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Abstract: An implicit (n,m)-type approximate topological formula for the
total m-electron energy (E) of benzenoid hydrocarbons was de-
duced by Jerzy Closlowskl in 1987, but attracted little atten-
tion so far. We provide here a detailed analysis of this for-
mula and, in particular, show that 1ts precision is slightly
better than that of the McClelland's approximation.

INTRODUCTION

In a recently published review [1] the present author reported on
the plethora of works devoted to the elucidation of the dependence of
the total m-electron energy (E) of benzenolid hydrocarbons on their vari-
ous structural features and topological (1l.e. graph-theoretical) invari-
ants. It has been unequivocally established that the gross part of E is
determined by only two such lnvariants, namely the number of carbon
atoms (n) and the number of carbon-carbon bonds (m).

In [1] we collected a total of 24 various (n,m)-type approximate

.
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expressions E' for total m-electron energy, i.e. expressions depending
solely on the parameters n and m, and tested the accuracy and reliabi-

lity of the approximate formulas:

.

E = a E (1)
= 5 (2)
E a, E # bz

Least-squares fitting and a standardized data-base were used for this
purpose (for details see [1] or [2]). One of the conclusions achleved
was that the best (n,m)}-type formulas are capable of reproducing some
99.5% of E. More precisely, 1ln the case of the most reliable formulas of
the type (1) or (2) the mean relative error was about 0.3 %. One of such
"best" expressions for E" is the famous McClelland function v2 m n [3].

Recall that in [3] 1t was shown that the function vZ m n is an up-
per bound for E (for details see [1])). In addition to this, McClelland
observed the (nontrivial) fact that vZ m n is proportional to E and put
forward the simple approximation E = a vfm in which the fitting pa-
rameter a was about 0.9. Since then, under the name "McClelland approxi-
mation” one usually refers to the formula E =~ av2 mn .

All the expressions E" studled In [1] were explicit mathematical
functions of n and m. In addition to them, however, there exists an
(n,m)-type formula for E that can be defined only in an implicit manner.
Namely, some time ago Jerzy Closlowski developed a theoretical approach
to the m-electron properties of benzenold hydrocarbons [4-7], based on
certain assumptions on the form of the spectral-density operator. Cios-
lowskl was then able to demonstrate [5] that within the framework of his
theory the total m-electron energy obeys (approximately) the following

equation:



- 73 =

E* + 6(2mn - Ez)[Ez + AE (2m - E)? + B(2mn - E’J]

= 6n°(3m - 2n) (3)

where A and B are adjustable constants; in ref. [5] it was proposed to
choose A = 1.1360 and B = =-1.7600 .

In connection with Eq. (3) Closlowskl stated [5] that "the result-
ing average E's are reproduced with the error which is 4 times smaller
than the one of McClelland formula". In thls (somewhat overlooked) claim
he had in mind McClelland's upper bound vZ mn and not the McClelland
approximation a v2 m n [8). Because this detail was not pointed out in
[5] the wrong impression may be obtained that Eq. (3) is claimed to pro-
vide an (n,m)-type approximate formula for E that has a mean relative
error below 0.1 % . [This, 1n turn, would then imply that certain gene-
ral conclusions [1] about the structure-dependency of E would need to be
reconsidered.] The present paper is aimed to clarify this conundrum.

In thls paper we report our findings that the accuracy and reliabi-
1ity of the approximation for E obtained from Eq. (3) are only slightly
better than of the McClelland formula, and are tantamount to the precl-

sion of several previously examined explicit (n,m)-type expressions.

EXISTENCE OF SOLUTION OF CIOSLOWSKI'S EQUATION

From the form of Eq. (3) it is evident that one cannot expect to
solve it solely by means of algebralc manipulations. Nevertheless, a
significant simplification is gained by introducing the "reduced total
n-electron energy" e, defined via [6,7):

-1/2

e: = (2mn) E - (4)
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Recall that e necessarily lies in the interval (0,1). Substituting (4)

back into (3) one obtains
f(e) = F(n,m) (5)
where the two auxillary functions f and F are given by

fle): = e* + 601 - ez)[ez +ae1 - uB 01 - ez)]

and

F(n,m): = 3n(3m - 2n)/(2n°) . (6)

For the solution of Eq. (5) it is essential that the function f(e)
has a maximum in the Interval (0,1). To see this it 1s sufficlent to
realize that f(0) =6 B <0, f(1)=1>0, f(0) =6 A>0 and
f'(1) = -8 < 0. Using the above given values for A and B we found that
f(e) = ﬂux = 1.765 for e = I 0.86 . Consequently, Closlowskl’s
equation (3) will have real-valued solutions only for those combinations
of n and m for which F(n,m) is less than t'“N ~ 1.765 . Then, however,
there will be two such solutions, one lying in the interval (O, e-.xl,
the other belonging to [e.ax , 1). Evidently, the physically meaningful
solution is the latter one.

In the Appendix we demonstrate that for all combinations of n and m
that may occur in benzenold systems, F(n,m) s 27/16 = 1.6875 . Hence the
condition f_ax > F(n,m) is always obeyed and, consequently, Closlowski's
equation has real-valued solutions for all benzenold hydrocarbons.

In the Appendix we also show that for benzenoids with more than two
hexagons, the function F(n,m) varles in a remarkably narrow Iinterval,

namely that it is bounded as follows:

105/64 = F(n,m) = 108/64 .
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This implies

F(n,m) = const = 213/128

i.e. the value of F(n,m) may deviate from 213/128 by at most 1.4 % .

NUMERICAL WORK

If one takes Closlowski’s statements concerning Eq. (3) literally,
then the respective approximate expression for the total w-electron
energy would be of the form

E = E (7)

with E. standing for the pertinent solution of Eq. (3). Thls certainly

ylelds results better than

E=vV2mn (8)

but its accuracy ls still very poor (see below). Therefore In addition
to Eq. (7) we also studied approximations of the type (1) and (2).

First the values of the parameters A and B have been determined. We
calculated them by minimizing the mean relative errors of Egs. (7), (1)
and (2), respectively. (As in our previous studies [1,2], we employed a
data-base consisting of 104 Kekuléan benzenolds possessing more that two

six-membered rlngs.) The values obtained are:

A=1.136 B=-1.33 for Eq. (7) ()
A=1.136 B = -1.97 for Eq. (1) (B)
A=1.136 B=-1.76 for Eq. (2) (7)

Note that the third set of parameters colncides with what originally was
proposed in ref. [5]. Whereas the value of A is "stable", there exists a

great deal of variation in B, depending on the criterion wused for its
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determination. Furthermore, B also exhibits a significant sample-depend-
ency.
The results of the numerical testing of Egs. (1), (2), (7) and (8)

are presented in Tables la and 1b.

Table 1a. Coefficients in the approximate

(n,m)-type formulas (1) & (2)

Parameter
set a: 22 ha
(«) 1.024 1.025 -0.01
8 1.040 1.034 0.24
(7) 1.032 1.023 0.34

Table 1b. Results of numerical testing of approximate formulas
(1),(2) & (7) for the parameter sets (a), (B) & (%),
as well as of formula (8)

Equation mean error max. error correlation
(%) observ. (%) coefficient

(1) & () 0.50 8.2

(2) & () 0.50 8.1 } 0.9994

(7) & (a) 2.35 3.5

(1) & (B) 0.33 1.3

(2) & (B) 0.31 1.2 } 0.9998

(7) & (B) 3.93 4.6

(1) & (9) 0.34 1.2

(2) & (7) 0.30 1.1 } 0.9998

(7) & (B) 3.18 4.1

(8) 9.99 11.4 0.9998

From the data collected in Table 1b we Immediately arrive at the

following conclusions:
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(a) The solutions of Cioslowski’s equation are themselves [i.e. via Eq.
(7)] very poor approximations for total mn-electron energy. It is
true that formula (8) would result in about 4 times greater errors,
but - as already pointed out - neither McClelland himself [3] nor

anybody else ever purported that (8) be used.

(b) When these solutions are amended by means of one [Eq. (1)] or two
[Egq. (2)] least-squares parameters, then the agreement with the

total m-electron energy is much better.

—

(c) Even then the quality of the approximation is comparable with that
of the McClelland formula as well as with several other previously
known (n,m)-type expressions [1,2]. The mean relative error of

(amended) Closlowski’s approximation differs insignificantly from

the mean relative error of McClelland's and similar formulas.

APPENDI X : ANALYSIS OF THE TOPOLOGICAL FUNCTION F(n,m)

The topologlical function F(n,m), defined via Eq. (6) can be readily

transformed into
Fln,m) = <> (9<d> - 12)

where <d> = 2m/n s the average vertex degree. Now, for benzenold sys-
tems, 2 3 <d> < 3 and therefore we are interested in the behavior of
the functlon G(x): = x> (9x ~ 12) 1in the interval [2,3). Elementary
calculus shows that G(x) increases for x € [2, 8/3), decreases for
x € (8/3, 3) and has a maximum at x = 8/3.

Consider now the average vertex degree <d>. Denote by n and h the

numbers of Internal vertices and hexagons, respectively, of a benzenoid
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system [9]. Then because of [9] n = 4h + 2 - n and m=5h+1-n we

readlly arrive at
<d>=2 (1 + (h - 1)/(4h + 2 - n))

showing that for a fixed value of h, <d> is a decreasing function of n.

Knowing that [10]
172
0 s n = 2h - [(12n - 217

we conclude that the minimum and maximum values of <d> are

<d> = (5h + 1)/(2h + 1) (9)
min

and

=1
> = {eh + 2[1zn - 311’2}} {Zh + 1+ [tazn - 3)“2]}
max
(10)

respectively. In the above formulas, [X-l denotes the smallest integer

that is not smaller than X. It is easlily verified that both <d>-m and

<d>m are increasing functions of h. Their limits (as h » w) are 2.5

and 3, respectively. Hence, <d>mn will always belong to the Interval

(2, 8/3). Because for h = 19, <d> = 8/3, <d> will lle in the
max max

interval (8/3, 3) only if h = 20.

The above analysis, combined with the previously established pro-

perties of the function G(x), implies that for h = 19,
G(<d> ) = F(n,m) s G(<d> ) (11)
min max

where <d>-ln and <d>nx are given by Egs. (9) and (10). The bounds (11)
are the best possible. Observe that practically all benzenoid hydrocar-

bons of chemical relevance have fewer than 19 six-membered rings.
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For h = 20 the inequalities (11) have to be modified as
Gt(d)nln) < F(n,m) = G(8/3) = 27/16

Because G(8/3) 1s the maximum value of the functlon G{x), it fol-
lows that for all benzenold systems the value of F(n,m) 1s less or equal
to 27/16 = 108/64. This 1s the result that guarantees the existence of
real-valued solutlons of Closlowski’s equaticn.

For h = 3, G(<d>“") = 105/64 . Consequently for benzenolds with
more than two hexagons, 105/64 s F(n,m) = 108/64 . This means that for
all benzenoid systems, the quantity F(n,m) assumes nearly the same

value. This value 1s close to 2137128 = 1.664 .
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