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Abstract: It is claimed that the total number of polyhexes with ten hexagons (h = 10)
has been given erroneously in the literature. The crucial problem is to enumerate
correctly the non—Kekuléan helicenes (simply connected, geometrically nonplanar
polyhexes) with h = 10. This task was solved by considering such systems with n; =54,
3, 2 and 1, successively. Here n; is used to designate the number of internal vertices. For
n, > 1 the pertinent numbers were deduced by analytical methods of combinatorial
enumerations (without computer aid). For n; =1 the crucial number was obtained from
a recently derived generating function for the simply connected polyhexes with no=1,
combined with a known number from the literature.

1. INTRODUCTION
"On the Total Number of Polyhexes" is the title of a paper [1] published in an earlier

issue of Match. This paper or "mini—review" from the Diisseldorf-Zagreb group has
given much inspiration to later works in the enumeration of polyhexes and is perhaps the
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most cited paper in a recent review on the topic [2]. The Diisseldorf-Zagreb group has
also published many later papers on the enumeration of polyhexes, of which we cite 2
selection here [3—9]. These researchers have achieved excellent results in the enumeration
of polyhexes and other chemical graphs [10]. Nevertheless we claim that they are not
infallible. In particular, their total numbers for polyhexes with & > 7 were found to bein
error. Here h is the number of hexagons. These (wrong) numbers have been repeated in
the monograph from the Diisseldorf—Zagreb group [10]. Corrections of the numbers for i
=8and h = 9 are to be published elsewhere [11]. The corresponding number for 4 = 10
has a more complicated history. In the original number, viz. 34350 [1,10], one
helicirculene was omitted, as has been pointed out previously [2]. Hence the new number
34351 was launched [2]. In the meantime the Disseldorf—Zagreb group claimed that the
correct total number of polyhexes with 2 = 10 should be 34347 [4], but in this number all
helicirculenes were omitted. This wrong number has also been repeated elsewhere, by
Trinajstié [12].

In the present paper we claim to have deduced the correct total number of
polyhexes with A = 10 for the first time. At the same time we exemplify two analytical
methods of polyhex enumerations (without computer aid). Furthermore, we report the
result of a mathematical solution for the numbers of a certain class of polyhexes.

2. CLASSES OF POLYHEXES WITH TEN HEXAGONS

The total number of polyhexes with 2 = 10 is composed of the numbers for certain
classes of polyhexes as specified in the following.

(i) Simply connected, geometrically planar (non-helicenic) polyhexes: the
benzenoids. This class is covered by the Diisseldorf—Zagreb mnumbers
[1,10,13—15]. For h = 10 the number is 30086.

(i) Multiply connected, geometrically planar polyhexes: the planar circulenes. The
Lunnon numbers [1[5]g pertain to all geometrically planar polyhexes. Hence the
numbers of planar circulenes are obtained on subtracting the Disseldorf—Zagreb
numbers from them; for A = 10: 30490 — 30086 = 404. The same number was
produced independently by the Diisseldorf—Zagreb group [15]. This number
contains one dicirculene with two holes, each of the size of one hexagon, in spite
of the statement given elsewhere [1,10} that it only contains monocirculenes.
The coronoids, which by definition contain holes of the sizes of at least two
hexagons, form a subclass of the planar circulenes and are therefore counted
already. For & = 10 the 43 [4] single coronoids (one hole each) represent the
whole set of coronoids with this number of hexagons.

(i) Simply connected, geometrically non-planar (helicenic) polyhexes: the
helicenes. The Diisseldorf-Zagreb group reported {1,10] 3857 helicenes with h =
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10, of which 2736 were claimed to be pericondensed. A pericondensed polyhex is
defined by having n; > 0, in contrast to a catacondensed polyhex with n; = 0.

Here n; is the number of internal vertices. The enumeration of helicenes with A

= 10 is the main subject of the present work since we claim that the two
numbers [1,10] given above are wrong. We shall find it expedient to divide this
class into some subclasses as follows. (a) Catacondensed helicenes. For h = 10
this subclass contains 1121 systems [1,10]. The number emerges as the difference
between a Harary—Read number [17] for catacondensed simply connected
polyhexes and a number for the catacondensed, simply connected and
%eometrica.lly planar polyhexes (catacondensed benzenoids) supplied by the

iisseldorf-Zagreb group [1,10,13,14]: 6693 — 5572. (b) Pericondensed Kekuléan
helicenes. A Kekuléan polyhex has by definition K > 0 in contrast to a
non—Kekuléan polyhex with K = 0. Here K is the number of Kekulé structures.
The subclass in question counts 797 systems, as can be extracted from the
computerized enumerations of Herndon [18]. This number was confirmed by an
analytical enumeration (without computer aid) [19). (c) Pericondensed
non—Kekuléan helicenes. This subclass for A = 10 is enumerated for the first
time in the present work.

(iv) Multiply connected, geometrically non—planar polyhexes: Helicirculenes; 4
systems with & = 10 {2?

In conclusion we find that it is necessary to derive the number of pericondensed
non—Kekuléan helicenes with h = 10 in order to attain at the correct total number of
polyhexes for this number of hexagons. It is convenient to divide this task according to a
further subdivision of the systems with respect to their numbers of internal vertices.

For helicenes with a given h it was found [11,20]

0¢n ¢ 2h-3-[(12h+9)/ (1)
where the "ceiling" function is employed; [z] is the smallest integer larger than or equal
to z. The upper and lower bounds in the above equation, as well as all the intermediate
integer values for n, are always realized in helicenes. For non—Kekuléan helicenes the
same n, values except n; = 0 are realized. Accordingly, the cases to be considered for the
pericondensed non—Kekuléan helicenes with h = 10 are n, =1, 2, 3, 4, 5. For the sake of
convenience the pericondensed helicenes are referred to as perihelicenes in the following.

3. PERIHELICENES WITH FIVE INTERNAL VERTICES

Polyhexes with n,= 5, an odd number, are all non—-Kekuléan. Two analytical methods
were applied to the case of k = 10, n, = 5 for perihelicenes.

3.1. Combinatorial Enumeration. An analytical method (without using computers),
referred to as combinatorial enumeration, has been developed and applied previously to
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perihelicenes with k = 8 and 9 [21] and to Kckuléan perihelicenes with h = 10 [19].

The method is based on additions to irreducible helicenes in order to gencrate the
desired helicenes H. An irreducible helicene, H-, is a helicene which is no longer a
helicene when any of its hexagons are deleted. A system 1l should always be deduced
from a smallest possible H=. It is convenient to employ the dualist [2,8,22] representation
in this method. The dualist of a helicene H is identified by the symbol D(H).

An application to the case of A = 10, = 5 is very simple. Firstly, it is found by
methods which have been described in detail elsewhere [19,20], that H- = Cl is the only
possibility, where Cl is hexahelicene (see the below diagram). Secondly, H must contain
benzo(ghi|perylene as a subgraph, of which the dualist is identified by T

() X

D(C,) T,

4:

Furthermore, it is clear that T, must be added to D(Cl) s0 that it shares two edges with
it. The dualist of the resulting system is designated D(Cl) + Ty Then it remains 10 add
one triangle to D(Cl) + 'I‘4 so that it shares one edge with it. There are two
nonisomorphic D(Cl) + T, systems with h = 9 each [21]. The last triangle can be
attached to one of the seven edges in each case as indicated by the asterisks:

The above diagram includes two of the 14 nonisomorphic D(1I) systems. Notice that, in
a dualist D(H), the vertices represent the hexagons of II, while the triangles in D(IT)
represent the internal vertices of H.

3.2. Introduction of Lagoons. Another combinatorial method for enumeration of helicenes
shall presently be referred to as the introduction of "lagoons" [20].The method is
generally applicable to extremal helicenes, which are defined by having the maximum
number of internal vertices for a given & n, = (n) . . The values of (
function of h, are given by the upper bound of egn. (1).

In the below diagram hexahelicenc is generated by introducing a lagoon in
coronene.

nl}m ax' ¥ 2
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& 0 & K

coronene lagoon hexahelicene

Coronene is an extremal benzenoid [20,23,24], viz. a benzenoid with the maximum
number of internal vertices (here six) for a given number of hexagons (here seven). It is
emphasized that the term benzenoid is used here in the sense of simply connected,
geometrically planar polyhex (which may be Kekuléan or non-Kekuléan). By
introducing a lagoon as indicated above, the number of hexagons is lowered by one,
while the number of internal vertices is lowered by six. In this special case the unique
extremal helicene with A = 6, n; = 0 is generated from the unique extremal benzenoid
with b = 7, n, = 6. This is consistent with the long known fact that hexahelicene is the
unique catacondensed helicene with six hexagons [22]. Now it is inferred that all the
nonisomorphic extremal helicenes with A hexagons and n internal vertices are obtained
by introducing a lagoon in all possible ways in everyone of the extremal benzenoids with
h + 1 hexagons and n; + 6 internal vertices.

The present case of & = 10, n, = 5 deals with extremal helicenes. The extremal
benzenoids of interest are those with eleven hexagons and eleven internal vertices. There
are two nonisomorphic systems of this category [25]. Nonisomorphic helicenes can be
generated by introducing lagoons in seven ways from each of these benzenoids. This
feature is indicated below by black hexagons and heavy lines in the style as shown in the
right—hand drawing of the above diagram

SR e e

The result, viz. fourteen helicenes with A = 10, m, = 5, is consistent with the result in
Paragraph 3.1. Exactly the same systems are generated according to both methods
(Paragraphs 3.1 and 3.2).

4. NON-KEKULEAN PERIHELICENES WITH FOUR INTERNAL VERTICES

A polyhex with n, = 4, an even number, is either Kekuléan or non—Kekuléan. The
Kekuléan helicenes with 4 = 10, n, = 4 have been enumerated elsewhere [19]. The
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corresponding non—Kekuléan systems are treated in the following.

1. Combinatorial Enumeration. The analytical methed of combinatorial enumeration
(ef. Paragraph 3.1) was applied to the non—Kekuléan helicenes with & = 10, n, =4
Exactly the same pattern could be used as in the case of the corresponding Kekuléan
systems [19], with the exception of the addition of triangulene tu hexaheliceue, resulting
in I system depicted below (as a dualist). Case (1):

Also in all the other relevant cases, H* = C;. As Case (ii) take D(H) that contains the
dualist of naphthanthrene (T5) and one separate triangle (Tl), Both T, and T must
necessarily share an edge each with D(Cl) In this way the following 12 D(H) systems
emerge.

60 £240 LN
w%wmfﬁ?&

Case (iii): D{H) contains the dualist of pyrene (T ) and two triangles; none of these
should share an edge with T2 The T, unit and t.he two triangles not belonging to Ty
must all share one edge each with D(Cl). The following 6 systems of D(H) are
generated.

B Lo P00 N §T

In Case (iv) the four triangles of D(H) have at most one common vertex. Only I system

is possible:
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On addition of the numbers from Cases (i) — (iv) one obtains the result of 20
nonisomorphic non—Kekuléan helicenes with h = 10, n, = 4.

4.2. Introduction of Lagoons. The helicenes under consideration (h = 10, n, = 4) are not
extremal. Nevertheless, the method with introduction of lagoons can be applied in a
slightly extended form.

Let a lagoon first be introduced as in the above example (Paragraph 3.2). Then
we should look for the benzenoids with eleven hexagons and ten internal vertices. The
forms of the twenty—six benzenoids of this category are known [25). Out of these there
are six non—Kekuléans, which are the ones of interest in the present analysis. They lead
to I7 non—Kekuléan helicenes with h = 10, ;= 4 as indicated below.

By, R L ok

In order to obtain the remaining ¥ systems we must introduce a "generalized lagoon”
which removes one hexagon as before, but seven rather than six internal vertices. Then
the initial benzenocids should have eleven hexagons and eleven internal vertices, the same
as in the case of Paragraph 3.2. These benzenoids are non—Kekuléan, but the generalized
lagoon (see below) creates Kekuléan helicenes in some positions and non—Kekuléan in
others. The following three non—Kekuléan helicenes emerge from the analysis.

o S

It is clear that the method with introduction of lagoons must be used with
caution when the helicenes to be generated are not extremal. When the systems depart
more and more from extremal helicenes (i.e. n; decreases for given h) then more and
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more types of "generalized lagoons" must be taken into account. Furthermore, the
method of introducing lagoons generates only helicenes with overlapping edges, but not
with overlapping hexagons (e.g. heptahelicene).

5. PERIHELICENES WITH THREE INTERNAL VERTICES

In the case of the perihelicenes with k = 10, n = 3 (which all are non—Kekuléan) the
method with introduction of (generalized) lagoons is impracticable. One would have to
introduce the two types of lagoons which are found in Paragraph 4.2 into benzenoids
with eleven hexagons having nine and ten internal vertices, respectively. There are
exactly 100 systems of those with nine internal vertices [26,27] and 26 of those with ten
[25,27]). As to the forms of these systems only the latter ones, viz. those with eleven
hexagons and ten internal vertices, have been depicted [25]. In addition, a third type of
generalized lagoons would have to be taken into account, one which decreases the
number of hexagons by one and the number of internal vertices by eight. It should be
introduced in the two benzenoids with eleven hexagons and eleven internal vertices, as
indicated below.

A full analysis of the systems under consideration according to the method of
combinatorial enumeration (Paragraph 3.1), on the other hand, is very well feasible and
is reported in the following.

Three triangles (corresponding to three internal vertices) are to be added to an
irreducible helicene, H». Then, for & = 10, it is clear that H* = ¢, (hexahelicene) in all
cases. In this section H refers to a helicene with h = 10, n = 3.

Case 1. D{H), the dualist of H, contains T3, the dualist of naphthanthrene. Subcase I.1.
T3 shares one edge with D(Cl)’ and D(H) contains no subgraph D(Ca), where C6 is
heptahelicene. The D(H) systems are generated from the nine D(Cl) + Tg systems [21],
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to which one edge should be attached, thus increasing the number of hexagons by one
The numerals in the below diagram indicate the numbers of ways an edge can be
attached to the respective vertices. In the last case (the bottom-right figure) the

symmetry must be taken into account. Symmetry considerations in order to avoid
nonisomorphic systems are also made, without further mentioning, in several of the

ATy L
‘%m&v?ﬂ%

This gives 77 nonisomorphic D(H) systems. Subcase 1.2. T, shares one vertex with
D(Cy), and D(H) contains no D(Cﬁ). The following 2 systems are generated.

o

Subcase 1.9. D(H) contains D(CS)A Then T, must share one edge with D(Cs), and the
following 10 systems emerge.

yorarere
8 B

Case 2. D(H) contains T . Subcase 2.1. T, shares two edges with D(C ) and [XH)

subsequent cases.
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contains no D(CG)' The possibilities are indicated below as in Subcase 1.1.
Z 2 1 2
2. ! 1 ! 1 2
| 1 7 g !
T, 4 . o 7 2 7 7
3 2

This gives $9 nonisomorphic D{H) systems. Subcase 2.2. ’I‘s' shares one edge with
D(Cl), and D(H) contains no D(Cﬁ). The & possibilities are depicted below.

O 0
éj%[y@%ﬁs

Subcase 2.9. D(H) contains D(CB). Then T, must share two edges with D(Cﬁ), and the
following 5 systems are deduced.

X080 &S &y

Case 3. D(H) contains T,, the dualist of pyrene, and one triangle (Tl) separated from
each other. Subcase 3.1. T‘Z and T, share one edge each with D(Cl), and D(H) contains
no D(Cﬁ). Again one more edge should be added to the system (as in Subcase 1.1}, and
the possibilities are specified below.

% 2 2 2 2 1

1 2 1 2
A 1 ? = 4 3§ PR | 2 2 i 2
T, 2
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On adding the above numerals one arrives at 105 systems of D(H) under this subcase.
Subcase 8.2. T, shares one vertex, T, one edge with D(C,), and D(H) contains no
D(Cﬁ)' The 4 possibilities may be compressed in one figure, where the asterisks (as in
Paragraph 3.1) indicate the positions for T,

Subcase 9.5, T, shares one vertex, T, one edge with D(C,), and D(H) contains no
IXCy). The following 8 systems emerge.

00
TP Q4w

Subcase 3.4. D(H) contains D(Cﬁ). Then T, and T must each share one edge with
D{Cg). Again let asterisks indicate the positions of T,. Then the 20 possibilities may be
mapped as in the following.
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Case 4. D(H) contains Ty, the dualist of perylene, and one triangle (Tl) not sharing
more than one vertex with T,’. Subcase {.1. T, shares two edges with D{C,), and D{H)
contains no D(Cs). Then T; may share (i) one edge, (ii) one vertex or (iii) no vertex
with D(Cl). These possibilities, which lead to {2, 3 and { D(H) systems, respectively,
are specified in the following.

2 1 2
2 2 2 2 \ 2 H
(i) 4 8 ; g Z
L ] 27y 7 2T T2 z T 1 1
(ii)
(iii)

Subcase 4.2. T, shares one edge with D{C,). Then also T, must share one edge with
I{C,), and D(H) can not contain I{Cg). The & possibilities are mapped below.

Subcase {.8. D(H) contains D(CG)‘ Then T.,’ must share two edges and T, one edge with
D{Cg)- The & possibilities are indicated in the below diagram.
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Case 5. D(H) contains three separate triangles. Subcase 5.1. All of the triangles share

one edge each with D(C, ), and D(H) contains no D(C). The simple scheme
1

261
gives { systems D(H) as a result. Subcase 5.2. One triangle shares only one vertex with
D(Cl)' and D(H) contains no D(CB)' Then the other two triangles must share one edge
each with D(C, ), and $ systems emerge:

AR

Subcase 5.9. D(H) contains D(Cg). Then the three triangles must share one edge each
with D(CG)' and one obtains the following 2 systems.

Conclusion. On adding the appropriate numbers of the above analysis it is concluded
that there are 350 nonisomorphic helicenes with & = 10, n,=3

6. NON-KEKULEAN PERIHELICENES WITH TWO INTERNAL VERTICES

For the non—Kekuléan perihelicenes with A = 10, n = 2, again a full analysis with
introduction of lagoons is impracticable. However, a part of the problem can be solved
by means of a new type of generalized lagoons, one which decreases the number of
hexagons by two and the number of internal vertices by ten. The initial benzenoids are
those which possess twelve hexagons and twelve internal vertices. Only the
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non—-Kekuléan benzenoids of this category are of interest, and their number is only three
[25]. The below diagram indicates the fifteen helicenes deduced in the way as described
above.

A full analysis of the systems under consideration by the combinatorial
enumeration, on the other hand, was performed without much difficulties. It is reported
in the following.

Case A. The initial irreducible helicene may be one of the h = 8 systems C, or Cq [21].
Assume as the first case that H* = €, or C4. Then two triangles are to be added to
D(Cy) or I(C,), and each of them must share one edge with the dualist of the respective
irreducible helicene. The resulting 15 systems are identical with those of the above
description and are contained in the below diagram.

vy I D Ty

Here again each asterisk indicates the attachment of one triangle. Notice that the two
triangles in each system must point in the opposite directions (upwards and downwards)
in order to avoid the Kekuléans.

Case B. H* = C,. Two triangles are to be added to D(C,). Subcase BI. The two
triangles share one edge each with D(Cl}, and D(H) contains no D(CE). Then two more
edges are to be added to the dualist which has emerged. In the below mapping one added
edge is drawn, while the possibilities for the other edge are indicated by numerals.

¥ 3
2 2 2
1 1 1 1 1 3
3
2 2 2 2 3 2 %
3 3



On adding all the numerals in the above diagram one arrives at 102 systems D{H).
Subcase B2. One triangle shares an edge and the other only one vertex with D(Cl)) while
D(H) contains no D(Cs). The below diagram should now be selfexplanatory.

2
L
' t 1
2 2

L | it
As a result one obtains 20 systems under this subcase. Subcase BS. One triangle shares
an edge with D(C]), while the conformation T (sec below) is attached by the vertex of
degree one to D(Cl)' The numbers of possibilities for such attachments are indicated by

numerals in the below diagram. For the sake of clarity alsc two complete systems are
drawn.

£ L3Ry L8l

Under this subcase we count 20 systems. Subease B4. I{H} contains D{Cy), and the two
triangles share one edge each with D(Cﬁ)‘ It is also assumed that D(H) does not contain
the subgraph D(CT)’ which makes it fall under a subsequent subcase. Now the following
scheme is deduced.

1t gives 27 systems D(H). Subcase B5. D(H) contains D(Cg), and one of the triangles
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should share only one vertex with D{Cg). Then the other triangle must share an edge
with D(CG)’ and the following 2 systems emerge.

Subcase B6. D(H) contains D(C’i)' the dualist of octahelicene. Then the two triangles
must share one edge each with D{C7), and 6 nonisomorphic D{(H) systems are deduced

as indicated below.
w Ll

Conclusion. From the above analysis it is concluded that there are 192 nonisomorphic
non—Kekuléan helicenes with & = 10, n=2

7. PERIHELICENES WITH ONE INTERNAL VERTEX

An enumeration of the perihelicenes with & = 10, n =1, which count more than
thousand systems, is feasible, but on the limit where such an analysis can be performed
correctly with confidence.

Therefore it is fortunate that a general mathematical solution recently has been
achieved for the numbers of simply connected polyhexes with n, = 1 [28]. A generating
function was derived in the style of the Harary—Read [17] generating function for the
catacondensed simply connected polyhexes. Let the number of the (pericondensed)
simply connected polyhexes with & hexagons and n,=1 be identified by the symbol Ph'
Then (28]

1/2 1/2

3(2-92+2122-161%) — {(4-182+172)(1-2) '/ *(1-52)

— 12215y /2 - %(1—:3)‘/2(1—5:,3)1/2

o
= z Pi.::' =23 + 24 + 625 + 2428 + 10927 + 47718

i=1
+ 215529 + 9647710 + 43621z + 197767212 + ...
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The number of interest in the present work is the coefficient of 719, viz. 9647, the number
of nonisomorphic simply connected polyhexes with k = 10, n, = 1.

The number of simply connected, geometrically planar polyhexes (benzenoids)
with h = 10, n; = 1 is well known from computer~generations [10,13]: 8395. Then the
number of nonisomorphic helicenes with A = 10, n,=1 is obtained as the difference 9647

— 8395 = 1252.
8. SUMMARY: NUMERICAL RESULTS

The resulting numbers (given in bold) from Sections 3 — 7 are also found in Table 1 and
add up to a total of 1840 nonisomorphic non—Kekuléan helicenes with A = 10. Table 1
shows further details for the numbers of helicenes with A = 10, both Kekuléan (data
from literature) and non—Kekuléan. Notice that an enumeration of a class of polyhexes
with a given pair of invariants (k, ni) at the same time is an enumeration of the
corresponding (chemical) isomers Can‘

Table 2 shows a gross survey of the numbers of helicenes. It corrects the
corresponding table in the recent review, which was referred to in Introduction ("Table
8" [2]), and also some of the other errors discussed therein.

Another table from the review [2], viz. "Table 7", needs a revision for o > 8. It is
provided by Table 3.

Table 1. Numbers of helicenes (simply connected, geometrically nonplanar polyhexes)
with 10 hexagons.

h n; Formula Kekuléan non—Kekuléan Total
10 0 CyoHay 11212 0 11212
1 Balls 0 12520 1252°
2 CyoH22 TITC’d 192 909
3 CaeHyy 0 350 350
4 CisHao 8o%d 20° 100°
5 CsrHyg 0 14¢ 14¢

L Knop, Szymanski, Jeri¢evi¢ and Trinajsti¢ (1984)[1); b Cyvin, Zhang and Brunvoll
(1992) [28). © Cyvin, Guo, Cyvin and Zhang (1992)[11]; ¢ Zhang, Guo, Cyvin and
Cyvin [19].
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Table 2. Numbers of helicenes

h Catacondensed Pericondensed Total
6 12 0 1°
7 5P 3b g?
8 3s° 3554 70
9 200° 33154 531°
10 121 2625 3746
11 5919° t i
12 30509 t 1
13 153187¢ t 1
14 756825¢ } t
15 3688195° 1 t

2 Balaban and Harary (1968) [22]; b Knop, Szymanski, Jericevi¢ and Trinajstié (1984) [1];
e Cyvin, Guo, Cyvin and Zhang (1992)[11]; d Guo, Zhang, Cyvin and Cyvin [21];
€ Cyvin, Brunvoll and Cyvin (1892) [2]. + Unknown.

Table 3. Numbers of simply connected polyhexes (benzenoids + helicenes)

h Catacondensed Pericondensed Total
1 12 0 1®
2 12 0 1®
3 23 12 3P
4 52 92 70
5 12% 10* 22P
6 373 452 g2b
7 123 216° 339"
8 446° 1059 1505
9 16899 5347 7036
10 66939 27139 33832
11 270344 t t
12 1116308 + :

2 Balaban and Harary 81968) [22]; b Cyvin, Brunvoll and Cyvin (1992) [2];
¢ Balaban (1969) [29]; ¢ Harary and Read (1970) [17]. t Unknown.
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Table 4. Numbers of polyhexes in total

h Catacondensed Pericondensed Grand total
1 12 0 1P
2 12 0 1b
3 2% 12 3b
4 52 2% 7b
5 12% 10? sl
6 3g? 45 g3P
7 124% 2173 341¢
8 452% 1066 15189
9 1709% 5304 71039
10 6790% 27450 34240

# Cyvin, Brunvoll and Cyvin [2]; b Klarner (1965) [30];
¢ Knop, Szymanski, Jericevié¢ and Trinajstié (1984) [1];
Cyvin, Guo, Cyvin and Zhang (1992)[11].

Finally we have the total numbers of polyhexes, which have been given
erroneously for k > 8 in "Table 9" of the mentioned review [2] and elsewhere (cf
Introduction). Table 4 gives, for the first time, the corrected total numbers of polyhexes
for k< 10.
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