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Abstract

A method for the calculation of the Wiener number (W) of trees is out-
lined, by means of which it is relatively easy to find general formu-
las for W of various classes of branched molecules. The method is
applied to dendrimers, whose molecular graphs are highly branched

trees.

Introduction

The study of dendritic molecules is a relatively new and rapidly ex-
panding field of experimental chemistry. Dendrimers are extremely branched
molecules, mainly synthesized from identical building blocks that contain
branching sites. The synthesis proceeds in repeatable steps, each reaction
cycle resulting in a new, larger generation of the respective dendrimer.
The majority of the known dendrimers are organic molecules (for review see
[1,2]); the first inorganic systems of this kind (whose branching points

are ruthenium atoms) were recently reported [3].
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Because of their peculiar and unprecedented structural features, dend-
ritic molecules are an evident challenge for theoretical and mathematical
chemists. (For some recent theoretical work on dendrimers see [4].) Accord-
ing to the opinion of the authors of the review (2], "the properties of
strongly branched molecules are largely unknown and await discovery".

A varlety of methods for the description and quantification of the
branching of the molecular skeleton 1s known in chemical graph theory (for
a recent survey see [5]). Among them the Wiener index (W) plays an out-
standing role. This topological index was put forward as early as in 1947
[6] and in the meantime became one of the most thoroughly investigated, and
most frequently employed descriptors of molecular branching (7-12). Of the
numerous applications of the Wiener numbers in the modeling of physico-
-chemical and pharmacclogical properties of organic meolecules we mention
the recent studies In which W was related to such diverse quantities as the
rates of electroreduction of chlerobenzenes [13], cytestatic and antihista-
minic activities of certain drugs [14] and the n-octanol/water partition
coefficient [15]; W was also used for distinguishing between fullerene iso-
mers [16] as well as in recent approaches towards the quantification of mo-
lecular similarity [17].

In this paper we present a methed that enables a relatively easy com-
putation of the Wiener numbers of dendrimers, and establish expressions for
W of some highly branched molecular graphs.

The Wlener number or Wiener index is defined as follows (8]. Let G be
the molecular graph (which necessarily is connected) and V its vertex set
Let d(u,v) denote the distance [18] between the vertices u and v, u,v € V.
Then the Wiener number 1s equal to the sum of the distances between all

pairs of vertices of the respective graph:



A useful identity for the Wiener number of trees

It is a well known result [19-22] that among all trees with n vertices,

the path P,, has maximal Wiener index, i.e., for any n-vertex tree Tn '
W(P ) = W(T) . (1)
n n

Equality in (1) occurs only if Tn = Pn . Furthermere,

W) = 2’ - n) = [“':QIJ ' (2)

Every vertex of a tree, whose degree is greater than two, will be cal-
led a branching point of that tree. Consequently, Pn is the only n-vertex
tree without branching peoints. In view of eq. (1), every branching point
must have a decreasing effect on W. This effect was recently recognized
[23] as being equal to the number of triplets of vertices that belong to
different branches of the respective branching point. This observation
led to the identity (3).

Let T be an n-vertex tree and u its branching point of dergee d(u),

iy T vertices,

d(u) = 3. Let the branches attached to u have n ., n e

2

nl*n2+...+ =n-1. Then,

nd(u)

W(T) = [n;l] = Z 2 nonon o (3)

u 151 < )<k=d(u}

The first summation in (3) goes over all branching points of the tree T.

The second summation embraces the [déuJ] triple-products nl n nk &
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As two elementary illustrations of formula (3) we compute the Wiener
numbers of the trees T1 and 'l‘a , having two and one branching points, res-

pectively.

In the case of T1 , the two branching points are symmetry-equivalent
For each of them, n R 1, h, = a+3. Because both branching points are
of degree three, each of them is associated with only a single triple-pro-

duct n, “] n = 1 x 1 x (at3) = a + 3 . Consequently,

WT) = [“;1] - 2(a + 3).
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In the case of T2 .0 o=a for all i =1,2,...,d. Therefore, all trip-

le-products n nJ n _are equal to a’ . Because the number of such triple-

-products is [ g ]. formula (3) results in:
_ [n+1}) _ [ d 3
wrp = (3 - (2)
For further detalls on the identity (3), including its proof, see [23]

An example: The Wiener number of Newkome's arborol

Newkome and coworkers [24-27] synthesized a class of dendrimers which
they called arborols. The arborol reported in [24] consists of a hydrocar-
bon skeleton, to the termini of which a total of 3 x 3 x 4 = 36 OH groups
are attached. In what follows we demonstrate the advantage of using formula
(3) by calculating the Wiener number of the tree Ta . shown in Fig. 1, that
is just the graph of the carbon-atom skeleton of one of Newkome's arborols
[24]. Observe that T3 has 3 x 3 x 4 = 36 vertices of degree one, and a
total of 253 vertlces.

In order to compute H(Tal we have to examine the branching points of
Iﬁ . All branching peints of T3 are of degree four. They are of three types:
«, B and ¥ (see Flg. 1). There is a single branching point of type «, four

branching points of type g and 4 x 3 = 12 of type 3.

The branching point « has four identical branches, each with 63 ver-

tices. Hence, it contributes to the right-hand side of (3) by —[ g ] 63° =

-1,000,188 .
A B-type branching point has three identical branches with 18 vertices
each, and a branch with 253 - 3 x 18 - 1 = 198 vertices. Its contribution

is thus equal to -(18° + 3 x 18% x 198) = -198,288 .
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Fig. 1. The molecular graph of Newkome’s arborol
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A y-type branching point has three identical branches with 3 vertices
each, and a branch with 253 - 3 x 3 - 1 = 243 vertices. Its contribution
is equal to -(3° + 3 x 3% x 243) = -6,588 .

According to formula (3), the Wiener number of Ta is now equal to

254

H(T3) = [3

] - [1,000.188 + 4 x 198,288 + 12 x 6,588]

i.e.
HlTal = 826,608

Some further highly branched molecular graphs and their

Wiener numbers

In this section we determine the Wiener number of the highly branched
trees Tk-d which we call regular dendrimer graphs and for which k =2 0 and
d z 3. In particular, 'I‘k‘d stands for the k~th regular dendrimer graph of
degree d.

For any d = 3, T, , 1s the one-vertex graph and 'i‘l i is the star with

d
d+1 vertices. Then for k = 2,3,... and d =z 3 , the tree Tk,d is obtained by
attachlng d-1 new vertices of degree one to the vertices of degree one of
Tk-l,d Note that the parameter k corresponds to what in dendrimer che-
nistry is called "number of generations" [1,2].

For instance, in Fig. 2 are presented the first four regular dendrimer
graphs of degrees three and four.

The number of vertices of the regular dendrimer graph Tk 4 is
s
AT, J=1+d+dd=-1) +dld=-1)%+ ... +dd-1""

- L
=l+d_2[(d 1) 1]. (4)
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Fig. 2. Examples of regular dendrimer graphs
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In order to compute H(Tk d} it is convenient to introduce an auxiliary
tree Bk a such that each of the d branches attached to the central vertex

of de is 1somorphic to B It is immediately seen that BDd is the

k-1,d

cne-vertex graph whereas Bl a is the star with d vertices. Further, for k =
2,3,... and d 2 3 , the tree Bk 3 is obtained by attaching d-1 new vertices

of degree one to the vertices of degree one of Bk_

Observe that B 5
X, 3

1,4 °
k=1,2,... , are the well-known binary trees.

Two trees of the type Bk 4 are are given below:

Bi.s B



= 412 =
Now, the number of vertices of Bk i is

n(B =1+ @-1+W@=-D%+ .+ (d - 1*
sk [oo  oghed _
-5 [(d pet -] s)

Denote by uo the central vertex of Tk,d H un is of degree d and is
thus one of the branching points of Tk,d . From the construction of Tk.d it
is evident that the number of vertices that are at distance i from u, is
equal to d(d - 1]1_1. i=1,2,...,k . For i =1,...,k-1, all these verti-
ces are branching points of Tk‘d -
For the application of formula (3) it is crucial to observe that to

each branching point v of T that is at distance i from u 1=is=s k-1,

k,d
d branches are attached, d-1 of which are isomorphic to Bk_l_‘ i The num-
ber of vertices in each of these branches is n(Bk i d) . cf. eq. (5). The
memiay

remaining branch of \.11 has n‘ vertices, where

no=n(f, ) -@-1nB__ )-1. )

The contribution of the branching point ui to the right-hand side of (3) is

thus

_ d-1 3 d-1 2
H = _[[ 3 ] D{Bk-l-l.d) * [2 ] nB 4,4 [n(Tk,d) - nx]]

%)
The analogous contribution of u0 is simply

__f 3
W, = [[ 3 ] n(Bk_l'd)] : (8)

By applying formula (3) we obtain
n['l‘k d)—l k-1 i
W(T ) = ' +w + § dd-12""w
x 3 o

which combined with eqs. (4)-(8) yields after a lengthy calculation
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wT, ) = [[kd:' - 2(k + 1)a% + d|(d - 1) + 2d%d - 1)* - d|(d - 223 .

9)

The chemically most interesting special cases of (9) are:

W(T, ) = (9K - 15) T

and

L _ Ty g2k k
HiI;") = (4 -3) 37 +43

N |-

For completeness we give here also the expression for the Wiener number

of the auxiliary tree Bk i

W, ) = [[(k +2)d - 2(k + n] td - 1*!

+ {kd - 20k + 1)] (d = 1)EE ](a = 2R .

Its speclal case is the formula for the Wiener index of the binary trees:

WB ) = (k +4) 2" 4+ (x - 2) 222

k.B,
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