8. The matrix A is called a weakly canonical complement of the matrix B
if it is an admissible complement with the filled m-th row and A, > (gAg™),, for every
geS(Y).

Clearly, the matrix that is not a weakly canonical complement is not a strongly canonical
matrix. The maximal value (gAg™)y,, geS(Y) is achieved when the elements of the m-th
row of A are arranged in decreasing order within each piece of stability. Thus, every weakly
canonical complement of B corresponds to the decreasing order of the m-th row elements
within every piece of stability.

Note that in some cases all admissible complements of B contain similarly filled rows
that are not filled in B. This holds for those unfilled rows of B for which the following
conditions are satisfied:

CONDITION 4. (Minimal forcing). The sum of filled elements of each unfilled row
ie J(B) is equal to the valence of the corresponding vertex: q);.s bij="“[i'
f

CONDITION 5. (Maximal forcing). The sum of all maximal multiplicity of edges of
the v;-th vertex, i€ J(B), is equal to the valence of the vertex: I}E‘ ’Iij = val;.

In the former case, all unfilled elements of the row must be zero and in the latter case,
they must be equal to maximal multiplicity of edges. The rows for which the forcing
conditions are satisfied may be filled. We call this process the forced filling of B.

The algorithm of generation is a stepwise procedure. Each step involves the construction
of all weakly canonical complements of a strongly canonical matrix obtained at a previous
step, and a selection of the strongly canonical complements.

Let s be a step of the procedure; AS a strongly canonical matrix obtained at the step s,
mS3 = min J(AS) the first unfilled row of AS. Itis initially assumed that B is unfilled: bij=5 at
i #j. Then the generation algorithm is as follows:
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1. Verification of admissibility of B. If the matrix is inadmissible,
then termination: generation of graphs from
the given set of vertices is impossible.
2. Forced filling of B.
3.If B is completely filled, then termination:
there is only one graph ( B is its adjacency matrix).
4.5=0
S.s=s5+1
AS=B
mS=min J(B)
6. Filling of the m3-th row (column) of B maximal way, go to 10.
7.1f s=1, then termination: all nonisomorphic graphs
(their canonical adjacency matrices) are constructed.
Bs=s5-1
B=AS
9. Filling of the mS-th row (column) of B lower way.
If the filling is impossible, then goto 7.
10. Verification of admissibility of B. If the matrix is inadmissible,
then goto 9.
11. Forced filling of B.
12. Verification of strongly canonical of B. If the matrix is not
strongly canonical, then go to 9.
13.If B is completely filled, then the next nonisomorphic graph
is constructed ( B is its canonical adjacency matrix), goto 9;
else go to 5.

The Figure shows the construction of the first canonical adjacency matrix from the given

5
set of vertices V= HVk and the matrix R. For better perception the unfilled elements of

partially filled matrices are shown as dots. The rows and columns filled in a nonforced way are
boldfaced. Near the matrices are their corresponding graphs. In the given example the
adjacency matrix A was constructed in two steps.

The verification procedure of the partially filled matrix B = A% for being strongly
canonical uses an algorithm [8] modified in the following way. Clearly, the force-filled rows
of B are determined by the rows with indices mK, k =1,5. Consequently, when hing for
the permutation from S(I,J) that increases B it is sufficient to verify the permutations of
rows and columns only in places of the rows mK, k =L,s, as the force-filled rows of B and
gBg™' coincide, when the rows mK k=1, do.
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Figure. Construction of the first adjacency matrix.
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For row 5,

the minimal forcing
condition is valid.

Inadmissible matrix:
for row 6 and 7 the
maximal admissibility
condition is invalid.

For row 3 and 6
the minimal forcing
condition is valid.
For row 4 and 7
the maximal forcing
condition is valid.
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An advantage of this approach is an essentially reduced search tree of permutations from
S(I,J) with many force-filled rows. In particular, all the rows standing at the end of the
adjacency matrix and corresponding to univalent vertices are force-filled (see the Figure).

Moreover, this procedure uses information about the orbits of permutations group S(1,J)
to cut off branches in the search tree of permutations.

If the maximal possible multiplicity of edges between two vertices equals the minimal
number of their valences, then all graphs are generated, including the unconnected ones.
However, molecular graphs are generally connected graphs. Therefore, after the force filling
module (item 11) in the generation algorithm it is necessary to include the module of
connectivity verification of a subgraph represented by the partially filled matrix B:

11" Search for a connected component containing the vertex v,.
If the component contains all vertices, then
the graph is connected;
else if the component contains only the vertices
whose respective rows in B are filled, then
the graph is unconnected, go to 9;
else
nothing can be said about connectivity of the graph.

For generation of only connected graphs, the maximal possible multiplicity of edges between
vertices of the same valence may be specified as equal to the valence of vertices minus one.

4. Discussion.

The structures generated are primarily determined by the set of vertices: the number of
vertex classes, the number of vertices in each class and their valences. In particular, this set of
vertices may be represented by a molecular formula. For example, when all benzene isomers
with molecular formula CgHg are to be generated, the set of vertices is specified as follows:

class 1: 6 vertices C with valence 4
class 2: 6 vertices H with valence 1.

The graph vertices may be not only atoms but also structural fragments satisfying the
following conditions:
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1) the fragment has only equivalent free edges, for example,
s
CH- _etc.;

=CH, >CH, ,~CHy , 5C=0 ,—COOH , ~CH,-CH,— , —CH

2) when some free edges of the fragment are connected, the
remaining free edges must retain equivalence, for example,
>CH-CH< may not be represented by one vertex;

3) the fragment must not be generated by linking other fragments
and/or atoms with each other.

Molecular formulas of organic compounds generally contain many hydrogen atoms. To
specify the class of hydrogen vertices, the program provides for a procedure of preliminary
distribution of hydrogens among other vertices to generate a set of microfragments (new
classes of vertices). Such microfragments correspond to the starting vertices with a definite
number of adjacent hydrogens. The graphs (their canonical adjacency matrices) are generated
from each set of micrefragments. The use of this procedure essentially saves computer time
due to the reduced number of vertices and the smaller size of the adjacency matrix. For
example, the time of generation of 1230 isomers of molecular formula C,Hg with hydrogen
atoms represented as separate vertices is 9.6 sec, while using this procedure reduces the time
to 1.4 sec on IBM PC AT 386 (20 MHz).

It has been suggested above that the matrix R gives the maximal possible multiplicity of
edges between vertices. It may also be used to specify the necessary multiplicity of edges. If it
is known that the multiplicity of edges between any vertices from Vy and V] is 1, then it is
given that rij = -t for any ieNy and jeN). Then it is possible to fix the corresponding
elements of the partially filled matrix A!, keeping them constant. When filling a row at any
step, the information specified in R is taken into account. The elements of the partially filled
matrix AS corresponding to nonpositive elements of the matrix R are disregarded.

This technique essentially saves computer time. Table 1 lists the data on generation of
some isomers, both in an unrestricted variant and with known information on heteroatoms
environment.

Moreover, specification of the necessary multiplicity of edges between vertices allows
introduction into the adjacency matrix of the information on the large fragments of the graphs
to be generated, This question will be discussed in detail in [9].
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Table 1.
Mokt GOODLIST Numberof e ()
formmuilar somers

Ci1oH200 — 13372 38.0

C1gHz00 —OH 6355 180

C1oH200 ~c=0 405 15

C1oHe00 =c-o0—ct 6612 187

CsHioN2O s 33689 324

CsHioN2O —C=N 31 0.1

CsHioN2O  (=NHg) . >C=0 213 02

CsHigN;O  —N=N- , -O- 690 1.0

The graph generation time depends much on the order of vertex classes. The least time is
achieved when vertex classes are arranged in increasing order of the number of vertices
belonging to these classes. The generation time is saved due to the reduced search tree on
verification of strong canonicity of the partially filled matrices: in each row to be filled, the
first piece of stability is reduced. Secondly, in the case of the same number of vertices, the
classes are to be ordered according to decreasing valence of their vertices. The number of
steps required for the construction of canonical adjacency matrices decreases, because at each
step the number of edges to be allocated increases. Table 2 shows the results of graph

generation depending on mutual arrangement of the classes:

Table 2.

Molecular Number of .
formuar somers b
N,O5C5 83751 1:59.7
O3N,Cs 83751 2:16.5
CgNyO4 83751 231.2
F,1CeClg 685 1.6
CgFCls 685 44
FiClsCg 685 57
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Therefore we have added to the algorithm a procedure of ordering the vertex classes
according to the above-mentioned criteria. In the case of prior allocation of hydrogens among
other vertices, this procedure works for each set of microfragments constructed.

5. Conclusion.

The GENM program implementing the above-described algorithm is written in
FORTRAN and C. The computer code of the program translated by Microsoft C 5.1
takes 26 Kb. The internal arrays require approximately 5n? bytes more, where n is the
number of vertices of molecular graphs being generated.

The program was tested on published series of isomers [10] and has shown high
efficiency. Table 3 summarizes the data on generation of isomers with molecular formulas
CnHan+4N2O, CHon.50 and CrHp:

Table 3.
Number of Number of Number of
n isomers Time isomers Time isomers Time
CnHan,sN-O CnHan 0 CnHn
2 31 0.0 3 0.0 1 0.0
3 102 0.1 13 0.0
4 333 04 55 0.1 1 0.0
5 1041 16 205 0.2
6 3218 6.0 747 08 217 02
7 9780 229 2589 3.1
8 29487 1:26.0 8796 12.7 7437 89
9 88122 5:20.0 29172 50.7
10 261876 19510 95312 3:14.0 369067 8:21.0
11 774060 1:13:32.0 306958  12:30.0
12 2278754 4:28:09.0 977939 47:10.0 23862255 9:50:43.0

These data make it possible to evaluate the efficiency of the program depending on the
number and valence of vertices. Proceeding from the first molecular formula, one can
construct only acyclic isomers, the second molecular formula corresponds to isomers having
only two multiple edges or cycles, and the third one to those having n/2+1 multiple edges or
cycles.
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It is seen from the examples that the algorithm suggested shows a high computation
speed and may be used in systems of structure elucidation with the help of molecular spectra,
expert systems for design of compounds with a given type of property, etc.
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