m@ﬁ@h no. 30 pp. 203-212 1994

GENERATION OF MOLECULAR GRAPHS WITH A GIVEN SET OF
NONOVERLAPPING FRAGMENTS

Sergey G. Molodtsov
Institute of Organic Chemistry
Siberian Division of the Russian Academy of Sciences
Novosibirsk 630090, Russia

(received: April 1994)
Abstract

An extension of algorithm and program GENM for molecular graph genera-
tion is described. It provides effective construction of graphs containing the set of
nonoverlapping fragments. Examples of isomer generation based on varions sets of
fragments and corresponding computer time are given.

1. Introduction.

The previous article [1] describes an algorithm and program GLENM for generation
of all connected molecular graphs (isomers of chemical compounds with given molecular
formula). This algorithm takes into account some structural constraints represented by
maximal possible and precisely formulated multiplicity of edges for vertices wilth given
labels. Even the simple molecular formula may lead to construction of hundreds of thou
sands various isomers. For example there are 184131 isomers with molecular formula
CsH3I'NO,. Generation of great number of graphs takes a lot of computer time and leads
to not easy problem of analysis of all constructed graphs. Meanwhile in many cases soine
additional information about possible structure constraints may essentially simplify the
problem. For example in solution of many problems of structure elucidation using molec-
ular spectra [2,3], prediction structures with desirable biological activity [4] we need to
construct all compounds containing given set of fragments. If we shall make all checks on
the presence of necessary fragments after complete construction of each molecular graph,
the overall time of isomer generation increases drastically. Therefore we need to take into
account these structural constraints in the process of graph generation.

In this article we describe the procedure of setting the information on fragments for
molecular graph generation program GENM. Tt provides the effective construction of all
graphs (described by adjacency matrices), containing given set of nonoverlapping lrag-

ments.
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2. Definitions.

Let ¢ = (V, E) be an undirected graph without loops and with multiple edges, where
V' is the set of labelled vertices and E the set of edges. Denote val; the valence of vertex v;
and A = (ay;) the adjacency matrix of a graph . Define a fragment of a graph ' as
an induced subgraph of & for which any two vertices are adjacent, if and only if they are
adjacent in the graph (/. Note that we do not impose any constraint on the connectivity
of an fragment. We can use nonconnected fragments for representation of subgraphs that
are explicitly known as nonconnected.

Let F* = (I/*, X#) is a set of nonoverlapping fragments of a graph G, i.c. FN L = §
for any k # (. Let us regard a partially filled matrix B = (b;;) with clements

a;j, .3 € U* for some k
bi=% 0y i=3
& . in all rest cases

where & means still not filled elements.

Let us take the matrix B as initial matrix for generation of graphs. Graph gencration
algorithm [1] is a stepwise procedure. On each step it constructs all weakly canonical
complements of strongly canonical matrix taken from the previous step and selects all
strongly canonical ones among them. Tt is clear that both matrix B and all its comple-
ments contain adjacency submatrices corresponding Lo given set of fragments #*.

Let fv, =val; — 5 by, is remaining free valency of the vertex v;. Here and further if
U
nol stated otherwise we shall use the term valency in the sense of remaining free valency

of a vertex.

DEFINITION 1. We call vertices of fragments with free valencies as external and
vertices without free valencies as inlernal. All vertices of a graph thal do not belong to

any initial fragments we call free vertices.

Evidently each fragment has external vertices that are connected with other vertices
of a graph.

DEFINITTON 2. We call fragients with only external vertex as semple [ragments.

Here are some examples of simple fragments:

0
~ il
- T
- ~on

Free valencies are shown as dashes going out of vertices. We will assume that unlabelled
verlices in a cycle have the label C with number of adjacent hydrogen vertices (label H)
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calculated from the valency of C-vertex. Chemical nature of atoms implies the following
valencies of verlices: C-4,H-1, N-3,0-2,F- 1.

Define an cquivalence relation on the set of vertices. We say vertices v; and v; of a
fragment are equivalen! if there exists an one-to-one correspondence of vertices preserving
connectivity and labels that maps the vertex v; to v;. Then the set of fragment’s vertices
is devided into equivalence classes. These classes are known as orbits.

Let us take all [ragments that have more than one external vertex.

DEFINITION 3. We call the fragments preserving the equivalence relation after con-

nection of any external vertex with other vertices of a graph as intermediafe.

DEFINITION 4. We call the fragments changing the equivalence relation after con

nection of any external vertex with other vertices of a graph as comple.

Fxamples of intermediate fragments are the fragments with only two external vertices,

fragments with all unique external vertices (belonging to different one-clement orbits):

—(H; —CHy— o o 1 N O >Y<

lere are some examples of complex fragments:

= =
Sa-y -l ][

Remind that the initial data for the graph generation algorithm [1] are the set of
labelled vertices with defined valencies, divided by initial classes Vy,V3,...,V, and the
matrix of the maximal possible and necessary multiplicity of edges between vertices f =
(1)

Further we shall analyze examples of handling simple, intermediate and complex lrag-

ments.
3. Simple fragments.

Let % = (U*, X*) be the set of nonoverlapping isomorphic to each other simple frag-
ments of a graph G

Let us divide all vertices of the fragments F'* by two nonoverlapping classes, The first
class will contain all internal vertices, the second class - all external ones. Free vertices
will be devided into classes according to their labels and valencies.

Construct the partially filled matrix B = (b;;). Define B = (r;) Lo be a matrix ol the
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maximal and necessary multiplicity of edges between vertices as:

{ by bt
Vg =

i ’ (1
cu, forany i € Vi,j € W such that b; = ¢ !

where ey 1s the maximal possible multiplicity of edges between vertices from classes Vi
and V. It is evident that =;; < min{ fv;, fo;) for any i.j such that b; = é.

Then due to taken partition of vertices to classes and due to the matrix #2, algorithm
[1] will generate only graphs containing the set of fragments #%. Adjacency matrices of
fragments are inclided in initial partially filled matrix £2 by delinition.

In the case of initial set of diffcrent simple Iragmeuts we split them by subsets of
isomorphic fragments. After that we process each of subsets as above.

lsomorphic graphs may appear in generation ol graphs from simple fragments. It
will happen when the conneetion of some initial fragments and [ree vertices form a new
fragment identical to one of the initial fragment,

EXAMPLE. We need to generate all carbonie acids O
with molecular formula CgHpO4 having the carboxy] fragment.: ‘:f(]”

The initial sel of vertices is divided by the following classes:

Vi: 2 vertices O and O with valency 0;
Vyr Dvertex O with valeney 1;
Vi 5 vertices C with valency 4;
Vi: 2 verlices O with valency 2;

Vis: 9 vertices H with valency 1.

The matrix 7 of the maximal and necessary multiplicity of edges with omitted hydrogen
vertices will look like:

(00-20000000“
0o o{-1/0 00 0 0|0 0
2 Alol1 111 1]11
0 0|10 22 2 2|2 2
f o afilen e e gle @
s 0 0f1]2 202 2[2 2
0 o|1l22 20 2|2 2
0 0f1]22 2 2 0|2 2
0 0]1]2 2 2 2 2]/01
Lo of1j2222z21o]

All elements of this matrix that belong to adjacency matrix of the carboxyl [ragment
are labelled bold. The maximal possible multiplicity of edges are equal 2 (that follows
from the connectivity of graph and the maximal number of multiple edges).
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Using these data as initial, the GENM program generates in 3.1 sec 1974 graphs of
carbonic acids, 1971 of them are nonisomorphic. Time for generation of all possible 97391
isomers with molecular formula CeHyoQ4 without any other constraints s 2 min 38 sec
on IBM PC AT 386/20 MHz. All twice gencrated graphs contain two asymmetrically
placed carboxyl [ragments (see figure below). In the process of generation the constructed

carboxyl {ragment is regarded as nonidentical to the initial carboxyl fragment.

0\(' ((';m('rl ('/O 0\(‘ CH ('/O
O QI —C " CH (
no” G “ou no” CH, o
CHy
0 0
/

>c . GH--CHy--CH, € 4

1O Clls OH

4. Intermediate fragments.

All intermediate fragments will be considered independently even if some of them may
be isomorphic.

Suppose we have an only intermediate fragment F' = (U, X'). Let us divide the set of
vertices of the fragment F into orbits. Define initial classes of vertices for generation in
the following way. The first class will include all internal vertices of the fragment and all
other elasses will contain vertices of fragment’s orbits, corresponding o external vertices.
Free vertices of a graph form initial classes according to their labels and valencies.

Construct a partially filled matrix B = (h;). Define the matnix B = (7;;) by ox-
pression (1). These initial data provide generation of graphs containing the intermediate
fragment I,

In the case of multiple intermediate [ragments we apply the above procedure consecu-
tively Lo each intermediate fragment. Unlike the case of single [ragments external vertices
of intermediate fragments that belong to different, cven isomorphic [ragments shonld be
placed in different initial classes in order to the matrix R satisfy (1).

In the case of combination of simple and intermediate fragmments we apply the pre
liminary procedure of distribution of Lydrogens among other vertices (just the same that
we used for generation of isomers without any initial information about fragments). Note
that in some cases there are vertices of fragments with known the number of hydrogen
vertices attached. External vertices of these fragments should not have any additional hy-
drogen vertices. An optional characteristic of fragments indicating the maximal number
of additional hydrogens for each external vertice exists.

Isomorphic graphs in generation using intermediate fragments may appear in two cases,

First, when connection of initial fragments and [ree vertices leads to new classes of equiv
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alence. The second case corresponds to set of several identical intermediate fragments.
These fragments are considered as nonidetical and thejr vertices belong to diffferent initial

classes,

EXAMPLE. We necd to construct all isomers with the molecular formula Cgll; N,
containing —CHy—NH - fragment without any additional hydrogens attached to
it. In this case isomorphic graphs may appear both as a result of construction of the
second fragment CH;—NH - and as a result of construction of synumetrical frag-
ments  — CHy- NII—CH,- or  —NH  CHy—NH - In both fragmems ex
ternal vertices of the initial fragment become equivalent 1o free vertices attached to it.
The gencration time for 7644 isomers with the moleenlar formula CqH Ny, containing
-~ (CH;  NIT— fragment without additional hydrogens attached Lo it was 7.5 see, 6739

of them are nonisomorphic.
5. Complex fragments.

Suppose we have an only complex fragment 7= (17, X'}, Let us divide all of its vertices
by orbits. Arrange these orbits (equivalence classes) according to decreasing mnnber of
[rec valencies of vertices in each orbit. Taking into account this partition we construct
the canonical adjacency matrix of the fragment /7.

Initial classes of vertices for generation are constructed on the basis of fragment orbits.
Free vertices ave divided by classes according of its labels and valencies.

Construct a partially filled matrix B = (#;;) including canonical submatrix, corre-
sponding to the fragment 1. Define the matrix £ = () by expression (1).

In this case we need to enforce the definition of strongly canonical matrix [1] for
correct extension of the algorithm to new class of fragments. Let T oand J be the sets
of indices of the filled and unfilled rows of B. Let S(7,J) be the symmetrical group of
permutations that independently interchanges filled and unfilled rows and columns of B
within all classes. Define S(F,1,.J) to be a subgroup of S(7,J) thal preserves adjacency

submatrix of fragment £

DEFINITION 5. The partially filled matrix B is called strongly canonical if it is
not increase by action of any permutation from S(F,[,J), ie. gBg™' < B for every
g€ S(F 1)

This change of delinition for strongly canonical matrix is necessary for preserving
canonical adjaceney submatrix of the fragment F' in partially filled matrix B. In general
cage some permutations of rows and columns increasing the matrix B but decreasing the
submatrix corresponding to the fragment [ may exist in group S(/,J).

It should be noted that vertices of the complex fragment must appear in the first initial

classes of vertices. If we have at least one class containing vertices with free valencies in
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front. of initial classes of vertices corresponding te the complex fragment, many fillings
of these rows of the matrix A become impossible. For example, consider the complex
[ragment Fy (see ligure below), Evidently, all vertices of this [ragment are equivalent and
should belong to the same initial class. Suppose we have one more class i front of it
containing the vertex labelled O with valency 2. In this case the only filling of the picce
of stability [1] corresponding to vertices of the fragment will be (1,1,0.0) because the picce
of stability always {illed in decreasing order. This filling corresponds to the fragment. F.

But there exists the [ragment Fj too.

s TT w ol w o

By the same reason we cannot use the procedure of preliminary distribution of hy
drogens among other vertices. This is why the handling of several complex fragments
is not as easy as for simple or intermediale fragments. An acceptable solution of this
problem was found in dividing the vertices of all complex fragmenis except the first one
by initial classes in different ways. To construct all possible fillings of upper unfilled rows
of the matrix /3 we divide all external vertices of a fragment by trivial (containing only
one vertex) classes. In this case we obtain all possible connections of a complex fragment
with preceding fragments. If there exists al least one connection of this type, further we
use these trivial classes. (Qtherwise if the current complex fragment is not connected with
preceding complex fragments, we divide its external vertices by classes according to the
orbits of this fragment.

It is evident that presence of several complex fragments leads to generation of large
enough number of tsomorphic graphs. For example we have constrneted 32554 isomers

with molecular formula Ci3H2N,0, containing the following fragments for 4 min 2 sec:

g\ S~ -
i S
fi

There are 15778 nonisomorphic graphs among them.
6. Results of generation of some isomer classes.

Let us consider the generation of all isomers with the molecular formula C,H; N, O,
with different sets of initial structure fragments. Table 2 contains the examples of rag
ments and their numbers. The [irst row [ragments are complex ones, the second row

fragments are intermediate and the third row fragments are simple.
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Table 1. Results of generation of some isomer classes.

Number of Number of

n  Fragments  nonisomorphic gencrated Time
graphs graphs min:sec

1 1 76247 76247 5:01.0
2 1.4 1845 2064 7.6
3 1,7 302 802 5.0
4 1,8 3835 3855 16.0
5 1,9 203 203 0.9
6 1,10 3234 3234 15.0
7 132 13192 13192 46.0
8 1,10.12 553 553 2:3
9 2.4 10264 13584 2h.0
10 2.5 860 86 1.9
11 2,10 19896 20316 52.0
12 2,10,10 456 456 L5
13 310, 8 3147 6185 13.0
14 3,10,11 940 1891 3.5
15 3,10,12 17468 36575 51.0
16 3 52965 H2965 1:14.0
17 5,4 2915 2090 6.6
18 5, T 1460 1460 3.3
19 5,9 235 235 0.5
20 5,10 3560 3560 6.5
21 6 3838 3838 5.9
22 6, 4 215 220 0.5
23 6,7 166 166 0.5
24 6.8 398 328 0.8
25 6,9 27 27 0.1
26 6,10 392 392 0.9
27 6,12 665 665 1.1
28 Ty BEL 4457 8825 15.0
29 7,10.11 12295 12295 19.0
30 9,11 5866 5866 8.7

31 10,10,11 7533 7533 13.3




Table 2. Examples of fragments.

] 2 3 4
!
H 0 (|)
: HC—CH
NH ol |
5 6 T 8
4 g . oy
P 5
% 0
9 10 1 12
0
< =0 >E Nl
~on - =

Table 1 contains information about gencration of various classes of isomers delined
by the sets of fragments. We do not set any constraints on the number of additional
hydrogen vertices for external vertices of frafments. The sets of fragments were designed
for demonstration of work of program GENM with various initial data. We made the
different combinations of complex, intermediate and simple fragments. The fragments
have different number of cycles and multiple edges.

As mentioned above isomorphic graphs are generated in the cases of setting several
complex [ragments (examples n.2 and n.9 in Table 1), several identical intermediate frag
ments (n.28) and in case of appearing new classes of equivalence lor the set of vertices

(n.13, n.14 and n.15).
7. Conclusion.

The data listed in Table 1 afford us to evaluate both high efficiency and good results
of applying the described method of setting information about necessary fragments. 11,
should he noted that the adjacency matrices of generated graphs include adjaceney sub-
matrices of the initial fragments. It affords to use the generated graphs in subsequent
investigations immediately.

The algorithm of graph generation based on the set of nonoverlapping initial fragments
may be successfully used as a good instrument in structure elucidation systems using
molecular spectroscopy data bases. in molecular design systems, in expert systems for

construction of new substances with predefined properties.



= 232 =
Acknowledgment.

[ would like to thank A.A.Dobrynin for his valuable remarks and suggestions and also
IST Long-Term Research Grant Program (No. NCH2-7227-0925) for financial support.

References.

1. 5.0G.Molodtsov, Computer-Aided Generation of Molecular Graphs,
MATCH, in press.

2. W.Bremser and R.Neudert, Automation in the Spectroscopic Laboratory -
Solutions and Perspectives, Furopcan Spect.News, No.75 (1987) 10-27.

3. K.S.Lebedev, Infrared and Mass Spectral Databases in Structure
Elucidation of Organic Compounds, Zh.Anal. Khimii, 48 (1993) 851-863.

4. A.J.Stuper, W.E.Brugger and P.C".Jurs. Computer Assisted Studies of Chemical
Structure and Biological Function, Jonh Wiley & Sons, 1979,



