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Abstract

Two simple and easily computable algorithms of low complexity
are described {withoul prools):
Algorithm A enables the characteristic polynomial and the eigenspaces
{eigenvalues, eigenvectors) to be caleulated for all hexagonal systems.
Algorithm B enables the same to be doue, in a more efficient. way, lor
those hexagonal systems whose dualist graph (the inner dual graph} is
a tree (representing catacondensed benzenoid hydrocarbons).
Both algorithms are variants of a simple sunmmation procedure follow-
ing the edges in a (cvele-free) directed graph.

1 Introduction

1.1 Definitions and notation

A hexagonal cell (hrielly: a cell) is a closed plane region bounded hy a
regular hexagon of unit side length.

A hexagonal system (1S5) is a finite 2-counected plane graph in which the
closed hull of every finite region is a cell.

A catacondensed hexagonal system (C1IS) is a IS in which no vertex
belongs to more than two cells.

Let G = (V, F) be a graph with vertex set 17 = V(') ={vy. v, ...ty } and
edge set I' = F{() and let w{u) be a function. defined on {7 =1V U E.
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assigning non-negative weights to the vertices and positive weights to the
edges of (i call the pair (¢ := ((+. w) a “weighted graph”.
Let A = (a;;) denote the weighted adjacency matrix of (i, where

w(v;) ifi=y
wle;;) = wlv,ey) if 1# ) and vervtices v, v,

i are connecled by the cdges ¢;; € E
0 if i # j and vertices v,y

are non — adjacent
Let [ be the n x n unit matrix. The polynomial
det{ A\ — A) (1)

of A and its roots are called the characteristic polynomial of &7, denoted by

%(A). and the eigenvalues of (i, respectively. Let A" be an eigenvalue of
G and let 0 denote the zero vector on n components. The set S(A?) of all
solutions x of the equation

(AT - 4A)-x=0 (2)

forms the eigenspace of & belouging to A% every non-zero x° € S(AY) (with
| x% |= 1)is a (normalized) eigenvector of G belonging to A°. (In connection
with the Hiickel theory, these vectors are called “molecular orbitals™ by
chemists .) If G = H is a HS then call ¢ = H a weigthed hexagonal
system (WHS).

A horizontally fixed WHS is a WHS in which some of its edges are
horizontal.

1.2 Chemical background

The structural formula of a benzenoid hydrocarbon B with het-
eroatom(s) consits of a weighted hexagonal system H spanned by the
carbon and heteroatoms and some hanging edges which represent bonds

with hydrogen atoms (Fig.1); let us call H the skeleton of B.
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1.3 Literature

The fundamentals of a general theory of graph spectra were independently
elaborated by L.M.Lihtenbaum [1] (1956) and L.Collatz and U.Sinogowitz
(2] (1957). Also independently. M.Mili¢ [3].H.Sachs [1]. and L.Spialter [3]
(1964) established a formula expressing the coefficients of the characteristic
polynomial of a grapli in terms of its cvelic structure.

Much information about the early approaches to the Hiickel theory of (aro-
matic) hydrocarbons are contained in the books “Dictionary of 7 - Electron
Calculation™ by (.A.Coulson and A.StreitwieserJr. [6] (1965) and “Hiickel
Theory for Organic Chemists™ by C.A.Coulson, B.O Leary and R.B.Mallion
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[7] (1978). After the publication of [6] many papers on weighted graphs
have appeared from which we mention only A.Graovac, O.E.Polansky,
N.Trinjasti¢ and N.Tyutyulkov [R] (1975), N. Trinjasti¢ [9] (1977). M.J.Rigby.
R.B.Mallion and A.C.Day [10, 11] (19771978}, and P.Krivka, R.B.Mallion
and N.Trinjasti¢ [12] (198%). For more details, the reader is referred to
the monographs of D.M.Cvetkovié, M.Doob and IL.Sachs [13] (1980) and
DAL Cvetkovié, M.Doob. LGutman and A.Torgadev [14] (1988).

In this paper, an algrithm A is developed (sce also [15. 16, 17, 18]): this
algorithm is based on a general graph-theoretical procedure for calculating
determinants and solving systems of linear equations. see Kh.Al-Khnaifes
and H.Sachs [19] (1990); A allows the eigenvalues and eigenspaces of any
WHS to be simultaneously calculated.

2 An algorithm for the general case

Let I be an horizontally fixed WHS. In H we find a set of “zigzag lines”™.
Zy, Zy. ..., By, say, where Z;. is a maximal monotone (weighted) path (non-
interrupted zigzag line) in H connecting a top point {; with a hottom point

b;. as indicated in Fig.2.

0 [P

Hy ”6
Figure 2 Figure 3

Let Z = Z(H) denote the subgraph of /' whose components are the zigzag
lines Zy, Zy.....Zp and put Z = (Z,w") where v = w |y-yf(z) is the restric-
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tion of w to the elements of Z. Put

wzZ)= [] wie) (3

cek(Z)

The points {,, ¢ = 1.2....,p. are called the top vertices of JI. Every zigzag
line Z; of I is prolonged bevond its bottom point I, by one unit segment ¢}
of weight w{e}) = 1 connecting & with an additional “virtual™ vertex 67 of
weight w(b!) = 0: thus H is turned into a weighted graph 1", see Fig.3.
For any vertex v of H™ let vF denote its unique upper neighbour (if'it oxists)
and let N*t(v):= N{v+) = {v} be the set of neighbours of ¢+ of H~ which
are different from ¢ (Fig.1).

ptl

Nt(v) = {ot0, vt}

Figure 4

Algorithm A:
To every vertex v of ™ assign a vector
d(v, ) = (di(v A datr A),dp (e )
according to the following rules.
(A.1) For top vertex g, put
A, A) = (Erks ks oo byt

where 8;; =1, ¢y =0if i £ L (i.h=12,.,p)
(A.2) for any vertex ¢ of H* which is not a top vertex, put

- 1
d(e.A) = o e

){(/\Au’(v*))a(r'*.,\)— 5 w(a-*.—n’)a(n’.,\)}

HEN*(v)



- 158 -

where w(vt) and w(et, ¢') are the weights of vertex »* and of the edge
connecting v, ¢/, respectively.

It is easy to see that, running through H~ from top to bottom. we have no
difficulty in successively calculating the vectors d{r. A) which, by (A.1) and
(A.2), are uniquely determined.

Form the u x p matrix

DU, 2y = (@7 (e A, d7 (e, A @ (0 AT
= (di(v;. M)
(= 1Zvwudty h =12 ic0p)

and the p x p matrix

DA A) = (@757, 20,87 (85 A)s s AT(B5, M)T
= (di(b?. N))
(3.5 = 1,2,...sp):

Theorem 1
Pg(A) = ¢ -w(Z)-det D*(H. ), £ € {+1,-1} 4)
Theorem 2 Let A° be an cigenvalue of H, let §° be an solution of
D*HX)-5°=0 (5)
and put
%0 = D(H, %) - 50 (6)

Then the vector X° is an eigenvector of H belonging to A°, and all ¢igenvec-
tors (in fact: the eigenspace) belonging lo A° can be obtained this way.

Both theorems are slight modifications of theorems in [19].

Example 1.

For the WHS depicted in Fig.l (see also Fig.5 with labelled vertices), we
obtain the following Table 1 (the weights to be used are: w(v;) = 0,j =
1.2, 13 w(vgy) = o w(vgz, v1g) = w(mg, 0y) = B: all other edges ¢ of H*
have weight w(e) = 1).
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(-0.78548) (-1.50231)

(0.59898) ( 0.91221)

(1.47133)
(0.67785) &~ (1.0000)
(-0.69477) (1.20061)
/s
(01Q-0.9531] (0.38075)
N / o \\
0C 00
Figure 5 Figure 6

Thus

Pr (X)) = (+1)-w(Zy)-det D*(Hy. \)
= g-det D*(Hy, M)
=AMl (14 2850 4 et
F(T2 4 2635019 — 72007 — (174 + 123378

F1T4A” + (207 4 2723%)A% — 2070 )" (7)
—(113 4+ 29143907 4 11300 + (21 4 1159922
—2lak — 2537

In the case of the nitrogen derivate of phenanthrene (B)). the weights arc
a=a"=05,7=p3 =1[20, 21], therefore, the characteristic polynomial is
Pra(A) = MM - 0501 — 16212 4 7N

49810 — 3607 — 297A% £ RTAT 4 479" (%)

—103.50% — 107X 4 56.50% 4 16642 — 10.5X — 25.
All roots of P‘qé(/\) (see Table 2) are simple.
As =1.15003% is a single root of ]’Ha(z\). e, As is a simple cigenvalue of 1he
nitrogen derivate Bj. In this case.

~0.65937 1.0104 1

DY (H{,As) = 0.01196  —0.43571 —0.61518
~1.17326  0.75302  0.2097
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Table 1: di(v;. A) and di(b7, A} values of Hy

Jk(th,A):

k 1 2 ]

J

] 1 0 0

2 0 1 0

3 A -1 0

4 -1 A 0

5 L | = 0

6 - P 0

7 A3 -2 —2A2 42 0

8 —2A% 42 AB= 0

9 0 0 1

10 AM_2a2 41 —2A% 4+ 3 0

11 =2X343x M -—2a%41 -1

12 2022 —A3 4 A A

I3 -3 4+722-3 A5=x3-) 1

14 2N -2)) (AT (A1)

di(b, A)

k 1 9 3
i
1 PLID Ly R ) L N - 1
2 =3X% 4 TAT -4 L | —2X24 2
3 22N - 22)  AZE(-A 4 AY) Aze(al-)

—B(=3M 4+ 9A2-5) —p(A° - 2)%)

Table 2: The eigenvalues of the nitrogen derivate of phenanthrene (Bj):

A1 = 2451078 Alg = -2.426279
Ay = 2.019018 Az = -1.913331
Az = 1.550860 A1z = -1.502878
Ay = 1.388331 A = -1.238253
As = 1.150039 Ao = -1.128276
As = 0.833920 Ag = -0.6866-19
Ar = 0.605804 As = -0.603384
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and because of Theorem 2.

—0.78548
¥s =1 -1.50231
—1.00000

and _ .

1 0 0
0 1 0
1.150039 =1 0
[ 1.150039 0
0.32959  —1.150039 0
—1.150039  0.32259 0
2 0.370991 —0.645179 0
D(Ho, As)= | _4 645179 0370991 0
0 0 1
0.104064  0.40805% 0
0.408058  0.104064 =

0.645179  —0.370991  1.150039

1.010397 —0.659370 —1.150039
0.741981  —0.126651 0.32259

In Fig.6 the components 2,(As5) of the (non-normalized) eigenvector (molec-
ular orbital) belonging to As (see Theorem 2) arc given in brackets, close to
vertex »; (1 = 1,2,...,14). The zeros in the dotted brackets only serve for
checking the correctness of the calculation.

3 The algorithm for a weighted catacondensed
benzenoid system

Let H be a weighted CHS with at least two cells. An edge of H is called
internal if it is the intersection of two cells. and external otherwise. Cell
¢ is an end cell (bifurcation cell) of /I if and only if the boundary of ¢
has exactly one (three) internal edges. An end edge of /] is an edge of an
end cell ¢ which lies opposite to the internal edge of ¢ (Fig.7).
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bifurcation cell

-internal edge
R N external edge

e end edge

Figure 7

If i has eyactly b bifurcation cells, b € {0,1,2....}, then it has exactly b+ 2
end cells.
For every bifurcation cell ¢*, arbitrarily distinguish precisely one of the three
external edges which lie on the boundary of ¢*. Delete all internal edges, end
edges, and distinguished edges of /[ ; what remains is a set of 2(h+1) disjoint
paths P lyving on the periphery, and covering all vertices, of H{Fig.8.1). Put
2(b+1)=gq.
Arbitraryly specify one of the paths P as P, and, following the periphery
in the positive sense, number the paths P consecutively from 1 to g. Let
P = P(H) denote the subgraph of H whose components are the paths
Py, Py, ..., P, and put P = (P, w*) where w* = w |;'U,._-‘p) is the restriction
of w to the elements of P.
Put

wPy= ][] wie) (9)

e€E(P)

Direct paths Py, Ps, ..., P,_; in the positive and paths Py, Py, ..., Py in the
negative sense; denote the directed path obtained from P; by ]31 and the
source vertex and the month vertex of .‘-’J by s; and m;, respectively. Denote
the resulting figure by f (see Fig.8.2). The subgraph P = P(JT)is the union
of all paths P; of A.
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To each path PJ from ., add a new “virtual™ vertex m? and a directed edge

e -

(mj,m7) from m; to m} with weight 1: Thus P, is turned into a directed
path I"J" from s; to mj, and 11 is turned into a figure which we call H*
(Fig.8.3).

Further, in H* every vertex ¢ which is not a source vertex has a unique
immediate predecessor which we denote by % let NO(¢) := N(2%) - {v} be
the set of neighbours of v in /I which are different from v.

Algorithm B:

To every vertex ¢ of H* assign a vector

d(v,A) = (dy(v, A),da(v, M), ceondy0,A))

by means of the following recursive procedure.
(B.1) For source vertex s; put

d(sk. M) = (150 b2k by,

~ where é;; = 1,6”:”:01{1'96}0 U= 145120 0insdl)s
{B.2) for any vertex of H* which is not a source vertex, put

1

d(v.A) = ]

{A=we)-det - 3w A )

E‘HGNOUJ)
Running through 7~ following the directed paths P; from the source vertices

s; to the virtual vertices m7, we have no difficulty in successively calculating

the vectors d(w, ), which by (ﬁ.l) and (ﬁ.‘l} are uniquely determined.
Form the n x ¢ matrix

D(A Ay = (A7 (vy, 2),dT (w2, M), oo dT (0, AT
= (dilv;, \)
[ =l 20t = 12 0q)

and the ¢ x ¢ matrix

D*(A,2) = (@T(m}, A),dT(m3. A)....dT(m3, A))T
= (delm!A))
(k=12 0),
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Using these matrices, calculate the characteristic polynomial Py(A) =
Py(A) and the eigenspaces of H in exactly the way as described in The-
orems 1 and 2 with i/, Z. p. 5. %° replaced by 7. P, ¢. §". %", respectivly.
Example 2:
For the weighted CHS depicted in Fig.1 (see also Iig.9 with labelled ver-
tices) with weights as in Example 1, we obtain the following Table 3.
PHO()\) ] w(f’u) ~det D ffu,)\) is identical with the polynomial .””U(,\)
given in (7) (Note that the order of the determinant to be caleulated reduced
from % 10 g = 2(b + 1)).
For the nitrogen derivate of phenanthrenc (B[',). Pi-‘rg(’\) is identical with the
polynomial given in (8).
As =1.150039 is a single root of P—é()\). Here we have
o A - —1.30375  0.68167
B ( 041345 —0.21617 )

. [ —0.78548
¥Ys =1 —1.50231 /-

and .
1 0
0 1
1.150039 -1
-1 1.150039

0.32250  —1.150039
~1.150039  0.32259
0.370991 —0.64518
0.10406  0.10806
—0.25131 1.11446
—0.64518 0.37099
0.2521 0.50263
0.65937  —1.0101
L4038 —1.53299
0.54123  —0.53642 |

DA A5) =

The components of the eigenvector helonging to As are, of course, the same
as given in Fig.6.
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Table 3: (i}c(t‘_,\/\) and dk{m;. A) values of Hy

dp(vy,A)
k 1 2
J
1 1 0
2 0 1
3 A |
1 =] A
5 A -\
6 Y P |
7 A=A —2A1 42
8 M_o2a2 41 —2X3 4 32
9 A5 3% 42 —2M 1 532 2
10 ~2X2 42 A
11 A6 4Nt L 6AZ -3 —20% 4+ 6A% —4)
12 AP E A3 4N I -T2 3
13 ~A8 At 3A2-2 3N — RA3 4 4N
14 | 5(AT—5X%+94% —5X)  £(-2X°+ 8A - 9A2 4 2)
dk(m;./\):
k 1
i
L] A7 = 505 4 9A% - 5A)  A59(—205 4 84 - 9A2 + 2)
+8(3M31 — 922 4 5) +3(=A% + 223
2 —2ATHTAR TR+ 2A SA6 — 19X + 2002 -5
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4 Concluding remarks

4.1 In order to minimize the calculation expenditure, before applying algo-
rithm A for a given WHS H, put H in a fixed position such that the
number p of zigzag lines is minimum.

4.2 In a following paper a computer program (for algorithm A) will be
introduced, in which the remarks of [17] will be considered.

The help of Dr.R.Hennecke (TH lmenau) and Dr.B.Jaggi (Uni Bern) in the
calculation of the roots of (8) and (7), respectively, is gratefully acknowl-
edged.

This paper was supported by the DFG(Jo 231/1-2).
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