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Abstract: It is demonstrated that all cycles in a cat d db 0~
id hydrocarbons exhibit a stabilizing effect on its overall
thermodynamic stability. Because the cycles in a catacondensed
benzenold hydrocarbon are all of (4m+2)-type, our result im-
plies that in the class of conjugated molecules considered the

Hickel (4m+2)-rule 1is obeyed without exceptions.

INTRODUCTION

Slobodan Bosanac and the present author developed in 1877 (1,2] a
method for the calculation of the effect of an individual cycle in a
polycyclic conjugated m-electron system on the thermodynamic stablility
of the respective compound. This method is based on the application of
certain mathematical techniques of graph spectral theory, by means of
which it is possible to "extract" the contribution of each indlvidual
cycle to the total m-electron energy. The current version of the theory
is formulated within the framework of the tight-binding (Hiickel) mole-
cular orbital approximation. Both its chemical and mathematical detalls

have been outlined in earlier publications [1-4].
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Thus if G denotes the molecular graph of a conjugated system and
¢(G, x) stands for its characteristic polynomial [5,6], then the energy-
-effect of a cycle Z (in the units of the HMO resonance integral B) is

given by [1-4]):

5 = #(G, 1y)
ef(G,2) = £ J' In dy (1)
) ¢(G, 1y) + 2 ¢(G-2, iy)

where 1 = ¥-1 and where G-Z is the subgraph obtained by deleting from
G the vertices that belong to the cycle Z. [In the case when Z embraces
all the vertices of G i.e. when 2 is a Hamiltonian cycle of G, then for-
mula (1) remains valld provided the term ¢(G-Z, iy) is set to be identi-
cally equal to unity.]

The cycle Z causes (thermodynamic) stabilization if ef(G,Z) is
greater than zero. If ef(G,Z) is negative then the respective cycle
diminishes the stability of the molecule examined [1-4]}. In view of this
the quantity ef(G,Z) provides the basis of a straightforward method for
checking the valldity of the Hiickel (4m+2)-rule in the case of polycyc-
lic conjugated molecules.

It seems that Michael Dewar (7] was the first to formulate the so-
-called "generalized Hiickel rule" (GHR), according to which 6-, 10-,
14-, ...-membered cycles stabilize whereas 4-, 8-, 12-, ...-membered
cycles destabilize the respective polycyclic conjugated molecule. Here
"stabilization" and "destabillization" are understood in a thermodynamic
sense 1.e. as effects on the energy (enthalpy) of the conjugated com-
pound considered.

The reasoning which led to the GHR were based on perturbation-mo-

lecular-orbltal arguments [7-9] and could not be completely Justified by
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more sophisticated theoretical analyses. In particular, some difficult-
jes in the Dewar’s approach were pointed out a long time ago [10].

In the great majority of the conjugated molecules investigated so
far, the ef-method was found to be in very good harmony with the GHR. In
other words, we usually have ef(G,Z) > 0 if the size of the cycle Z is
am+2 and ef(G,Z) < 0 if the size of this cycle is 4m. These regulari-
ties are, however, not without exceptions. Cases have been reported
[2,11] in which the GHR was violated. These cases embrace alternant con-
Jugated hydrocarbons containing cyclobutadiene fragments [2] as well as
conjugated molecules with heteroatoms [11].

On the other hand, it has been shown [12] that in alternant conju-
gated hydrocarbons one half of the GHR is always obeyed. We namely have
the following result, which could be proved in a mathematically rigorous

manner and which, therefore, cannot have exceptions.

Theorem 1. If G is an arbitrary bipartite graph and Z its arbitrary

cycle vhose size is divisible by four, then ef(G, Z) < 0.

Because the molecular graphs of alternant hydrocarbons are neces-
sarily bipartite, Theorem 1 means that all (4m)-membered cycles in an
alternant hydrocarbon necessarily diminish its thermodynamic stability.

Curiously, however, it is not always true that (4m+2)-membered
cycles in a bipartite graph have positive ef-values. Counterexamples
have been discovered already in [2].

In this paper we demonstrate that if we restrict our consideration
to catacondensed benzenoid hydrocarbons [13), then also the second half
of the GHR 1s always satisfied. In particular, we offer the following

result.
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Theorem 2. If G is the molecular graph of an arbitrary catacondensed
benzenoid hydrocarbons and Z is its arbitrary cycle, then

ef (G, Z) > 0.

Bearing in mind that all cycles of a catacondensed benzenoid system
are of (4m+2)-type (13,14], from Theorem 2 we readily conclude that
catacondensed benzenoid hydrocarbons fully obey the GHR.

In order to prove Theorem 2 we need some preparations.

THE FUNCTION y AND SOME OF ITS PROPERTIES

By introducing the substitution y = 1/x into eq. (1) we obtain

after some elementary calculus

% #(G, 1/x)
ef(G,2) = %Jl %% 1n dx
5 ¢(G, irx) + 2 ¢(G-2, irx)

which can be rewritten in the form

o

ef(G.2) = - 2 [ X% 1n |1 - 200 | ax 2
[
where
¥(x) = ¥(G,2,%x) = -2 ¢(G-2, irx)/¢(G, irx) . (3)
By means of eq. (3) we defined a novel graph function whose inde-
pendent variable 1s x and which depends on the graph G and its particu-
lar cycle 2. In the general case y is a complex-valued guantity. How-

ever, we have

Lemma 1. If G is a bipartite graph, then for all real values of the
variable x, for which the function y(x) exists, 7(x) is

real-valued.
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Proof. The characteristic polynomial of an n-vertex bipartite graph G
can always be written in the form

$(G, x) = T (-1)* b(G, k) x"* (4)

kZ0

where the coefficients b{(G, k) are non-negative. Formula (4) is an easy
algebraic consequence of the pairing theorem [5,6], and has been used
many times in the chemical literature.

Now, if G 1is bipartite then all its cycles are of even size.

Further, for any cycle Z of G, the subgraph G-Z is also bipartite (5].

Hence,
- x n-|2|-2x
¢(G-2, x) = T (-1)" b(G-Z, k) x (5)
k=0
Here and later the size (= number of vertices) of the cycle 2 is denoted

by |2].
Substituting (4) and (5) back into (3) we obtain after straightfor-

ward calculation

T b(G-Z, k) x*=*

TR R R L I — (6)
¥ b(G, k) x
k

form which the validity of Lemma 1 is obvious.
From (6) we also immediately arrive at

Lemma 2. If G is a bipartite graph, then the function y(x) exists for

all real values of the variable x, except for x = 0.

Proof. It 1s sufficient to recall that both the numerator and the nomi-
nator on the right-hand side of eq. (6) are polynomials whose coeffici-

ents are positive or zero. Because of b(G, 0) = 1 the nominator cannot
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be equal to zero (in fact, it is always greater than or equal to unity).
Hence, the right-hand side of formula (6) exists for all real values of
%x. For x = 0, however, the original definition (3) of ¥(x) would require

division with zero. o

By introducing the auxiliary quantity

-1 if |Z| e {4, 8, 12,..., 4m,...}
¢(2) =
+1 if |Z| e {6, 10, 14,..., 4m+2,...}

the expression (6) can be written in a somewhat more compact form

2 T b(G-2, k) 22l

y(x) = Z(z) —=% 2 (8")

I b(G, k) =
k

From eq. (B’) we are able to straightforwardly deduce Theorem 1.
Although Theorem 1 is not a new result [12], we deem that at this point

it Is instructive to repeat its (very short) proof.

Proof of Theorem 1. If the size of a cycle Z is divisible by 4 then Z is
of (4m)-type i.e. {(2) = -1. Therefore for all x € (0,w) %(x) is great-
er than unity. This means that the integrand in (2) is positive in the
entire domaln of integration. Hence the left-hand side of (2) must be

negative.
From eq. (2) it is clear that if for all x € (0,e),

0 s y(x) s 1 (7)

then ef(G,2) will necessarily be positive. In what follows we prove
Theorem 2 by showing that for G being the molecular graph of a catacon-
densed benzenoid hydrocarbon and Z its arbitrary cycle, the function

7(G,Z,x) obeys the relations (7).
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PROOF OF THEOREM 2

Let the molecular graph G possess cycles. Let Z be the cycle whose
effect on total m-electron energy we are interested in and let € be an
edge of G, connecting the vertices u and v, lying on Z. The edge e, may
(but needs not) belong to other cycles of G. If such cycles exist, we
denote them by 21,22, T ,Zr.

According to a well known result of Heilbronner [S,15), the charac-
teristic polynomial of the graph G conforms to the recursion relation:

r

¢(G) = ¢(G—ewl - ¢(G-u-v) - 2 ¢(G-2) - 2 3)=:1 ¢(G-ZJ) . (8)

If Z is the only cycle containing the edge = (i.e. if r = 0), then the
last summation on the right-hand side of (8) does not exist. In the case
of benzenold graphs, however, r is necessarily greater than unity. (Ex-
ceptionally, r = 0 for benzene and r = 1 for naphthalene.)

Now, if G is bipartite so are the subgraphs G—ew , G-u-v , G-Z and
G—Z] , J =1,...r. Consequently, formulas of type (4)-(5) apply to all
of them. From (8) we then deduce the following recurrence relation for

the coefficients of the characteristic polynomial:

b(G, k) = b(G—ew. k) + b(G-u-v, k-1) + 2 &{(2) b(G-2Z, k-|Z|/2)

r
+2 § 2z) b6z, k-[Z |2) . (9)
jE 3 J

In order that the relation (9) hold for all values of k = 0,1,2,..., it
is both consistent and convenient to set b(H, k') = 0 for all biparti-
te graphs H and all k' = -1, -2, -3,... . We assume that this condition

is satisfled in all formulas that follow.
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As already mentioned, all the cycles of a catacondensed benzenoid

hydrocarbon are of size 4m+2. This makes possible to simplify (9) as
b(G, k) = b(G~eW. k) + b{G-u-v, k-1) + 2 b(G-2Z, k—lZ[/Z)

r
+2 ¥ blG-Z, k-|Z |/2)
o 3 J

Bearing in mind that for all values of K, b(G—ew. k) =0,

b(G-u-v, k-1) =2 0 and b{G—ZJ. k-|2|/2) =z 0, one arrives at

Lemma 3. If G is the molecular graph of a catacondensed benzenoid system
and 2 its arbitrary cycle, then the inequality
b(G, k) = b(G-2Z, k-|2Z|) (10)

is satisflied for all values of k, k = 0,1,2,...

We are now prepared to show that the relations (7) are obeyed for
all x € (0,o) provided G is a molecular graph of a catacondensed benze-
noid hydrocarbon.

The validity of the left-hand inequality in (7) is obvious from
(6') and the fact that &(Z) = +1 for any cycle Z contained in a catacon-
densed benzenold system.

In order to verlfy the right-hand side inequality in (7) we use eq.

(8’) and write y(x) in the form:

y(x) = —% =

T b(c, k) I b(G, k) x°%
k x (11)

2 pole-z, k) 2R 5 ez, k(2|2
k

Because of the Lemma 3 the right-hand side of (11) cannot exceed unity
i.e. the the second inequality in (7) holds for all x € (0,w).

This completes the proof of Theorem 2. &
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DISCUSSION

We computed a large number of ef-values of both cata- and pericon-
densed benzenoid hydrocarbons and found not a single case of violation
of the Hiickel rule. Therefore we are inclined to conjecture that the GHR
(measured via its energy-effect) is satisfied not only in all catacon-
densed benzenoids (which we proved in this paper), but also in all peri-
condensed benzencld systems.

Pericondensed benzenoid hydrocarbons possess both (4m+2)- and (4m)-
-membered cycles [13]. The validity of the GHR for the (4m)-cycles is
ensured by means of Theorem 1. Hence what only remains, is to prove that
all (4m+2)-cycles in a pericondensed benzenold mclecule have positive
ef-values. For this it would suffice to show that the inequalities (7)
are obeyed, which - as we just have seen - 1s the case provided the re-
lation (10) holds.

At the first glance, deducing (10) from the Hellbronner identity
(9) may look as a not too difficult task; in formula (9) we now would
have &(Z) = +1, but C(Z’) = -1 for some J. Nevertheless, the finding
of a satisfactory proof of the below conjecture was not successful so

far.

Conjecture. If G ls the molecular graph of a benzenold system and Z
its arbitrary cycle of size 4m+2, then the inequality

(10) is satlsfied for all values of k, k = 0,1,2,...

If this ConJjecture 1s true then the generalized Hiickel (4m+2)-rule

is obeyed without exception by all benzenoid hydrocarbens.
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