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CORONENIC CORONOIDS:
A COURSE IN CHEMICAL ENUMERATION
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Abstract: A coronenic coronoid has a coronene corona hole. This work deals
mainly with circular benzenoids, each perforated by exactly one coronene hole. Complete
mathematical solutions are reported for the numbers of CnH3 isomers for these systems.
They are presented as explicit combinatorial formulas on one hand and in terms of
generating functions on the other. Finally some general formulations (in three
"pictures")are given for the C H_formulas of the systems under consideration, viz. the
coronenic perforated circular benzenoids.

Introduction. The first one of the two coronoid hydrocarbons which have been
synthesized [1,2], viz. kekulene [2—4], is coronenic.

Definition: A coronenic coronoid is a coronoid [5,6] with only coronene(s) as the
corona hole(s).

In the fractal polyhex systems [7] (see also the preceding article) the coronene
hole occurs very frequently. Many of these fractal systems are "laceflowers" [8], viz.
multiple coronoids with hexagonal symmetry. All laceflowers with Dﬁh symmetry and A
(number of hexagons) < 49 have been generated. Coronene holes do occur among them,
but they are not coronenic since there is no system among them with exclusively
coronene holes. However, a coronenic laceflower is encountered already on pursuing the
generation one step further, to h = 54; see Fig. 1. If there are no inadvertent omissions
in these generations, one has the following enumeration result: there are 1, 1, 2, 4, 8, 10
and 26 laceflowers with DSP; symmetry and h = 36, 37, 42, 43, 48, 49 and 54,
respectively.

In the remaining of this paper it is tacitly assumed that the term "coronoid"
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Fig. 1. All laceflowers with Dg;, symmetry and b
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refers to a system with exactly one hole (strictly speaking a single coronoid).

Circular Benzenoids. The circular benzenoids [9,10], O, exhibit six characteristic
shapes, which are identified by the index ¢ = 0, 1, 2, 3, 4, 5 (cf. Fig. 2). From a set of six
ground forms [9-12] all the circular benzenoids are generated by successive
circumscribings. It is known that there exists exactly one C nlg isomer of each circular
benzenoid [9-16].

Perforated Circulor Benzenoids. The O systems perforated by naphthalene corona
holes are studied elsewhere [17]. The subject of the present work are the O systems each
perforated by a coronene hole: the coronenic perforated circular benzenoids, C. Six of the
smallest systems of this category, one for each characteristic shape (¢ value), are shown
in Fig. 2. Except for the two cases C4gHy4 and Cs3Hos there are more than one C an
isomers of the C systems, arising from the different possibilities where to place the
coronene hole. In the present work a complete mathematical solution is reported for the
numbers of nonisomorphic Cnli’ isomers for C.

Circumseribing. Consider a benzenoid B with H hexagons and the formula C
= (N:S), symbolized by B € {N;S}. Furthermore, write (circum-B) € {Nl;Sl} for

e=0

Fig. 2. Smallest coronenic perforated circular benzenoids.
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circumscribed B, which is assumed to hold !:'1 hexagons. This circumscribing adds §
hexagons to B, hence Hl = H+ 5, while S1 = S+ 6. From the known relations between
invariant of benzenoids [18], especially

H=}N-5)+1 (1
it was arrived at [9-11]
(NyiS)) = (N+ 25+ 6 S+6) )

Assume now (k—circum-B) € {Nk;sk}' Then, on repeated application of the formula (2)
for (N;5,) it was obtained [9,10]

(Nk;sk) = (6k2 + 2kS+ N; 6k+ 5) (3)

Associated Benzenoid. The associated benzenoid to a coronoid C is defined by the
benzenoid which emerges when the corona hole of C is completely filled by hexagons. Let
C be a coronenic coronoid with the formula C H_= (n;8): C € {n;s}. Furthermore, let C
€ {N;5} be the associated benzenoid to C. Then the following connection is valid for the
coefficients of Can and CNHS'

(ms) = (N~6; S+6) (4)

Coronenic Perforated Polycircumpyrenes. The title systems were chosen as
examples. The smallest such system is found in Fig. 2 (CrsHag; € = 4). It is a perforated
dicircumpyrene. The (k+2)—circumpyrenes are considered, where k=0, 1,2, ... ; k=0
pertains to dicircumpyrene. In the following, the numbers of nonisomorphic C Hg
isomers for the coronenic (k+2)-circumpyrenes are determined analytically by different
methods. The problem reduces to finding the numbers of distinct positions for the
coronene hole.

Fig. 3. Direct counting of distinct
coronene hole positions in
(k+2)—circumpyrenes. The inscribed
numerals indicate k values.
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Direct Combinatorics. The position of a coronene hole is determined uniquely by
the central hexagon of coronene. Figure 3 illustrates a direct counting of the distinct
positions of these holes. Because of symmetry only the hole centers in the segment [4,B],
viz. on and between the axes A and B should be counted (cf. Fig. 3). Let the numbers of
isomers which belong to the symmetries [6] C2u(a) or qu(b) be identified by the
symbols M, i and M,b, respectively. They correspond to hole centers on the axis 4 or B,
respectively. The Uk other isomers belong to Cs. The total number of isomers is given by

I=Mpa+ Mkb+ U, (5)
The direct counting of the numerals in Fig. 3 yields the differences:

k 0 1 2 3 4
AMkB 1 1 1 1 1
AMkb 1 0 1 0 1
AUk 0 2 3 5 (]
Al 2 3 5 6 8

For the absolute values these differences add up to:

k 0 1 2 3
Mkl 1 2 3 4
Mkb 1 1 2 3
U. | o 2 5 10 16
Ik 2 5 10 16 24

In general, one finds easily the combinatorial expressions for the mirror~symmetrical
((,'2") systems:
Mp=k+1 ()
Mp=kr1-Tn-(f= w2 +1 )
For the unsymmetrical (Cs) systems, divide the numbers into U}' and Uk“’ pertaining to
the sectors <A4,C> (mot including the axes) and <B,C] (including C, but not B),
respectively (cf. Fig. 3). Then one has for the differences:

E Jo 1 2 3 4
AUk' 0 ] 2 3
AU 0 1 2 2
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In general, it is found:

AU =k (8

Ay =k (h ©)
Consequently,

aU=av; + 800 =310 () (10)

k kT
‘The expression for Uk is now deduced as:
k k
3 s 51 3
Up=3) i+3) 1-(-1)) (11)
1=0 =0

where the last summation is

k .

§ - (1)1 = kgl - (1) (12)

=0
Consequently,

v =SHE) B 2 ()9 = ek 4 8k 4+ 1~ (1) (13)

On inserting from equs. (6), (7) and (13) into (5) the following final expression was
obtained.

I, = 6k + 20k + 15 + (-1)f] (14)
The numerical values of U, and [ f (see above) are seen to be shifted one place in the
sense that

=V (15)
We can easily prove that this relation is valid in general. On substituting & by (k+1) in
eqn. (13) one indeed arrives at (14).

Combinatorics With Ezploitation of Symmeiry. It is clear from the above
treatment that the numbers of the symmetrical isomers, viz. eqns. (6) and (7) were
obtained considerably easier than those of the unsymmetrical isomers, viz. eqn. (13). In
the following treatment the quantity Uic is eliminated. Start by counting the positions of
coronene holes without regard to symmetry and call this "crude total" J;. Then Jk is
simply the number of hexagons in k—circumpyrene. It is obtained from egn. (3) applied
to the pyrene formula (CgH o) in combination with (1). This yields

.Ik =3k 4+ Tk+ 4= (k+ 1)(3k+ 4) (16)
It is evident that J; counts the symmetrical (02 1}) isomers twice and the unsymmetrical
(C,) four times. Hence

Jk=2Mka+2x\dk‘=+4U]c (17)
On eliminating U, from eqns. (5) and (17) it is obtained
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=X, + M2 + 2MY) (18)
The explicit expression for 7, is obtained on inserting into (18) the expressions from (6),
(7) and (16). For the sake of variation, let us use the last (right—hand) expression for
Mk" from eqn. (7). Then the final result may be written

I= 3k + 1)(k+2) + 51 + Lk/2]) (19)
which, of course, is equivalent to eqn. (14). Another alternative, which may be useful,

reads:
Mr+2)(3k+4) £=0,2,4, ..
L={] (20)
2+ )3k + 7 k=1,3,7, ..
Generating Functions. Introduce:
@
M) = ] MpcF=11224300 440045004 . (21)
k=0
@
Mya)= § MpF=14z420 190 4300+ . (22)
k=0
o
o) = § Ig¥=24 52+ 1002 + 1609 + 242 + . (23)
k=0
[ ]
Ke)= § 1aF =4+ 1454 3022 + 5203 + 8004 + .. (24)
k=0
An elementary result reads
1
S=l+e+P+B 404 (25)

In fact, this is already the generating function for AM, i (see above). The generating
function for the absolute values from the differences is clearly obtained through division
by (1 — z); in this case:

o
1
=1 +2+300 4420 4 50t 4. = Y (k1) = M(2) (26)
k=0
In order to arrive at M, (z), start from
u1—=17,:1+2=3+314+415+515+... (27
Consequently,

1+z

1
(*I—_—:T)'y=1+Z+2I’+233+314+-..=Mb(3)=(-1_—z)'(-i_—z§)' (28)
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The generating function for J is obtained most easily by means of

@
1
ap=1+3+ 6:53+10:t:3+152:4+...=’£ kt1)(k+2) k (29)
0

Modify eqn. (16) to

= 3(k+ 1)(k+2) — 2(k + 1) (30)
Then it is obtained, in accordance with eqns. (29) and (26):

6 2 2(2

=) = [~ [ = (1oey (31)
The relation (18) is valid for the corresponding generating functions; in other words:

K(z) = 71X(2) + 2M,(2) + 2M4,(2)] (32)

Now, on inserting the expressions from (26), (28) and (31) one obtains the explicit form
of I(z) as

— 24z
1) =tz e (33)
The last step may be facilitated by virtue of eqn. (15). When translated to generating
functions it reads

U(z) = z I(2) (34)
where

Uz = § U =20+ 504100 + 1600 + . (35)

k=0

In analogy with eqn. (5) one has

I(z) = M,(z) + My(z) + U(a) (36)
which on combining with (34) yields

K(2) = =M (=) + My(2)] (37)

The result for I(z) as in (33) is readily reproduced on inserting the expressions from (26)
and (28) into (37).

Extension to All Coronenic Perforated Circular Benzenoids. For the sake of
brevity we shall not report the details in the following analysis. Let C H " be the formula
of one of the title systems for k= 0. Six representatives for the six different e values are
depicted in Fig. 2. For the crude total (J, k) the following general expression was found.

Jo= 3K + Hs—21) + (n—59) + 37 (38)
Eqn. (16) is the special case for CHyo. The generating function for Jk was determined
as:

Xz) = H’+74;%T£i~}’;n—92)+22(n—73+122) )
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Eqn. (31) is the special case for C1gH1o. The generalizations of eqns. (19) and (33) for the
total numbers of isomers in the forms Ik and I(z), respectively, are collected in Table 1.

The numerical results of I, for k < 6 are shown in Table 2. For the corresponding
C ﬂ‘IEI z formulas, Table 3 may be consulted.

Table 1. Numbers of isomers of coronenic perforated circular benzemoids: explicit
formulas I; generating functions I(z).

€ 1 A I(z)

0 Iy(3k+9k+12+6k/2)) (1-2)2(1-23)

1 HBR+5k+2) (1422)(1—2)-3

2 JER4ThH4+2(K/2]) (1+22)(1—2) 2(1—22) 1
3 p(k43k2)= (";’2) (1-2)"

4 Hswrokts+2(k/2)) (2+2)(1—2) ¥ 1—z7)
5 g{kz+3k+2)=3(’°;2) 3(1-2)

Table 2. Numbers of isomers of coronenic perforated circular coronoids. For the Can
formulas, see Table 3.

k 0 1 2 3 4 5
0 1 1 2 3
1 2 5 4 5 9
2 4 12 8 6 10 18
3 6 22 14 10 16 30
4 9 35 21 15 24 45
5 12 51 30 21 33 63
6 16 70 40 28 44 84
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Table 3. Formulas of coronenic perforated circular benzenoids.

k 0 1 2 3 4 5

0 CasHag CssHas CooHae CoiHar Cr4Hag CyiHzg
1 CyoHyo CorHyi  CueHzz  CisHas  CpeHage  CuaaHys
2 CugHys  CissHar  Ciaallzs  CipsHag CigsHae  CrerHy
3 Caolyz  CopHys  CosaHas  CosHes  CopoHas  ComaHyr
4 CagsHas  CsoHae  CapegHso CanHsi  CagsHsa  CapHsa
5 CarsHss  CapsHss  CaroHse  CagrHszr  CaasHss  CusrHsg
6 CusoHgo  CaorHgr  CsisHsz  CsssHes  Cssalles  CuraHes

General Formulations. General expressions for formula sequences similar to that
of Table 3 (viz. Cy4sHa4, CssHas, CgoHzs, ...) have been developed in the theory of
benzencids [9,10]. Two different approaches are employed therein and referred to as the
"Harary—Harborth picture" and the "Balaban picture". These designations are rational
since the treatments are based on an analysis of Harary and Harborth [19] in the former
case, while it is closely related to Balaban [20] in the latter. Here we are able to extend
the list by a new "picture” in terms of a generating function. No details of the derivation
are given for the sake of brevity.

Harary-Harborth Picture. The formulas C H = (ms) of C, the coronenic
perforated circular benzenoids (cf. Table 3) are considered.

(m9) = 2lkg(s2~69)] — 5, 9) (40)
where s = 24, 25, 26, ... .

Bualaban Picture. The formula (n;s) of C is determined by the two parameters ¢
and k.

(ms) = (6(k+2)(k+4) + (2k+7)e —2[€/6]; 6k+ 24 + ¢) (41)
where k=0,1,2,..,and e =0,1,2,3,4,5

New Picture. Let the generating function for the coefficients n of C_ H_ for C be
defined by

@
n(z)= ) ng’ = 4Bz + 53295 + 6030 + 6727 + Tda¥t + .. (42)

=24
Then an explicit form of n(z) reads:
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n(z) = zM4(484-52+ 7224 773+ 7244 T25 8726327528 —520—5210-5z114+41717) (43)
- (I-z)(1-2%)7

Conclusion. The enumeration methods, which were applied in the present work,
are altogether not new. Generating functions in particular have been employed many
times [21-28]. Also the symmetry has been exploited to a large extent [21-25,27,29-34].
In this connection the work by Redelmeier [33] is especially relevant. On the other hand,
the applications of these enumeration methods are new. It is not claimed, however, that
these applications in themselves have much interest for chemists. That was not the main
intention of this work, but as the title suggests, this is mainly intended to be a
demonstration of the methods as a "course in enumeration", using the special systems
(coronoids) as an example. Elementary for mathematicians, useful for chemists.

Under this scope it is believed that this exposition preserves some of the good
traditions from the late Professor O. E. Polansky, founder of Match. We have cited a
paper by Polansky and Rouvray [18] in the above text. It represents the first paper of a
short series [18,35-38], which can be characterized (more or less) as educational.
Polansky has also proved his eminent pedagogical abilities in other publications [39,40].

Acknowledgement: Financial support to BNC from the Norwegian Research
Council for Science and the Humanities is gratefully acknowledged.

References

1 F. Diederich and H. A. Staab, Angew. Chem. Int. Ed. Engl. 17, 372 (1978).

2 D. J. H. Funhoff and H. A. Staab, Angew. Chem. Int. Ed. Engl. 25, 742 (1986).

3 H. A. Staab and F. Diederich, Chem. Ber. 116, 3487 (1983).

4 H. A. Staab, F. Diederich, C. Krieger and D. Schweitzer, Chem. Ber. 116, 3504
1983).

5 S Br}mvoll, B. N. Cyvin and 8. J. Cyvin, J. Chem. Inf. Comput. Sci. 27, 14
1987).

6 g iE Cy\)ﬂ'n, J. Brunvoll and B. N. Cyvin, Lecture Notes in Chemistry (Springer),
54 (1991).

7 D. J. ;(lein, M. J. Cravey and G. E. Hite, Polycyclic Aromatic Compounds 2, 163
1991).

8 g 4 )Cyvin, J. Brunvoll and B. N. Cyvin, Computers Math. Applic. 17, 355
1989).

9 g J. Cyvin, Theor. Chim. Acta 81, 269 (1992).

10 S. J. Cyvin, B. N. Cyvin and J. Brunvoll, Topics in Current Chemistry 166, 65
1993).

11 . Brunvoll and S. J. Cyvin, Z. Naturforsch. 45a, 69 (1990).

12 8. J. Cyvin, J. Brunvoll and B. N. Cyvin, Match 26, 27 (1991).

13 . R. Dias, J. Chem. Inf. Comput. Sci. 22, 15 (1982).

14  J. R. Dias, J. Chem. Inf. Comput. Sci. 24, 124 (1984).

15 J. R. Dias, Can. J. Chem. 62, 2014 (1984).



- 142 -

16  J. R. Dias, J. Mol. Struct. (Theochem) 137, 9 (1986).

17 §.J. Cyvin, Coll. Sci. Papers Fac. Sci. Kragujevac 12, 95 (1991).

18 0. E. Polansky and D. H. Rouvray, Match 2, 63 (1976).

19  F. Harary and H. Harborth, J. Combin. Inf. System Sci. 1, 1 (1976).

20  A. T. Balaban, Tetrahedron 27, 6115 (1971).

21 F. Harary and G. Prins, Acta Mathematica 101, 141 (1959).

22  F. Harary and R. C. Read, Proc. Edinburgh Math. Soc., Ser II 17, 1 (1970).

23  F. Harary and A. J. Schwenk, Discrete Math. 6, 359 (1973).

24  F. Harary, E. M. Palmer and R. C. Read, Discrete Math. 11, 371 (1975).

25 R. C. Read, Aequationes Math. 18, 370 (1978).

26 S.J. Cyvin and J. Brunvoll, J. Math. Chem. 9, 33 (1992).

27 S.J. Cyvin, F. J. Zhang and J. Brunvoll, J. Math. Chem. 11, 283 (1992).

28 F. J( Zha.l):g, X. F. Guo, S. J. Cyvin and B. N. Cyvin, Chem. Phys. Letters 190,
104 (1992).

29  A.T. Balaban and F. Harary, Tetrahedron 24, 2505 (1968).

30  A.T. Balaban, Tetrahedron 25, 2949 (1969).

31 A. T. Balaban, Rev. Roumaine Chim. 15, 1251 (1970).

32 W. F. Lunnon En:] Theory and Computing (R. C. Read, Edit.), p. 87, Academic
Press, New York 1972,

33 D. H. Redelmeier, Discrete Math. 36, 191 (19810).

34 S. J. Cyvin, F. J. Zhang, B. N. Cyvin, X. F. Guo and J. Brunvoll, J. Chem. Inf.
Comput. Sci. 32, 532 (1992).

35 0. E. Polansky and D. H. Rouvray, Match 2, 91 21976;.

36 O. E. Polansky and D. H. Rouvray, Match 3, 97 (1977

37 0. E. Polansky and I. Gutman, Match 5, 227 (1979).

38 0. E. Polansky and I. Gutman, Match 8, 269 (1980).

39 0. E. Polansky, G. Mark and M. Zander, Der topologische Effekt an Molekiil—-
orbitalen (TEMO), Schriftreihe des Max—Planck—Instituts fiir Strahlenchemie Nr.
31, Miilheim a.d.Ruhr 1987,

40  O. E. Polansky [in:] Chemical Graph Theory (D. Bonchev and D. H. Rouvray,
Edits.), p. 41, Abacus Press/Gordon and Breach, New York 1991.

The "Computer Corner" of this issue announces a computer program for special generating

functions. It applies to all the generating functions encountered in the present article.



