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Abstract: A novel (n,m)-type lower bound and an approximate topologlical
formula for the total n-electron energy (E) of benzenoid hyd-
rocarbons are put forward, Improving some recent results by
Lemi Tiirker; n = number of carbon atoms, m = number of carbon-
—-carbon bonds. The new approximation for E is shown to be more
accurate than any of the 48 previously considered formulas of
(n,m)-type.

INTRODUCTION

The total m-electron energy (E) of a benzenoid hydrocarbon depends
on a variety of structural features and topological (i.e. graph-theore-
tical) invariants of the respective molecule, but the far most important
are the number of carbon atoms (n) and the number of carbon-carbon bonds
(m). This fact is nowadays firmly established and supported by numerous
theoretical arguments and extensive computer work [1]. As a matter of

fact, about 99.5% of E is determined by the invariants n and m.
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A plethora of mathematical expressions, depending solely on n and
m, has been proposed for the approximate calculation of the total n-el-
ectron energy. If E' 1s such a function of n and m then eqs. (1) and

(2):
-
E=a E (1)
.
E=a E +b 2)

are called (n,m)-type approximate formulas for total mw-electron energy.
The constants a, a, and b2 are usually determined by means of least-
-squares fitting, using the exact E-values of a set of pertlnently se-
lected benzenold systems. In [1] 24 different expressions E, previous-
ly introduced in the chemlcal literature, have been collected. The accu-
racy of the resulting 48 formulas of (n,m)-type was compared using a da-
ta base that consists of the E-values of 104 Kekuléan benzenoid hydro-
carbons with three or more condensed six-membered rings, from the book
of Zahradnik and Pancir [2]. Throughout this work we employ the same
data base and thus the results reported here are directly comparable
with those from [1].

The most accurate among the known (n,m)-type formulas for E have an
average error of 0.33% eq. (1) and 0.30%4 eq. (2) and a correlation
coefficient of 0.9998 [1]. In this paper we report some novel (n,m)-type
expressions whose precision is slightly better than of any approximation
examined so far. Our results are closely related to and based on certaln

recent findings by Lemi Tiirker [3,4].
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TURKER'S UPPER AND LOWER BOUNDS FOR TOTAL m~ELECTRON ENERGY

In a paper [3] published few years ago Tirker deduced the upper
bound (3) for the total m-electron energy of an arbitrary alternant hyd-

rocarbon:

v 12]?
Esl-:u=z[m+2[(2)a‘] 3)

where v = n/2 and where a, is the fourth coefficient of the character-
istic polynomial. Recently Tiirker arrived at a lower bound of analogous

form [4]:

1/2

Ezzl_=z[moz[a‘]"2 ‘ €3]

In eq. (3) as well as throughout this paper 1t is assumed that n is an
even number. The case of odd n (which is chemically much less relevant)
can be treated in a fully analogous manner, bearing in mind that then

the graph eigenvalue x (see below) is necessarily equal to zero.

(n+1)/2

We provide here an elementary derivatiocn of (3) and (4), which dif-
fers from the reasoning used in [3,4]. Its slight modification (descri-
bed in the subsequent section) will result in improvements of (4).

We start with the relation (5) which holds for all alternant hydro-

carbons [1]:

v
E=2 T %, (5)
1=1
where xl ¥ xz e xn are the elgenvalues of the respective molecular

graph ordered so that X, = xj for 1 > J. From (5) it immediately fol-

lows

§ v 2 v 3
2 = 1§:1x1]=£(x|)+2)::tc)c

=1 1<} o
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% E=n+2 T x x (6)
vy ! !
because of the well known ldentity

v
L) =m.
1=1

Since | '2" )'l L x, x, 1Is the arithmetic mean of the products x x
<

one has

i 172
- [( v) a‘] : ™
Substituting (7) back into (6) we arrive at
172
1 2 v V-1
Le 2 nso (2)[(2) 2, ]

from which (3) follows stralghtforwardly.

In order to deduce (4) start with the identity

1/2
2 2
I x, X, L (x) (xj) + 2 L x X, % xl]
1<) 1<) Lk

{ 172
a +2 T x x x x ] . (8)
s Lkt 1

Bearing in mind that the summands x, x] X, X are non-negative numbers,

it is clear that

1/2
T X, X > [a.]
1<)

which substituted into (6) renders (4).



- 65 =

AN IMPROVEMENT OF TURKER'S LOWER BOUND

Instead of completely neglecting the term I x xj L in
1,1k,

eq. (8) which leads to Tiirker’s lower bound (3) we try to decrease the
right-hand side of (8) in a less severe manner. Observe first that

L x X, % X consists of v(r-1)(¥*-v-2)/8 summands. Consequent-
L1kl

ly,

2 -1
[ vl-1 (" -v-2)/8 ] L x LA
1,1kl

[ vr-1)0Pv-2)8 17
= [ m xl X xk xl] (9)
fudr b 2
where we use the fact that the geometric mean of non-negative numbers
cannot exceed their arithmetic mean. Every eigenvalue in the product

m X X x X occurs (v-1)(v*-v-2)/2  times. Hence the right-hand
1,1,k1

side of (9) is equal to

v [(v-1) (W2-p-2)/21/ v (v-1) (VP-1-2) /8]
m x|

1=1

v v i
= n x, ] = |det A| (10)
i=1

n

vhere det A = | X, is the determinant of the adjacency matrix. Com-
1=1

bining (8), (9) and (10) we obtaln

):xlx

1 2 2w 12
= |a +yviv-1)0° -pv-2) |det A|
1<} ] L 4

which substituted back into (6) yields

172
EeE, =2 [m +2 [a, + 3 vr-1)(Pp-2) |det A[”"]“’] .oan
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If we restrict the consideration to the (chemlcally most interesting)
case when det A = O , then because of |det A| 2 1 we can simplify

(11) as

172
EzE =2 [m v2[a +31 v(v-l)(vz-v-zl]vz] ; (12)

The inequalities (11) and (12) are, evidently, improvements of the
Tirker's lower bound (4).

For benzenoid hydrocarbons the estimates Eu, EL‘ EL. and Eib can be
further simplified by using the relatlons {5]

2

a = (m° -9 m+ 6 n)

1
4 2
|det A] = k*

where K is the Kekulé structure count. Thus we obtain:

1/2
E, = [ an + [ 4n(n - 2)(n’ - on + 6n)]"2] (13)

1/2
E = [4111 + [ 32(n° - 9m + 6n1]"2] (14)

172
E, = [ 4n + [ 32(n° - 9n + 6n) + n(n - 2)(n° - 2n - 8) K""‘j“*]

172
1r2

E. & [ am + [ 32(m® - 9m + én) + n(n - 2)(n® - 2n - 8)] 5

(15)

Observe that for benzenoid hydrocarbons Eu’ EL and ELb are expresslons
of (n,m)-type. The function Eib 1s applicable only to Kekuléan benzenoid

specles.
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TURKER’S APPROXIMATE FORMULA FOR TOTAL n-ELECTRON ENERGY

In 4] Tiirker proposed an approximate expression for total m-elec-

tron energy (of alternant hydrocarbons) of the form

ET=aEL0(1-'a)EU . (16)

For benzenoids E‘r is of (n,m)-type.

Tiirker himself determined the value of the coefficient a by means
of theoretical arguments [4] and found that o« = 1/8 = 0.125 . We opti-
mized « numerically so as to gain a minimal average relative error of
eq. (1) and found a remarkably close value of a = 0,1197 .

In full analogy to Tiirker’'s approximation (16) we may consider

Erb = a ELb + (1 - «) Eu (17)

vwhich for Kekuléan benzenold hydrocarbons is an (n,m)-type expression.

Numerical optimization gave « = 0.306 .

TESTING THE NOVEL (n,m)-TYPE APPROXIMATE FORMULAS

The approximate formulas (1) and (2) were tested on our standard
data base [1] for the following five novel (n,m)-type expressions E
El. B ELb 5 ET(a = 1/8), ET(a = 0.1197) and En(a = 0.306) . The results
obtained are collected in Table 1. For completeness also the results for
the (previously examined {1]) expression Eu are included in Table 1.

An inspection of Table 1 reveals that both Tirker’s lower bound
(14) and its present improvement (15} are fully inapplicable for pur-
poses of approximating the total m-electron energy. On the other hand,

the linear combination of the upper and lower bounds, especially (16),

significantly increases the precision of the respective approximate to-
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Table la. Coefficients in the approximate (n,m)-formulas (1) & (2)

Equatign a, a, bz
for E

(13) 0.919 0.899 0.90
(14) 2.224 3.949 -30.23
(15) 1.333 1.434 -3.01
(16),a=1/8 0.993 0.995 -0.09
(16),a=0.1197 0.989 0.990 -0.04
(17),a=0.306 1.016 1.015 0.05

Table 1b. Results of numerical testing of approximate formulas (1) & (2)

Equatlon Eq. (1) Eq. (2)
correlation
for E° mean error max. error  mean €rror WAaX. error (oo il
(%) observ. (%) (%) observ. (%)
(13) 0.54 2.3 0.30 1.0 0.9998
(14} 7.69 37.8 1.34 12.4 0.996
(15) 1.41 8.2 0.48 2.1 0.9994
(16}, a=1/8 0.30% 1.0 0.30° 1.0 0.9998
(16),2=0.1197 0.30° 1.0 0.30% 1.0 0.9998
(17), a=0. 306 0.31 1.2 0.31 1.2 0.9998
Unrounded mean errors of (16): a = 0.2971 ¢ = 0.2996
b = 0.2960 d = 0.2995

pological formula. As a matter of fact, eq. (16) provides the (n,m}-type
expression for E that has the highest accuracy ever observed. Although
there 1s no significant difference between Tiirker's approximation (a =
1/8) and ours (@ = 0.1197), the latter has a slightly smaller mean error
and 1s thus record accurate.

It is also noteworthy that, contrary to (13), (14) and (15), the
expressions (16) and (17) render a very small (near-zero) bz—value. This
indicates that there may be a deeper reason for the success of (16} and

(17), which we don’t fully understand at the present moment.
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