# APPROXIMATING THE TOTAL $\pi$ -ELECTRON ENERGY OF BENZENOID HYDROCARBONS: A RECORD ACCURATE FORMULA OF (n,m)-TYPE

## Ivan GUTMAN

Faculty of Science, University of Kragujevac, P.O.Box 60, YU-34000 Kragujevac, Yugoslavia

(Received: September 1992)

Abstract: A novel (n,m)-type lower bound and an approximate topological formula for the total π-electron energy (E) of benzenoid hydrocarbons are put forward, improving some recent results by Lemi Türker; n = number of carbon atoms, m = number of carbon-carbon bonds. The new approximation for E is shown to be more accurate than any of the 48 previously considered formulas of (n,m)-type.

## INTRODUCTION

The total π-electron energy (E) of a benzenoid hydrocarbon depends on a variety of structural features and topological (i.e. graph-theoretical) invariants of the respective molecule, but the far most important are the number of carbon atoms (n) and the number of carbon-carbon bonds (m). This fact is nowadays firmly established and supported by numerous theoretical arguments and extensive computer work [1]. As a matter of fact, about 99.5% of E is determined by the invariants n and m.

A plethora of mathematical expressions, depending solely on n and m, has been proposed for the approximate calculation of the total  $\pi$ -electron energy. If  $E^{\bullet}$  is such a function of n and m then eqs. (1) and (2):

$$E = a_{\cdot} E^{\bullet}$$
 (1)

$$E = a_2 E^{\bullet} + b_2 \tag{2}$$

are called (n,m)-type approximate formulas for total  $\pi$ -electron energy. The constants  $a_1$ ,  $a_2$  and  $b_2$  are usually determined by means of least-squares fitting, using the exact E-values of a set of pertinently selected benzenoid systems. In [1] 24 different expressions  $E^{\bullet}$ , previously introduced in the chemical literature, have been collected. The accuracy of the resulting 48 formulas of (n,m)-type was compared using a data base that consists of the E-values of 104 Kekuléan benzenoid hydrocarbons with three or more condensed six-membered rings, from the book of Zahradnik and Pancir [2]. Throughout this work we employ the same data base and thus the results reported here are directly comparable with those from [1].

The most accurate among the known (n,m)-type formulas for E have an average error of 0.33% eq. (1) and 0.30% eq. (2) and a correlation coefficient of 0.9998 [1]. In this paper we report some novel (n,m)-type expressions whose precision is slightly better than of any approximation examined so far. Our results are closely related to and based on certain recent findings by Lemi Türker [3,4].

#### TÜRKER'S UPPER AND LOWER BOUNDS FOR TOTAL M-ELECTRON ENERGY

In a paper [3] published few years ago Türker deduced the upper bound (3) for the total  $\pi$ -electron energy of an arbitrary alternant hydrocarbon:

$$E \le E_U = 2 \left[ m + 2 \left[ {\binom{\nu}{2}} \right] a_4 \right]^{1/2}$$
 (3)

where  $\nu = n/2$  and where  $a_4$  is the fourth coefficient of the characteristic polynomial. Recently Türker arrived at a lower bound of analogous form [4]:

$$E \ge E_L = 2 \left[ m + 2 \left[ a_4 \right]^{1/2} \right]^{1/2}$$
 (4)

In eq. (3) as well as throughout this paper it is assumed that n is an even number. The case of odd n (which is chemically much less relevant) can be treated in a fully analogous manner, bearing in mind that then the graph eigenvalue  $x_{(n+1)/2}$  (see below) is necessarily equal to zero.

We provide here an elementary derivation of (3) and (4), which differs from the reasoning used in [3,4]. Its slight modification (described in the subsequent section) will result in improvements of (4).

We start with the relation (5) which holds for all alternant hydrocarbons [1]:

$$E = 2 \sum_{i=1}^{\nu} x_i$$
 (5)

where  $x_1$ ,  $x_2$ ,...,  $x_n$  are the eigenvalues of the respective molecular graph ordered so that  $x_i \le x_j$  for i > j. From (5) it immediately follows

$$\frac{1}{4} E^{2} = \left( \sum_{i=1}^{\nu} x_{i} \right)^{2} = \sum_{i=1}^{\nu} (x_{i})^{2} + 2 \sum_{1 < j} x_{i} x_{j}$$

i.e.

$$\frac{1}{4}E^2 = m + 2\sum_{i < j} x_i x_j$$
 (6)

because of the well known identity

$$\sum_{i=1}^{\nu} (x_i)^2 = m.$$

Since  $\binom{\nu}{2}^{-1} \sum_{i < j} x_i x_j$  is the arithmetic mean of the products  $x_i x_j$  one has

$$\left(\begin{array}{c} \nu \\ 2 \end{array}\right)^{-1} \sum_{i < j} x_i x_j \leq \left[\left(\begin{array}{c} \nu \\ 2 \end{array}\right)^{-1} \sum_{i < j} \left(x_i\right)^2 \left(x_j\right)^2\right]^{1/2}$$

$$= \left[\left(\begin{array}{c} \nu \\ 2 \end{array}\right)^{-1} a_4 \right]^{1/2}.$$
 (7)

Substituting (7) back into (6) we arrive at

$$\frac{1}{4}E^2 \le m + 2 {\binom{\nu}{2}} {\binom{\nu}{2}}^{-1} a_4^{1/2}$$

from which (3) follows straightforwardly.

In order to deduce (4) start with the identity

$$\sum_{i < j} x_i x_j = \left[ \sum_{i < j} (x_i)^2 (x_j)^2 + 2 \sum_{i, j, k, 1} x_i x_j x_k x_i \right]^{1/2}$$

$$= \left[ a_4 + 2 \sum_{i, j, k, 1} x_i x_j x_k x_j \right]^{1/2} . \tag{8}$$

Bearing in mind that the summands  $\ x_i^{}\ x_j^{}\ x_k^{}\ x_l^{}$  are non-negative numbers, it is clear that

$$\sum_{i \le j} x_i x_j \ge \left[ a_4 \right]^{1/2}$$

which substituted into (6) renders (4).

#### AN IMPROVEMENT OF TÜRKER'S LOWER BOUND

Instead of completely neglecting the term  $\sum\limits_{i,j,k,1} x_i x_j x_k x_l$  in eq. (8) which leads to Türker's lower bound (3) we try to decrease the right-hand side of (8) in a less severe manner. Observe first that  $\sum\limits_{i,j,k,1} x_i x_j x_k x_l$  consists of  $\nu(\nu-1)(\nu^2-\nu-2)/8$  summands. Consequently,

$$\left[ v(\nu-1)(\nu^{2}-\nu-2)/8 \right]^{-1} \sum_{i,j,k,1} x_{i} x_{j} x_{k} x_{1}$$

$$\geq \left[ \prod_{i,j,k,1} x_{i} x_{j} x_{k} x_{i} \right]^{\left[ \nu(\nu-1)(\nu^{2}-\nu-2)/8 \right]^{-1}}$$
(9)

where we use the fact that the geometric mean of non-negative numbers cannot exceed their arithmetic mean. Every eigenvalue in the product  $\prod_{i,j,k,1} x_i \times_j x_k \times_l \text{ occurs } (\nu-1)(\nu^2-\nu-2)/2 \text{ times. Hence the right-hand } i,j,k,1$  side of (9) is equal to

$$\begin{bmatrix} v \\ \prod_{i=1}^{\nu} x_i \end{bmatrix}^{[(\nu-1)(\nu^2-\nu-2)/2]/[\nu(\nu-1)(\nu^2-\nu-2)/8]}$$

$$= \begin{bmatrix} v \\ \prod_{i=1}^{\nu} x_i \end{bmatrix}^{4/\nu} = |\det A|^{2/\nu}$$
(10)

where det  $A = \prod_{i=1}^{n} x_i$  is the determinant of the adjacency matrix. Combining (8), (9) and (10) we obtain

$$\sum_{1 \le 1} x_1 x_j \ge \left[ a_4 + \frac{1}{4} \nu(\nu - 1)(\nu^2 - \nu - 2) \left| \det A \right|^{2/\nu} \right]^{1/2}$$

which substituted back into (6) yields

$$E \geq E_{La} = 2 \left[ m + 2 \left[ a_4 + \frac{1}{4} \nu(\nu - 1)(\nu^2 - \nu - 2) | \det A |^{2/\nu} \right]^{1/2} \right]^{1/2}. \quad (11)$$

If we restrict the consideration to the (chemically most interesting) case when det  $A \neq 0$ , then because of  $|\det A| \geq 1$  we can simplify (11) as

$$E \ge E_{Lb} = 2 \left[ m + 2 \left[ a_4 + \frac{1}{4} \nu(\nu - 1) (\nu^2 - \nu - 2) \right]^{1/2} \right]^{1/2}$$
 (12)

The inequalities (11) and (12) are, evidently, improvements of the Türker's lower bound (4).

For benzenoid hydrocarbons the estimates  $E_U$ ,  $E_L$ ,  $E_{La}$  and  $E_{Lb}$  can be further simplified by using the relations [5]

$$a_4 = \frac{1}{2} (m^2 - 9 m + 6 n)$$

$$|\det A| = K^2$$

where K is the Kekulé structure count. Thus we obtain:

$$E_{U} = \left[ 4m + \left[ 4n(n-2)(m^2 - 9m + 6n) \right]^{1/2} \right]^{1/2}$$
 (13)

$$E_{L} = \left[ 4m + \left[ 32(m^{2} - 9m + 6n) \right]^{1/2} \right]^{1/2}$$
 (14)

$$E_{La} = \left[ 4m + \left[ 32(m^2 - 9m + 6n) + n(n - 2)(n^2 - 2n - 8) K^{8/n} \right]^{1/2} \right]^{1/2}$$

$$E_{Lb} = \left[ 4m + \left[ 32(m^2 - 9m + 6n) + n(n - 2)(n^2 - 2n - 8) \right]^{1/2} \right]^{1/2}.$$
(15)

Observe that for benzenoid hydrocarbons  $E_U$ ,  $E_L$  and  $E_{Lb}$  are expressions of (n,m)-type. The function  $E_{Lb}$  is applicable only to Kekuléan benzenoid species.

### TÜRKER'S APPROXIMATE FORMULA FOR TOTAL m-ELECTRON ENERGY

In [4] Türker proposed an approximate expression for total  $\pi$ -electron energy (of alternant hydrocarbons) of the form

$$E_{T} = \alpha E_{L} + (1 - \alpha) E_{U} . \qquad (16)$$

For benzenoids E is of (n,m)-type.

Türker himself determined the value of the coefficient  $\alpha$  by means of theoretical arguments [4] and found that  $\alpha = 1/8 = 0.125$ . We optimized  $\alpha$  numerically so as to gain a minimal average relative error of eq. (1) and found a remarkably close value of  $\alpha = 0.1197$ .

In full analogy to Türker's approximation (16) we may consider

$$E_{Th} = \alpha E_{Ih} + (1 - \alpha) E_{II}$$
 (17)

which for Kekuléan benzenoid hydrocarbons is an (n,m)-type expression. Numerical optimization gave  $\alpha=0.306$  .

# TESTING THE NOVEL (n,m)-TYPE APPROXIMATE FORMULAS

The approximate formulas (1) and (2) were tested on our standard data base [1] for the following five novel (n,m)-type expressions  $E^*$ :  $E_L$ ,  $E_{Lb}$ ,  $E_{T}(\alpha$  = 1/8),  $E_{T}(\alpha$  = 0.1197) and  $E_{Tb}(\alpha$  = 0.306). The results obtained are collected in Table 1. For completeness also the results for the (previously examined [1]) expression  $E_{tt}$  are included in Table 1.

An inspection of Table 1 reveals that both Türker's lower bound (14) and its present improvement (15) are fully inapplicable for purposes of approximating the total  $\pi$ -electron energy. On the other hand, the linear combination of the upper and lower bounds, especially (16), significantly increases the precision of the respective approximate to-

Table 1a. Coefficients in the approximate (n,m)-formulas (1) & (2)

| Equation<br>for E  | a <sub>1</sub> | a <sub>2</sub> | b <sub>2</sub> |  |
|--------------------|----------------|----------------|----------------|--|
| (13)               | 0.919          | 0.899          | 0.90           |  |
| (14)               | 2.224          | 3.949          | -30.23         |  |
| (15)               | 1.333          | 1.434          | -3.01          |  |
| $(16), \alpha=1/8$ | 0.993          | 0.995          | -0.09          |  |
| (16), α=0.1197     | 0.989          | 0.990          | -0.04          |  |
| (17), α=0.306      | 1.016          | 1.015          | 0.05           |  |

Table 1b. Results of numerical testing of approximate formulas (1) & (2)

| Equation             | Eq.                  | Eq. (1)               |                   | Eq. (2)               |                            |
|----------------------|----------------------|-----------------------|-------------------|-----------------------|----------------------------|
|                      | mean error           | max. error observ.(%) | mean error (%)    | max. error observ.(%) | correlation<br>coefficient |
| (13)                 | 0.54                 | 2.3                   | 0.30              | 1.0                   | 0.9998                     |
| (14)                 | 7.69                 | 37.8                  | 1.34              | 12.4                  | 0.996                      |
| (15)                 | 1.41                 | 8.2                   | 0.48              | 2.1                   | 0.9994                     |
| (16),α=1/8           | 0.30 <sup>a</sup>    | 1.0                   | 0.30 <sup>c</sup> | 1.0                   | 0.9998                     |
| (16), α=0.119        | 97 0.30 <sup>b</sup> | 1.0                   | 0.30 <sup>d</sup> | 1.0                   | 0.9998                     |
| $(17), \alpha=0.306$ | 6 0.31               | 1.2                   | 0.31              | 1.2                   | 0.9998                     |

pological formula. As a matter of fact, eq. (16) provides the (n,m)-type expression for E that has the highest accuracy ever observed. Although there is no significant difference between Türker's approximation ( $\alpha$  = 1/8) and ours ( $\alpha$  = 0.1197), the latter has a slightly smaller mean error and is thus record accurate.

It is also noteworthy that, contrary to (13), (14) and (15), the expressions (16) and (17) render a very small (near-zero)  $\mathbf{b_2}$ -value. This indicates that there may be a deeper reason for the success of (16) and (17), which we don't fully understand at the present moment.

## REFERENCES

- [1] For review and an exhaustive bibliography on research of the total π-electron energy of benzenoid hydrocarbons and, in particular, its (n,m)-dependence see: I.Gutman, Topics Curr.Chem. 162, 29 (1992).
- [2] R.Zahradnik and J.Pancir, HMO Energy Characteristics, Plenum Press, New York, 1970.
- [3] L. Türker, Match 16, 83 (1984).
- [4] L. Türker, Match 28, 261 (1992).
- [5] I.Gutman, Topics Curr.Chem. 162, 1 (1992).