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ABSTRACT.

n
Let ©  a;;iziz;z; be a cubic form and the coefficients have the symmetric
i,7,k=1

properties that

@ik = An—idln—k+ln—j41

@i gk = ki = Ck -

Then the copasitive property of the cubic form

n n
x Fi g kBT T — z Qr 3,k Tn-1418; Tk
k=1 i k=1

is studied and an application in the comparison of 5 T-isomers is also presented.

I. The Copositive Property.

n
Let f(z1,22,-- ,20) = 3. B j kit 2 be a real cubic form with n variables.
+5k=1
If for any z1 > 0,23 > 0,--- ,z, 2 0 we have that f(z1,22, -+ ,2,) > 0, then we
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call f(ay,x9,-- ,2,) copositive. if morcover f(z;,x2,--- ,2,) = 0 if and only if
Ty =@y = - =Ty =0, then we call f(x1, 22, -+ ,2,) positive.

The copositive property of a quadratic form has been studied and used exten-
sively. However, the same property of a cubic form has received much less attention.
In the present paper we will study the copositive property for a type of cubic forms
and an application in chemistry for the comparison of the numbers of Kekulé struc-
tures of .S;ilﬂd T isomers.

Let Y @i kTl Tk be a cubic form and the coefficients have the symmetric
fEe
properties that

(*) Qi gk = An—itln—k+1,n—z+1
and
(**) Qg .k = Cjki = Ck,ij-

Denote by D(zy,ca,--- ,z,) the difference

n n
E @i kETjTE — z 8; 3 kTn—it1T5Tk.
1.3,k=1 i,k=1

Then D(ix1,23,--+ ,%n) is again a cubic form. In this section we will give a sufficient
condition for D(zy, 3, -+ ,x,) to be copositive.

It is easily seen that

L3 n
D(z1,23,+++ y2a) = 3 (B0 —Zn-i41) Y GijTiTh
=1

Jik=1

(%] n
=3 (2 = Tnoin1) Y BiaziTa,
i=1

i<k
where

(s # %)
b Qi gk — An—it1,jk for =k
ik = :
@ik — On—it15k + ik — Anoit1 k) for 3%k,
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We introduce the following linear transformation

z; = Hyi + yn—it1)
Tn—it1 = £(Yn—it1 — vi) for  1<i<[3]
I(g)41 = Y[3]+1 for n odd.
The inverse transformation is as follows
Yi = Tj = Tn—itl
Yn—itl = Ti+ Tn_iy for 12i< (3]
T(a]41 = T[2]+1 for n  odd.

Then, we obtain that

n
D(zy 2, yan) = Flyn vz, 1yn) = Zyizﬂa,.;.ky;yk:

[3)
i=1  j<k
where ¢; j & is determined by the following way.

Obviously, the four coefficients ¢; j &, Cijn—k+1; Cikn—jt1 aNd Cipeki1,n—jt+1
Of YUk YjUn—k+1) ¥k¥n—j41 and Yn_ikp1¥n—j41 arc completely determined by the
four coefficients b; j x, bi jn—k+1, bikn—js+1 and b n_k41,n—j41 Of TjTk, TjTn—k41,
Tkn—jt1 AN Tn_ky1Tn_ji1. We can always assume that j < k < [3]if n is even
and j < k < [3] 4 1if n is odd. We distinguish the following cases.

Case 1. n is even.

Subcase 1.1. j =k
The three coefficients ¢, ;;, ¢ jn—j+1 and ¢ia—j41,n—j+1 Of Y4, Yjyn—s+1 and
Yn—j4+1¥n-j+1 are determined by the three coefficients  bij s, by jn—j+1 and
I+ it BB =g
bi,n—j+1,n—j+l of FjLiyEgTn-j41 and Tn—j+1¥n—j+1-
Since
1
225 = 7(4j + Yn—5+1)(¥; + Yn—j1)
1
TiZn—jr1 = (4 + Yn—y1)(¥n—jt1 ~4))
and

1
Tn-j1%n—jr1 = 3 (Yn—jrr = ¥5)(Yn—j+1 — ¥5),
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so we have

1
€3 = Z(bi.;.j —bijn—it1 +binmjrtn-jt1)s
1
Cijm—ytt = 7(2b55 = 2binjira-jinr)

and
1
Cin-j+ln—j+1 = Z(bl.]d + bl,f.!l—)+l b= bn"-]‘f'l-"—f"’l)'

Subcase 1.2. j < k.

The four coefficients ¢ k. €ijn—k+1, Cikn—j+r1 and €in—kp1,a—js1 of yux,
Yil¥n—k+1s Ye¥n-j+1 and Yo_giy Yn-j41 ave determined by the four coefficients
bijks bign—kits Bikn—jer and byp kgt n—jir of TjEk TjTa—ky1s TeTaoye1 and

Lk 1Tn—j+1-

Since
1
TEg = E(yj Fyn—ir1) Wk + Yn-k41)
1 &
TjTn—k41 = Z(yj + ¥n—jrt ¥nokr = Ui)
1
TkTp—jt1 = 7 (Uk + Yn—kt 1) (Un—jr1 = ¥;5)
4
and

1
Tpe k41 Znejp1 = Z(yn—k+l =) (Yn—jt1 — Wi )

so we have

N L

Cijk = Z(bi,j,k = biin—k+1 — bikn—jt1 + Vin—kt1,n—jr1)
1

Ciijn—ksl = Z(bi,ch + b jin—k+1 — B kn—j41 — Binmkd1,0—591 )y
1

Cikmmidy = Z{b:,j,k =i kb1 Tk nmgrr — Dine kgL n—ggi )i

and

1
Cim—k+ln—j+l = Z(bi.j,k + bija—k+1 +bikn—jt1 + Vin—ktrn—ji1)
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Case 2. n is odd.
Subcase 2.1. j =k < [}]
The same as Subcase 1.1.
Subcase 2.2. j < k < [}]
The same as Subcase 1.2
Subcase 2.3. j < k= [}]+1
The two coeficients ¢; ;1 and e, x n—jt+1 of ¥;yx and yyy,—;41 are determined by

the two coefficients b; ;& and b; k n_jq1 of 225 and 2gz0_j41.

Since
1
25k = S (Y5 + Yn—j1)ue
and
1

TkTn—541 = Eyk(yn—)ﬂ = y])v

so we have
1

Ciik= i{bi,j,k — bR )

and

1
Cikn—itt = 5(bisk + Biknsi1):

Subcase 2.4. j=k=[}] +1.

Clearly, we have ¢; jx = b; j 4.

By substituting (* * ) and the property (*) into the expressions of ik,
i jm—kt1) Cikon—jt+1 80d € n ki1 n-j+1, We obtain the following,
(A).n is even.
(4)1. j=k
¢iji =0, Cim—jtin—jt1 =0
and
Cijn—j+1 = i(bw,: =S bi,n—]+],n_1+|).

Again by (* * *) and the property (*) we can get that

bijn—j+t1 =0 and  bij; = ~bin-jiin-js1
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Thercfore,
1
Cign—itl = g(b:,j,n—j+1 — b jprn— 1)
(4)2. j < k.
Cigk = 0, Cin—k+l,n—j+1 — 0
and
1
Bl fmehgl = E(bLj‘nkarl —bin kgt )
1
Cimy = E(hi,k,n—1+1 — B e kgl 1)
9
&= E(bi,k,n—j+l = bin_jr1,n—kt1)-
(B). nis odd.

(B)L j=k<[3]
The same as {(A).1.

B2 j<k<iz]
The same as (A).2.

(B).3. j<k=[3]+1

1
SGiix = bign-jer) and Cipnojrr =0

Cijk =

(B)d j=k=[2]+1

Ci,j,ic = 0.
To sumn up the above cases, we obtain a general expression for ¢; ;. as follows

Flbigk —bign-jr1)  for j<[3]<k and for j<hk=[3]+1

if n ois odd,
Gk =9 o for [2l<i<k ond j<h<[B]
and for [BM+1<j<k if n is odd
Now we can simply write F(y1,¥2,7 - ,Yn) 88

13018 »

Ci 5 kYW Wk,
i=1 j=1 kz[%l+]
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ie.,
n 3] 15)
Z Yk Z Ci,p kUil
k={Z)41 =1 3=1
By the property (++) we can see that ¢; jx = c;ix for each k = [§]41,--+ ,n. Hence

if we denote gi(y1, %27+ ,y[2)) by

5]

~i

]
n
Ci 3 kYiYy for each k= [5] 41w om
1=1 j=1

then gy, y2, ,y[_?]) is a quadratic form and
n
D(zy,z2,+ ,2a) = Z yrgr(yr, ya, 1Y% )
k=[3]+1
where for each k the coefficient matrix My is given as follows
My = (ci50)[2]1x(2)s
in which

ik = 5(bijk = bikn—ji1)

— T e

= @ik — @noit1,5k T @ik — Qnoit1 k,j

(%)

— Gikn—jt1 T Anitl kn-y+1 — Fin—jblk
+ Gnigin—ji1k)
Now we give our main result of this section.

THEOREM 1. If for cach k = [}] + 1,--- ,n the matrix My is copositive, then
so is the cubic form D{(zy, @y, -+, Tq).

Proof. Forany x, > 0,24 > 0, -+ ,z, > (0 we know from the inverse transformation
that y¢ > 0 for each k = [£] +1,--+ ,n. Since the matrix M is copositive for each
k=[3]+1,---,n, so the corresponding quadratic form gi(v1, vz, 2¥iz)) 2 0 and

therefore D(z), 24, ++ ,Tn) is copositive.
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I1. An Application in Chemistry.

Isomers, which may be constructed from several subunits A, B,--- by linking
them in a different mauner, are called topologically related, usually, they are de-
noted by S and T, respectively. There are several ways in which pairs of topoloeg-
ically related isomers may be constructed, each one is called a topological model
or type. Many types of § and T isomers were introduced by Polansky et. al., sce
[3). Polansky and Zander [1,13] discussed the topological effect on the molecular
orbital (TEMO) of topologically related isomers. The comparisons of the numbers
of Kekulé structures and the characteristic polynomials of § and T isomers will
indicate that the TEMO has or does not have inversions. In this scetion we will
consider the comparison of the numbers of Kekulé structures of a new type of §
and T 1somers. From [7] and the references therein, we know that the m-electron

energy (E) of hydrocarbon €, H, has the following approximate relation
E = [0.201n — 0.0495 + 0.043K(0.795)" ~| E(benzene).
and the Dewar resonance energy (RE) can be well reproduced by
RE =1143ln K [kJmol "],

where I is the number of Kekulé structures. Therefore, gencrally speaking, the
larger the number of Kekulé structures of a benzenoid hydrocarbon is, the higher
its resonance encrgy and Dewar energy should be. So, our comparisons should lead

to the energy comparisons of the corresponding isomers.

The new type of S and T isomers of benzenoid systems is shown in Figure 1.

For terminology and notation not defined here, we refer the readers to [7, 13, 14].

Let B be a benzenoid system, € be a cut segment and M be a Kekulé structure
of B. Denote by M(C) the number of M-double bonds intersected by C.

LEMMA 1 [14]. For any two Kekulé structures M and M' of B, we have M(C) =
M'(C).

LEMMA 2. Let M be a Kekulé structure of the § or T isomer, and the three cut

segments C, ' and C5 be as shown in Figure 1. Then we have

M(Cy) = M(Cy) = M(Cs).



(Figure 1)
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Proof. By the symmetric property of $ or T and Lemma 1, this lemma follows

immediately.

LEMMA 3 [14]. Let B be a benzenoid system with a Kekulé structure M and
B' be a sub-system of B. Let d be the difference of the number of peaks and the
number of valleys of B'. For a normal color of B with black and white, denote by
r the difference of the number of black vertices and the number of white vertices of
all the M-double bonds, each having precisely one vertex in B'. Then we have that
d =i

LEMMA 4. For any Kekulé structure M of the S or T isomer, we have M(C}) =
M(Cy) = M(C3) = 1, where C,C; and Cs are the cut segments shown in Figure
1

Proof. By Lemma 2, we can assume that
M(C)) = M(C3) = M(C3) = k.

Since 3 is the difference of the number of peaks and the number of valleys of H,
from the color given in Figure 1 and Lemma 3 we know that 3k = 3. Thus, k = 1.

Denote by a; j x the number of Kekulé structures of H \ {v;,v},v"x}, where H is
given in Figure 1. Then by the symmetric property of H, we obtain the following

lemma.
LEMMA 5.
() @ Gk = Q5 ki3
(22) Qi jk = ki j;
(421) @i jk = Qnoitln—k+1n—jtl
(iv) @iln = @ni = iy = 0;
(v) @i 1n-1 = i2n.

Proof. The first two equalities can be obtained by turning H respectively in a clock-
wise and counter-clockwise manner. The third one can be obtained by reflecting H
with respect to the vertical line that bisects H. The remaining two equalities can
be obtained by successive matching of the vertices of valence one.
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The number of Kekulé structures of a benzenoid system B will be denoted by
K(B), as usual. For simplicity, we will use 2, to denote K(A\ {u,}), where u; is a
vertex of 4 , see Figure 1.

Since A = A" = A” in the § and T isomers, by Lemma 4 we know that

n
K(S)= Z G jRTiT;Tk and
nJ.k=1
n
K(T)= Z @i kTn—ip1 T Tk
)

Denote by D the difference K(S) — K(T'). Then from Lemma 5 we know that the
cubic forms K(S), K(T) and D satisfy the conditions of Theorem 1 in Section 1.

THEOREM 2. If for each k =[] + 1,--- ,n the matrix My, defined from a, ;
here, is copositive, then the number of Kekulé structures of the somer S is not less
than that of the corresponding isomer T,i.e.. K(S) = K(T).

For general n we have not proved that each M; here is copositive. Anyway, for
n = 3,4,5 and 6 we will check that it is really so. In the following, a; ; x are obtained
by a result of [15], i.e., the number of Kekulé¢ structures of a benzenoid system is
equal to the square root of the absolute value of the determinant of its adjacency
matrix. By using a computer, we obtain the following.

The case n = 3.

Since [3] = 1, we have the two matrices M, and Mj of order 1 as follows M, = [1]
and M3 = [4], which are copositive. Thus, for n = 3, we have that K(S) > K(T).

The case n = 4.

Since [%] = 2, we have the two matrices My and M, of order 2 as follows

S {20 10]

10 5

It is easily seen that they are copositive and hence K (S) > K(T) for n = 4.
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The case n = 5.

Since [%] = 2, we have the three matrices My, My and My of order 2 as follows

[1568 1568]

M, =

1568 1368
1470 1470

g gy
1470 1470
980 980

M= [939 980]’

which are copositive. Thus we have that K(5) > K(T) for n = 5.

The case n = 6.

Since [§] = 3, we have the three matrices My, M5 and M of order 3 as follows

873,180
1,309, 770
623, 700

698, 544
1,047,816
498, 960

232,848 349,272

582,120
M, = | 873,180
415,800
465, 696
M; = | 698,544
332, 640

Mg =

349,272 523,908

166,320 249,480

415,800
632,770 | ,
297,000

332,640
498,960 |
237, 600

166,320
249, 480
118,800

By directly calculating, we know that the ranks of the three matrices are all equal
to 1. Therefore, they are copositive and hence K(S) > K(T) for n = 6.

An interesting observation is that all these matrices for n = 3,4,5 and 6 are of
rank 1. We propose the following conjecture to end this paper: For n 2> 3 and each
k= [5]+1,--- ,n the matrix My, defined from «; jx in this section, is of rank 1.
This will imply that K(S) > K(T') for all n > 3.
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