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DESIGN OF TOPOLOGICAL INDICES. PART 5.
PRECISION AND ERROR IN COMPUTING GRAPH THEORETIC INVARIANTS
FOR MOLECULES CONTAINING HETEROATOMS AND MULTIPLE BONDS
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Faculty of Chemistry, Organic Chemistry Department
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The precision of computing several Graph Theoretic
Invariants (GTI"s ) was examined for molecular graphs
containing multiple bonds and heterocatoms. A large
variety of GTI's were computed: adjacency and
distance matrix spectra, characteristic, acyclic,
and distance polynomials, as well as three new
topological indices based on these GTI’s. All of
them exhibit a significant dependence on the
precision of computing the weighting parameters. A
standardization for the computation of GTI’s is
proposed, aimed to improve their wuse in chemical

similarity and identity asserting, and QSAR.
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1. INTRODUCTION

Molecular topology determines a large number of
molecular properties ranging from physico-chemical and
thermodynamic properties to chemical reactivity and
biological activity. In this respect, chemical applications
of graph theory have undergone dramatic expansions in recent
years.2—7

From the practical point of view, an efficient way of
coding the topology of a chemical compound is represented by
the topalogical indices (TI's).Si12 A TI is a numerical
quantity obtained after a matricial, polynomial, or
combinatorial manipulation of the molecular graph.

A theoretical interpretation of TI’s was offered by

14 .
e in the framework of graph cluster expansion

Klein
theory: TI's represent a low-order expansion of the chemical
structure in terms of the subgraphs of the molecular graph.
The characterization of the chemical structure by using Graph
Theoretical Invariants (GTI’s) may be viewed as discrete
analogues of Taylor series expansions. A GTI is termed
multiplicative if
GTI(GIU GZ) = ETI(GI)'ETI(GE)

where GlU 62 denotes the graph composed of two disconnected
compornent s G1 and Gz. Such applications relating a physico-
chemical property in terms of connected-subgraph cluster
expansions have been made to a wide wvariety of properties,
including boiling points, refractive indices, solubilities,
heats of atomization and formation, and liquid densities.

By removing all hydrogen atoms from the chemical formula
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of a chemical compound containing covalent bonds we obtain
the hydrogen-depleted graph (or molecular graph) of that
compound, whose vertices correspond to non-hydrogen atoms.
One has to note that the molecular graph of a saturated
hydrocarbon is a graph, while the molecular graph of an
unsaturated hydrocarbon is a multigraph, and that of a
molecule with heteroatoms is represented by a general agaraph.
some definitions concerning molecular graphs will follow.

Let G = (V,E) be a graph G with the vertex set V = V(G)
and the edge set E = E(G). A general graph G = (V,L,E,Lw,Ew)
is a graph with loops and multiple edges, with the vertex set
V=uUYG), the loop set L = L(G), the edge set E = E(G), the
loop weight set Lw = Lw(G) and the edge weight set
Ew = Ew(G). In a molecular graph the atoms are represented by
the vertex set V, and the chemical bonds are represented by
the edge set E. Conventionally, the loop weight of a carbon
atom equals zero, while the edge weight of an aliphatic C-C
bond is equal to one.

The presence of mnultiple or aromatic bonds or
heteroatoms in the molecular graphs requires the development
of special parameters.

One approach was developed by Trinajstié and
couorkers.ls’16 These autors defined the loop weight of a
heteroatom as follows:

L, = 1-8/7, (1)
where z, is the number of all electrons in atom ¢{. A few
values of Lw for various elements are presented in Table 1I.

The edge weight is defined as:
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Table 1. Calculated loop-weights

for various chemical elements.

Atom Luw

0.

0.143
0.250
0.600
0.625
0.333

O MM w vV o Z

1 0.647
Br 0.829
I 0.887

Table II. Calculated edge-weights

for various chemical bonds.

Bond Ew
c-C 2 [BY
c=C 0.500
c=C 0.333

aromatic CC bond 0.667

C-N 0.857
C=N 0.429
C=N 0.286

aromatic CN bond 0.571

c-0 0.750
C=0 0.375
C-F 0.667
c-Cl 0.353
C-Br 0.171

c-1 0.113
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where b is the bond order, which takes the value 1 for single
bonds, 2 for double bonds, 3 for triple bonds and 1.5 for
aromatic bonds. A few values for Ew for wvarious bonds are
presented in Table II.

A different approach for considering heteroatoms was
devised by Balaban,l7 taking into account the periodicity of
two chemical properties: electronegativity and covalent
radii. Recently, Tvaruzek and Kamendala devised another
electronegativity-based method for computing wvertex- and
edge-weight in the molecular graph. A different approach Iis
the one of Lall and Srivastava,19 who defined the edge-weight
of a heteroatom-containing molecular graph beeing equal to
the Hiuckel MO parameters for hetero bonds.

The application of TI®s spans correlations between
chemical structure and physical, chemical, and biological
properties, similarity indices, codification and retrieval of
chemical compounds in databases, computer-assisted organic
synthesis, computer generation of classes of organic
compounds .

In computing the TI’s, the weightings for heteroatoms
and multiple bonds may be considered with different degrees
of accuracy, thus leading to different values of the same TI
for a given molecular graph. This situation may lead to a
number of disagreements in various applications of TI's:

(i) The correlations with graph theoretical descriptors in
Quantitative Structure-Activity Relationships (QSAR) may lead
to different mathematical models and predictions.

(if) The codification and retrieval of molecules in chemical
databases using TI’s may féil, owing to the fact that a
molecular structure may be characterized by different walues

for the same TI.
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(tiZ) The generation of classes of chemical compounds may
lead to erroneous multiple generation of the same structure.
(iv) The results reported in the literature concerning TI’s
are irreproducible if no standardisation in computing TI's is
considered.

In order to investigate how the accuracy of computing
the parameters of multiple bonds and heteroatoms is reflected
in the value of selected GTI's and TI's, we will consider the
weighting parameters defined by equations (1) and (2). The
computations will be done with increasing accuracy of the
weightings, beginning with two decimal positions, increasing
up to six decimal positions, and finally, by computing the
loop and edge weights with the highest precision of the
computer (i.e. in DOUBLE PRECISION), and with at least ten
reliable decimal positions. The programs were written in
FORTRAN 77 and run on a IBM PC compatible computer.

Computations will be done for a large variety of GTI’s:
adjacency and distance matrix spectra, characteristic,
acyclic, and distance polynomials, and TI’s based on all
these invariants. We made this choice because we expect that
the effect of the accuracy of weights will be more pronounced

on this set of multiplicative GTI’s.

2. ADJACENCY MATRIX SPECTRUM

The topology of a chemical structure can be coded in
matrix form by the use of the adjacency matrix. The adjacency
matrix of a general graph G with N vertices, A(G)=4A, is the
square NxN symmetric matrix which contains information about
the connectivity of vertices in G. Its entries are defined

as:
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tw. 5 ge
Wy or i J

(a),, = Ewij for vertices ¢, j adjacent
0 otherwise

fAs example, the molecular graph and the adjacency matrix
of ethyl-methyl-propylamine (Gl ), and 1-ethyl-3-methylbenzene

(Gz) are given below.

—

0.857

0
o]
0

.857 0.143 .857 .857

© o o o
o O O o

0.857

—

A(El) =

©c © o 0 O 6 O

c O o 0 © ©

©c 0O o ©¢ ©O

L 0.857 0 0o 0 |
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0 0.667 0 0 0 0.667 1 0 O
0.667 0O 0.667 0O o] 0 g 0D D
0 0.667 0 0.667 0 0 0 0 1
0 0 0.667 © 0.667 0 0o 0 o0
A(Gz) = 0 o) 0 0.6657 0 0.667 0 0O O
0.667 © 0 0 0.667 © o 0 0
1 o 0 0 0 0 o1 0
0 o 0 o o 0 1 0o
0 1 0 o 0 0 0 |

Lovasz and Pelikan20 proposed the largest eigenvalue,
xl' of the adjacency matrix as a measure of molecular
branching.

In the present investigation we adopt the Jacobi method
to calculate the adjacency spectra of graphs.

Tables III and IV present the adacency matrix spectrum
of ethyl-methyl-propylamine, and 1-ethyl-3-methylbenzene,
respectively. As it is apparent from the tables, the
computations using a precision of three decimal positions for
the weighting parameters, as usually used, provides
unreliable results, when compared with the computation with
the highest precision. On the other hand, computations with
weighting parameters with a precision of five and six decimal
positions give results whose precision is up to five decimal

positions precision.
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3. DISTANCE MATRIX SPECTRUM

The distance matrix of a ageneral graph G with N
vertices, D(G) = D, is a square NxN symmetric matrix, whose
entries, (D)ij , are equal to the minimum sum of the weights
of the edges on a path between vertices ¢ and j. In the
recent literature, there are many efficient algorithms
available for computing the distance matrix for any molecular
g'raph.zl_24 The numerous applications of the distance matrix
to various branches of chemistry were recently surveyed.25
The distance matrix of the graph Gl is shown below:

[ o 1 1.857 2.714 3.714 A.714 2.714 |
1 6] 0.857 1.714 2.714 3.714 1.714
1.857 0.857 0.143 0.857 1.857 2.857 0.857

D(Gl) = 2.714 1.714 0.857 O 1 2 1.714
3.714 2.714 1.857 1 o] 1 2.714
4.714 3.714 2.857 2 1 0 3.714

L 2.714 1.714 0.857 1.714 2.714 3.714 O

Applications of the distance matrix spectrum were
published recent]y.26

The distance matrix spectra of graphs El and 62 are
presented in Tables V and VI, computed with the same series
of weighting parameters. Again, when the precision of the
weights increases, we observe an increase in the precision of
distance spectra of the matrices. We have to point out that
even if the weights are considered with six decimal
positions, the results are different from the most exact ones
starting with the seventh decimal position.

The distance spectra of graphs was computed using the

Jacobi method.
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4. CHARACTERISTIC POLYNOMIAL

The characteristic or spectral polynomial Ch(G,x) of the
molecular graph G is the characteristic polynomial of its

< D7
adjacency matrix:

Ch(G,x) = det (xI — A) (3)

where I is the NxN unit matrix. The characteristic polynomial
of a graph is most often given in the folowing form:

N
ChiG,x) = €. (4)

=0
In the present investigation the characteristic

polynomial of graphs was calculated using the Le Verrier—
Fadeev-Frame methc|d.28_30

The sum of the absolute values of the coefficients azk
appearing alternatively in the characteristic polynomial

{(i.e. every second, or even, term) is defined as the

stability index, z:o1 3%

N

|2kl €s)

k=0
where L is defined as the integer smaller or equal to [N/2].

Another form of the stability index may be expressed as:

—~N ;

Z =i  Cch(G,t) (&)
: 1/2 :

where i=(-1) - In the case of benzenoid hydrocarbons, the

index Z has been found to be related to the total =-electron

energy. We must note that the Z index was computed

considering the weight of an aromatic carban-carbon bond
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equal to 1.

The coeftficients of the characteristic polynomial of
graphs Gl and 62 are presented in Tables VII and VIII,
computed with the same set of increasing precision of loop
and edge weights. As expected for a multiplicative GTI, the
precision of the weights has an important effect on the

values of the coefficients of the characteristic polynomial.

5. ACYCLIC POLYNOMIAL

The acyclic (matching) polynomial of a graph G is

defined a3:34,35
L N

Ac(8,x) = L= R S 2 a aan"‘ (7)

where M(G,R) is th: :umber of k-matchings no? G, i.e. the
number of selections of k mutually non-adjacent edges in G.
By definition, M(G,0)=1 and M(G,1) is equal to the number of
edges. The set of numbers M(G,k) can easily be obtained by

the aid of the Z-counting polynomial:

L
k
Qa(G,x) = M(G. k)X (8)
k=0
The Hosoya Z index of a graph G is given by 2o~43
|8
Z= M(G,k) (9)

k=0
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The computation of the Hosoya index using Eq. (9) is a
tedious task, due to the long time for the combinatorial
generation of all k-matchings of G.

An  interesting property of the acyclic (matching)
polynomial is that the sum of its coefficients equals the
Hosoya index Z. This property allows the computation of the Z

24

3 4 .
index using algorithms and computer programs > devised for

the computation of the acyclic polynomial, or recurrence
relationships for the acyclic pulynomial.46'47

The Hosoya Z index was applied to wvarious correlations
with theoretical and experimental molecular properties:
Coulson and Pauling bond order, boiling point, absolute
entropy of acyclic saturated hydrocarbons. Various relations
and formulas enabling the computation of the TI Z were

48— 3 : 1
B2 Again, we must point out that the Z index was

obtained.
computed considering the weight of an aromatic carbon-carbon
bond equal to 1.

We adopt an algorithm similar to the one proposed by
Ramaraj and Balasubramanian44 to calculate the acyclic
polynomials of vertex— and edge-weighted graphs.

The coefficients of the acyclic polynomials for the
graph 62 are presented in Table IX. Computations were done
with a weight of an aromatic carbon-carbon bond equal to
1/1.5, with increasing precision, as stated in Table IX.

From the values of the coefficients of the acyclic
polynomial we observe that the usual precision of three
decimal positions used in computing the weights is not
sufficient, giving numerical wvalues far from the “exact”

ones .
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6. DISTANCE POLYNOMIAL

The distance polynomial of the molecular graph G is the
characteristic polynomial of its distance matrix:

N
Dis(G,x) = det (xI - D) = d x (10)

n=0
The sum of the absolute values of the coefficients of

the distance polynomial is defined as the Hosoya Z' index:

N
z':zwnl (A1)

A computer program was developed to compute distance
polynomials of graphs containing up to 200 vertices.53

In the present investigation the distance polynomial of
graphs was calculated using the Le Verrier~Fadeev-Frame
method.zgﬁgo

The coefficients of the distance polynomials of graphs
Gl and Gz are presented in Tables X and XI, respectively. In
the case of the distance polynomials, the effect of
increasing precision of the weighting parameters has the more

dramatic effects.
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7. TOPOLOGICAL INDICES BASED ON GRAPH THEORETICAL
POLYNOMIALS

In the definitions of the TI’s Z, Z, and 2Z’, the
parameters of vertex- and edge-weighted graphs were not
considered. As stated above, when the above indices were
computed for benzenoid hydrocarbons, an aromatic C-C weight
equal to 1 was considered.

For the vertex- and edge-weighted graphs we define the

N
ZP_Z Ipnl (12)
n=0

where p = a for the acyclic polynomial, p = ¢ for the

general index

characteristic polynomial, and p = d for the distance
polynomial, respectively.
Using the coefficients of the polynomials in Tables

VIII-XI, we have computed the TI's Za and Zd for the graph
, and the TI's Z , Z, and Z for the graph G

1 a c d

respectively. The corresponding numerical values are

G 52
presented in Tables XI1 and XIII.

The values of the TI’s present a steady increase with
increasing precision of the weights, with the largest effect
on the Z,. Again, the precisipn of three decimal positions

d
gives poor results when compared with the most precise ones.
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8. CONCLUSIONS

The precision of computing several graph theoretic
invariants (GTI’*s) was examined for molecular graphs
containing multiple bonds and heteroatoms, using a weighting

Lol The atom

procedure based mainly on the atomic number Z.
and bond weights were computed with increasing accuracy, up
to the highest precision of the computer, and a large variety
of GTI’s were computed: adjacency and distance matrix
spectra, characteristic, acyclic, and distance polynomials,
as well as three new defined TI's defined on weighted graph
theoretical polynomials, namely Za, zc. and Zd. respectively.

All of the GTI’s under examination exhibit a significant
dependence on the precision of computing the weighting
parameters, the most sensitive beeing the invariants computed
on the basis of the distance matrix.

The usual precision of three decimal positions for the
weighting parameters gives completely unreliable results.

A conclusion emerges from the computations in the
present investigation concerning the applications of GTI's:
if one expects to obtain reliable results, the highest
precision of the computer must be used in computing the
weighting parameters. The main drawback of such an approach
is that the results will be machine and language dependent .

We propose that for any table of TI the numerical wvalue
of each TI should include information on the decimal place
accuracy of that value. Also, one should include information
on the decimal place accuracy of the atom and bond weights

used in computing each TI.
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