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The number of Clar structures which represent
maximal independent sets of vertices of Clar graphs
of regular corannulenes are computed and expressed as
sum of binomial coefficients. It is concluded that the
efficiency of Clar structures in data reduction dec-
reases as the number of linearly anmnulated hexagons

increases.
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1. Introduction, Notations and Definitioms:

Theoretical studies of large benzenoid hydrocarbons
still remain beyond the reach of non-empirical (Ab-initio)
and even some semi-empirical methods. Experience over the
past three decades suggests that benzenoid systems are esp-
ecially vulnerable for methods of graph theory rather than
quantum-mechanical MO modelsl. The two most popular appro-
aches are the Structure-Resonance Theory of Herndon® and
the Conjugated-Circuit Model of Randi63. Both approaches
are ultimately equivalant4 and depend on investigation of
all Kekidlé structures of the benzenoid system under consi-
deration. A third approach which is due to Herndon and
Hosoy35 uses only a selected number of Kekulé structures
(which represent what is called Clar's Basis) reproduces
resonance energies of Dewar & de-Llano” with suitable para-
metrization. Because of some controversy in the literature
of Mathematical Chemistry certain definitions will be
clarified which are related to Clar Sextet TheoryT:

1.1 Clar's Definition:

In 1922 Armit and Robinson8 advocated novel valence
structures for benzenoid systems based on the notion of
"aromatic sextets'. Based on a vast amount of experimental
data, Clar’ recognized the value of "pi-sextets" and
demonstrated how these sextets offer adequate representations
of benzenoid polycyclic systems. Further, Clar justified
calling valence structures with inscribed circles (denoting
pi-aromatic sextets) "Clar Structures'". 1In his review on
the topological properties of benzenoid molecules, Gutmang
stated three rules for the construction of Clar structures
as follows:

a) It is not allowed to draw circles in adjacent hexagons.
b) Circles can be drawn in hexagons if the rest of the
conjugated system has at least one Kekuld structure.



c) A Clar structure contains the maximal number of circles
which can be drawn when trules a) and b) are obeyed.

Examples of Clar structures are shown in Fig. 1.
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Fig 1
Clar structures of some pericondensed benzenoid

hydrocarbons according to the original definition
of Clar (rules a-c).

1.2 "Modified" Definition Of Clar Structures:

In 1984 Herndon and Hosoya5 slightly "loosened" the
original Clar's definition by alleviating rule c)above,and
keeping only rules a) and b). In Fig 2 we draw some struc-
tures which according to Herndon and Hosoya5 are considered
as Clar structures.
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Fig 2

Clar structures according to the definition of
Herndon and Hosoya. These structures fulfil
conditions a) and b) but not ¢)

In subsequent papers E1-Basi1!?

Randic11

and El-Basil and
adopted this later definition of Clar structures.

1.3, Clar Graphl2 (of Gutman) @(B) = @

Resonance relations among the hexagons of a benzenoid
hydrocarbon, B, may be stored in the form of the so called
Clar Graph, @(B) = @, first introduced by Gquanlz. Denote
the set of hexagons of B by H = {hl, hy, oo by } The Clar
graph @, is generated when H is replaced by V = ViaVoseens

r} i.e. by replacing each hexagon h; €H by a vertex v;eV.
The second step is to connect any pair {v Vi }EV if the
corresponding hexagons {h h }EH are nonrescnant13. A sys-
tematic procedure to construct P(B) is to define for the
benzenoid system B, the following:

1.4 Clar Matrix C(B):

C(B) is an r x r matrix the elements of which CJ._J
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are given by eqn. 1.

1 if hi is nonresonant with hj

- {h { sl

0 otherwise

Then egn.(2) is used to draw @(B), viz.,

C(B)=  A(D) . (2)

where A(@) is the adjacency (connection) matrixt® of B(B) .

Illustration:

We consider the following benzenoid system By

Ko
60000

Investigation of resonance relations in the set H(Bl)

= {h1'h2""'h?} leads to the following:
i 3 4 5 6 7N
1 rD 0 0 0 0 0
2 1 1 1 0 0
3 0 [¢] 0 0 0
Q(Bl)= 4 0 1 0 0
5 0 1 1
6 0 0
7 0~
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where only the upper triangle is written (because naturally
C(By) is symmetric™~) . Now recalling eqn. 2 one can draw
the Clar graph of By, ?(B;) shown below:

b (B,)

1.5 Maximal Independent Set of Verticeslﬁ:

The Clar graph is a device to demonstrate some of the
mathematical properties of Clar structures. Namely a bijec-
tion!’ can be generated from the set of Clar structures of
a benzenoid system to a set of "colored" Clar graphs the
vertices of which are colored in the following way: A'black"
vertex in Q(Bi) corresponds to a hexagon in Bi which contains
a circle while a white vertex corresponds to an "empty "
hexagon. (Of course the colors black and white are only
arbitrary). The bijective mapping:

Set of Clar structures —= Set of "colored'Clar graphs

wwa{3)

then requires the following two rules:

a') No two black vertices in @(Bi) are adjacent;
b') Every white vertex is adjacent to at least one black
vertex.

Rules a') and b') are to be compared with rules a) and b)
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described in Section 1.1. Every Clar structure, then ,
corresponds to a maximal set of independent verticest® of
the Clar graphlz‘ An independent set of vertices V(i) is
said to be a maximall set if every vertex of the graph not
included in V(i) is adjacent to at least one of the i ver-
tices of V(i). Once all maximal independent sets of vert-
ices of a given Clar graph are obtained, the corresponding
Clar structures can easily be retrieved. As an example we
consider the following case in Fig. 3.

Fig 3

A "colored" Clar graph (to the left) and the
corresponding Clar structure. The maximal
independent set of vertices V(i) has three
black and four white vertices such that every
white vertex is adjacent to at least one black
vertex.

Since all Kekulé structures can be retrieved from the
set of Clar structures of a benzenoid hydrocarbon, Clar
structures may be envisaged as "storage devices" which
contain enough information on all possible permutations
of the double bonds in the parent hydrocarbon. In fact
Herndon and Hosoya5 used Clar structures as quantum-mecha-
nical basis-set and succeeded in computing resonance
energies of several types of benzenoid systems of values
comparable with those of Dewar and de-Llano™ using SCF
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methods. Whence the computation of this type of Clar str-
uctures (which do correspond to maximal indepent sets)seems
te be a worthy subject, especially knowing the fact that
including all Kekulé structures in the Hamiltonian of a
benzenoid hydrocarbon of an average size is already beyond
the reach of computers. For example the tetrabenzoanthracene
B, drawn abave has 40 Kekulé structures but only three Claz
structures, one of which is shown in Fig 3, the other two
are drawn below.

It is interesting to observe that all 40 Kekul& structures
are "stored" in just three (Clar) structures | This type
of "Data Reduction" "~ seems to be worth investigating.

2. A Special Class Benzenoid Systems:
18

2.1 Corannulenes

This special class of benzenoid hydrocarbons is the
subject of this paper. (They are also called corona-condensed
polyhex graphs or simply coronoids).

A coronoid hydrocarbon is defined as a planar system
of identical regular hexagons (no overlapping) with at least
one hole of a size not less than two hexagons. In Fig 4 a
corannulene, Bc, is shown together with its Clar graph,@(ﬁc)
Also drawn is the dualistl®, D(B®), which simply "outlines"
the annulation of the hexagons of BS.

The dualist, D(Bc), is composed of two types of vertices :

a vertex which makes an angle of 180° with its two neighbour-
ing vertices is called Linear™ , otherwise a vertex is
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¢ (BS)

Fig 4

An arbitrary corannulene B®, its Clar graph 9 (%)

and dualist D(BC¢). The latter is subdivided into

"linear" subgraphs g,, g,,..,8¢- The larger vertices
1+ &2 6 &

are the angular ones.
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angular2 . Angular vertices are drawn as larger vertices
in D(B®) of Fig 4. A subgraph of D(Bc) which starts and
ends with an angular vertex is called a linear subgraph.
The D(B) can be expressed as union of all such linear
subgraphs, namely

D(B) = glUgZU Ugm . (W)

where g, is an ith linear subgraph and m is the number of
gjs which is the ring size of D(B®). For example m = 6 for
D(B®) drawn in Fig 4.

2.2, Modelling data:

Ideal gas, ideal electrolyte, ideal solution and so on
are all "man-made models" designed to focus on the general
features of the laws and rules prevailing in a giwen dis-
cipline. Real systems can then be approached in the light
of the corresponding '"model". This type of modelling is
quite important, if not indeed essential to many branches
of science. Our model here is a corannulene having the
general form whose dualist is drawn below:
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Namely each of the linear subgraphs contains only one linear
vertex. Working with this type makes the global features of
the combinatorics of enumeration transparent. Later, as
will be demonstrated more general forms can be handled quite
systematically.

2.3. The guantity 9?

We define a parameter 9? to enumerate all possible
selections of j linear vertices leading to a maximal indep-
endent set of verticesl6 in @(B%); the Clar graph of a cora-
nnulene containing m linear subgraphs. 9? may or may not
include contributions from angular vertices: when j=o only
angular vertices are involved, when j=m only linear vertices
are involved. In the intermediate situations: 0 <j < m
both linear and angular vertices will be contained in Q?
Some illustrations are shown below.

6
958 O
Qﬂ)

7
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All the colorings above represent maximal independent
sets of vertices of @(B€) . For a realistic corannulene
j=64un+ 2, n=1,2,3,.. All the conclusions and results

which follow assumes even values of j.

3. Results:

3.1 Combinatorial Analysis:

As an illustration we consider a corannulene containing
10 linear subgraphs (j=10), each of which possesses one linear
vertex . The Clar graph is drawn below.

The number of Clar structures which represent maximal inde-

pendent sets oflgertiges gf the corresponding Clar graph are
enumerated as 90 . 92 5 940, 9%0, 980 and Q%g . 0dd subscripts
lead to vanishing terms.

10

90 5

Here only angular vertices are involved. There are only
two ways of grouping the vertices such that a maximal indep-
endent set is generated regardless of the value of J. These
two colorings are shown below
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gég
(12) , (14) , (16), (18) , (1 10) 5
(23) , (25) , (2D, (29 ; 4
(34) , (36) , (38), (3 10); 4
(45) , (47) , (49) 3
(56) , (58) , (5 10); 3
(67) , (69) 2
(78) , (7 10); 2
(89) ; 1
(9 10) 1

The numbers in parentheses refer to the labels of the {two)
linear vertices involved in the maximal independent set. For
example (58) is the following "coloring".
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The solid vertices with asterices are angular ones which
together the linear vertices at position 5 and 8 lead to
one of the maximal independent sets of vertices € B%D =
Observe the fullfilments of the two coloring conditions
viz., a') and b') of Section 1.5.

B%o can be expressed using binomial numbers by classifying
the codes according to the first digit to the left: there
are 5 codes starting with 1, 4 codes starting with 2 and

so on. The 9%0 can be expressed as:

S5+ 4+3+241
+ 4+ 3+ 241

Now we use the well-known combinatorial identityZI:

n n+l n+2 nt+r n+r+l
+ + FiooF = ««{5)
o 1 2 o r

which leads to

r+l
14243 .41 o (6)
Then;
00 = L+ 2+43+4) + (L +2+3+4+5)

5 6 5 6
= + = +
3 4 2 2

2;3
These four-digit codes may start with the labels 1,2,3,4,

5,6 and 7. There are twenty paths starting with label 1.

These are graphically generated in Fig 5. There are ten codes
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Graphical generation of 4-digit codes, 920 , starting with
the lable 1.
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for each of the labels 2 and 3 and four codes for each of
the labels 4 and 5. Finally each of the label 6 and 7
generate only one code. All of these codes can be generated
as illustrated in Fig 5.

One may analyze higher codes similarly. The results are
outlined in Table 1.
Eqn. (8) is a more compact description of § , the number of
Clar structures of a regular corannulene whose dualist is
composed of even number of linear subgraphs, each of which

contains one linear vertex

% (mHj) H(mki) -1

< -3 +Z + (8

j=2,4, ] ]
voe, (m-2)

The factor of 3 accounts for

m m
90 h gm

3.2 Description of the codes:

The subclass of codes starting with a given digit ,
say a, have a general structure dictated by the two proper-
ties of vertices of the Clar graph necessary to generate a
maximal independent set. We represent such a subset of
codes by the following matrix.

a 312 313 e alj
a 322 323 cee azj
a aiz ai3 I aij
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The two properties of any such subclass of codes are:

a) The difference between any two successive lables in a
row is odd .

b) The difference between any two successive labels in a
column is even.

Properties a) and b) result from the conditions a')and b')
of "coloring" leading to a maximal independent set(= Clar
structure) described in section 1.

3.3. Vector Generation of the Codeszz:

A systematic method for the generation of the set of

codes € 9? :

Step 1 An m-dimensional (row) vector is constructed

(alaz...am)
The elements of the vector are defined by egn.(12),
TEZy

{1 it vy is a selected vertex
a =

[} otherwise s (12)

Step 2 The leading vector is constructed by placing a number
of 1's equal to j in the natural order of numbers.

Step 3 Other vectors are generated by moving all 1’'s which
are followed by two zeros: each movement is defined
by ag —* a ;.. - The process terminates when no new
vectors are generated.

The process is illustrated by the generation of all vectors
e
2
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3.4 Generalization to other Corannulenes:

For a corannulene whose dualist is composed of j

linear subgraphs: g;, g,..

.,8; where 8; contains,ei linear

vertices each code is multiplied by the product.

T p

- 1 1

where i runs over 4ll linear vertices selected. As an illus-
tration we consider three coronoid systems of hexagonal
symmetries in Fig 6. Both K and 4 values are given. It seems
clear that as the number of linear vertices increases the

efficiency of "data reduction' using Clar structures decreases.

References:

1. See, e.g., N. Trinajstié, "Chemical Graph Theory" Vol I
& II (CRC Press, Boca Raton, Florida, 1983).

2. W.C. Herndon, J.Am. Chem. Soc., 94, 2404 (1973); W.C.
Herndon and M.L. Ellzey Jr., J. Am. Chem. Soc., 96,6631
(1974); W.C. Herndon, Israel J. Chem., 20, 270 (1980).



- 187 -

. M. RandiZ, Chem. Phys. Lett. 38, 68 (1976); Tetrahedronm,

33, 1905(1977); J. Am. Chem. Soc., 99, 444(1977); Int.J.
Quantum Chem. 17, 549 (1980).

. D. J. Klein and N. Trinajsti&, Pure Appl. Chem., 61 ,

2107 (1989).

. W.C. Herndon and H. Hosoya, Tetrahedron 40,3987 (1984).
. M.J.S. Dewar and C. de Llano, J. Am. Chem. Soc., 91,789

(1969) .

7. E. Clar, The Aromatic Sextet (Wiley, New York, 1972).

8. J.W.Armit and R. Robinson,J. Chem. Soc., 827 (1922)

Lo,

13
12

13.

14.

15,
16.

17

18.

1604 (1925).

1. Gutman, Bull. Soc. Chim. Beograd, 47, 453 (1982).

S. El-Basil, Theor. Chim. Acta, 70, 53 (1986); Discrete
Applied Math. 19, 145 (1988); Chem. Phys. Letters 200,
176 (1992).

S. El-Basil and M.RandiZ, J. Math. Chem., 1, 281 (1987);
J. Chem. Soc., Faraday Trans. 2, 84, 1875 (1988).

I. Gutman, Z. Naturforsch 37a, 69 (1982); I. Gutman and
S. El-Basil, Z.Naturforsch 39a, 276 (1984).

Two hexagons in a benzenoid system are called nonreso-
nant if a sextet of pi-electrons cannot be drawn simul-
taneously in both of them.

The adjacency matrix is defined in F.Harary, " Graph
Theory" (Addison-Wesley, Reading 1969) .p. 150.

Lie.; E(Bl) = QT(BI) = the transpose of Clar matrix.

N. Christofides, "Graph Theory; An Algorithmic Approach"
(Academic Press, New York 1975) Chapt. 3.

C.L. Liu, "Elements of Discrete Mathematics", (Mc Graw-
Hill, New York 1977) p.73.

Corannulenes attract the attention of several research
workers. Some examples are: 1. Agranat, B.A. Hess, Jr.
and L.J. Schaad, Pure & Appl. Chem., 52, 1399 (1980)
M. Randif and N. Trinajsti€, J. Am. Chem.Soc., 106
4428 (1984); J.- Brunvoll, B.N. Cyvin and §.J. Cyvin, J.
Chem. Inf. and Computer Science, 27, 14 (1987).



19.

20,

2.

22

- 188 -

Each hexagon of a benzenoid hydrocarbon may be repre-
sented by a vertex. If the positions of these vertices
are retained in accordance with the centra of hexagons
building up the system in question, the connected ver-
tices are referred to as dualist: F.T. Smith, J. Chem.
Phys., 34, 793 (196l1). Observe that a dualist contains
a geometric component (modes of hexagon annelations )
and therefore is not a graph.

The terms linear and angular with respect to hexagon
annelation is described in: S$.J.Cyvin and I. Gutman ,
"Lecture Notes In Chemistry", (Springer-Verlag, Berlin)
46, 16 (1988).

D.A. Cohen, "Basic Techniques of Combinatorial Theory"
(Wiley, New York 1978).

S. Even, "Algorithmic Combinatories" (MacMillan Company,
New York 1973), p.33.



