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Abstract

Two types of radical S,T-isomers are introduced. They are
developed from the structure of perinaphenyl radical which was
recently found in various flint samples. Some of their

topological properties are established.
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A variety of research [2,3,5-10] has been devoted to the
study of topological properties of benzenoid S,T-isomers and
their generalizations since the concept of S,T-isomers was
introduced in 1982(8). In the present paper, we shall consider
two types of new isomers, called radical 5y, Ty-isomers and
radical Sz,Tz—isomers. These isomers are developed from the
structure(Fig. 1) of perinaphenyl radical which was recently

found in various flint samples(see[l1l]).

Fig. 1 The structure of perinaphenyl radical

The symbolism and terminology used in the present work is
the same as in (8] and the review [4]. Note that a Kekulé pattern
is a chemical notion which coincides with what is known in graph
theory under the name "perfect matching”. The number of Kekulé
patterns of a graph G is denoted as K(G). In order to simplify
the discussion, we always place a benzenocid graph G on a plane s¢
that two edges of each hexagon are parallel to the vertical line.
Then o(G), the number of aromatic n-sextets (in a Clar formula)
of G, is equal to the maximum integer ¢ for which o proper

sextets (see Fig.2) are contained in a Kekulé pattern of G.

proper sextet improper sextet
Fig. 2
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The radical §;,T;-isomers and radical S; T;-isomers are
obtained by attaching three isomorphic fragments(planar graphs)
to the perinaphenyl radical in distinct ways. Their structures
are depicted in Fig. 3 and Fig. 4. For convenience, sometimes we
may simply call them as 5),T,-isomers and S;,Ty~isomers . When the
attached fragments are benzenoid, these isomers are called
benzenoid radical 8;,T{-isomers (i=1,2). The §;,T{-isomers with
non-benzenoid fragments are called non-benzenoid radical §;,T;-

isomers.

Fig. 3 The radical s),Tj-isomers
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It is evident that 5| and S; have rotational symmetry which
Ty and T; do not have (unless in the trivial cases T;=S; and
Ty=5;} .

As in [2], we let A' denote the subgraph obtained from A by
deleting its vertex x, and AYY denote the subgraph obtained from
A by deleting its vertices x and y; etc.

For notational simplicity, we also use A, A% and A%, etc.,
to denote the numbers of Kekulé patterns of the corresponding

graphs A, A* and A*!, etc.,in case no confusion will occur.

Theorem 1. For any pair of radical SPTl-isomers,
K(s) = K(T)) = 3(ahN)(a)?,

Proof. It is trivial if |V(A)| is odd since both S| and T,
also have an odd number of vertices so that no perfect matchings
exist. So we may assume that |V(A)| is even.

According to the situation of the vertices o,u,v and w in a
perfect matching of Sy, we may divide the KeKulé patterns of 5
into the following three cases(note that in Fig.5, u and v must
both match vertices of the top fragment A or both match no
vertices of this fragment. There are similar claims for v and w,

and for w and u.):

Case 1 Case 2 Case 3

Fig. 5 Three cases of Kekulé patterns of Sy
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Let K|, K; and K; denote the numbers of Rekulé patterns in
the three cases, respectively. Then it is easily seen that

K1=K,=K3=(k"’) (A) (A).

So. K(S;) =K +Kp+K;=3 (A%1) (a2,

Note that T, is obtained from S; by turning over one of the
three fragments so that the vertices x and y in that fragment
interchange their attachment to the radical part. Then we also
have R(T;)=R(S;)=3(A%]) (n)2.

It completes the proof of Theorem 1.

Corollary 1. For any pair of benzenoid radical s;,T-
isomers, K(Sy) = K(T{} = o(S;) = o(T;) = 0.

Proof. It is well known that any benzenoid graph is 2-
colorable. In any 2-coloring of the Sy{or Ty)-isomer. the
vertices x and y in a fragment A must have same color. Sc, either
A or A*! must have different number of vertices in distinct
colors. Thus, A and A" can not both have Kekulé patterns.

Corollary 1 then immediately follows from Theorem 1.

It should be pointed out that for non-benzenoid radical
Sl,Tl—isomers we may have K(Sl) = K(Tl) > 0, which can be seen

from the two examples as shown in Fig. 6.

o o 108

¥ h \
A A

Fig.6 Examples(hl and A;) of fragment A in Sl,Tl—isomers
with A; >0 and (A" > 0 (i=1,2).
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Now we come to consider the radical S;, T)-isomers. The
results are quite different from the radical S|, T|-isomers.

It is clear that we only need to consider Sz,T;—isomers with
an even number of vertices, i.e.,|V(A)}| is odd. (Otherwise, we
have K(Szl=K(T2)=a(sa)=c(Tz)=0 since no perfect matchings exist.)

Theorem 2. For any pair of radical S;,T;-isomers with |viay ]
odd,

R(S,) > K(T,) if and only if AT < A% < 2A%;

K(S;) < K(T;) if and only if 0 < Af < AT or A% > 2A%;

R(S;) = K(T,) if and only if A% = a1, 24T or 0.

Proof. According to the situation of the vertices o,u,v and
w in a perfect matching of §;, We may divide the KeKulé patterns
of S; into the three cases described in Fig. 7 (note that since
|v(a)| is odd, exactly one of x and y in each fragment A must

match a vertex not belonging to A.):

1 P )
' x % ~ x x
1 w > 1 ]
T A R 'y
b N
: n N ,/ 'A’,’ b ’,’
[ o b v
Case 2 Case 3

Fig. 7 Three cases of Kekulé patterns of 5

Let K;, K; and K; denote the numbers ' of Kekulé patterns in
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the three cases, respectively. Then it is easily seen that
Ky=K;=K;= (A ) /(AT) .

80 RIS AR eR R T AN 500 ia con g v s s mens s pps s s T0)
Note that Ty is obtained from S, by turning over one of the

three fragments so that the vertices x and y in that fragment

interchange their attachment to the radical part. Then we have
6 SEF0 LI ER AT LI L L SO S I (2)

So, K(5)- K(Tp= 3(aH1(AhH-[(a%) 2% (A}

(AN [ 3% (ah-ah -2 )

(%) (A*-aT) (2aT-A%) .

Then, the conclusions of Theorem 2 follow immediately.

Corollary 2. For any pair of benzenoid radical
S, T;-isomers , K(S;)=a(S;)=0, K{(T)=(a")} and o(T;)=30(a".

Proof. It is trivial when |V(A}|is even since no Kekulé
patterns exist in A%, S, and T,. So we may assume IV(A) Iis odd.
From (1) and (2) in the proof of Theorem 2, we have
R(S;=3(a"%(AT) and R(Ty=(a%")%2(a%) (aD? .

Note that in any 2-coloring of the S;(or Tzl-isomer, the
vertices x and y of a fragment A must have distinct colers. So,
either A' or AT must have different number of vertices in
distinct colors. Thus, A" and A can not both have KeKulé
patterns. Therefore, we have K{Sz)=a(52)=0 and K(T;)-—-(A’)s.

To prove c(T2)=30(Ax). we only need to consider the case
A¥ > 0( and so A' = 0 ). Then the equality is easily seen by
considering the three cases given in the proof of Theorem 2

( refer to Fig. 7 and Fig.4 ).

From Corollary 2, we see that for any pair of benzenoid
radical §,,T;-isomers, K(S;) < K(T,) and o(S;) s o(T;). However,
for non-benzenoid radical S,,T)-isomers, all the three cases
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indicated in Theorem 2 do exist, which can be seen from the

following examples given in Fig.8.

Y Yy y

A A Ay
Fig. 8 Examples of fragment A for the three cases in Theorem 2.
It is easy to see that (A% = 3, () = 2,

(a)* =5, (a7 = 2, (A" = 2, and (3;})7 = 1 so that
ap! <« ap* < 2T, (ap* > 2(a)7 and (A)* = 2(apT
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