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ABSTRACT

A novel self-similar seqguence of aromatic hydrocarbons

1993

beginning with benzene and coronene is proposed. The asymptotically

fractal character of the resultant multi-coroncid species is

pointed out and some consequences are elaborated upon. Kekulé

structures are enumerated, and the proton-NMR and C-H stretching

spectra are discussed at a qualitative level, whence it is argued

that fractality should emerge in these spectra.
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1. Introduction

Benzenoid species in a broad sense offer a rich range of
structures entailing delocalized chemical bonding. The journal
Polycyclic Aromatic Compounds is devoted to these species, the
journal Carbon is in fact dominated by studies of aromatic
carbonaceous materials, the new journal Buckminsterfullerene
Science and Technology may be viewed as devoted to a special
subclass of these species, and general organic chemistry journals
continue to have a notable fraction of their volume devoted to this
subject. Of the species in this broad area the sequence beginning
with benzene, coronene and Kekulene, as in figure 1, has served as
one focal within this field. The higher members are!' the hexagonal
coronoids.

Here we study another sequence beginning with benzene and
coronene, and the (n+1)*" member related to the n* in much the same
way as coronene is related to benzene. The first four members of
this seqguence are indicated in figure 2. Identifying benzene and
coronene as the n=0 and n=1 members, we propose that the n=2 and
n=3 members be dubbed coro-coronene and coro-coro-coronene, while
the general n*® member is coro'ene. In fact, this notably "self-
similar* sequence develops toward a so-called? fractal limit, such
as we have discussed different cases of previously’. One feature of
such a sequence is that the mass (or molecular weight) scales as a
characteristic length raised to a fractional power d, which may be

interpreted as a geometric dimension, here called the fractal

dimension. In section 2 this is discussed further, whence we find
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Figure 1 - The first four members of a focal sequence of
hexagonal structures.

Figure 2 - The first four members (with n=0,1,2,3) of a
self-similar sequence of coro!"ene structures. Note that

their sizes (measured by their numbers of C-atoms)
increases exponentially with n.
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d=1.63093. The aromatic character of the members of such a sequence
is also of interest, and is studied here in section 3 via an
enumeration of each member’s Kekulé structures. This indicates that
quite rapidly the resonance energy per site approaches a limit, but
only slightly different than that of coronene. In section 4 we
consider the manner in which the fractal molecular structure can be
expected to perturb localized spectral features such as H-NMR or
C-NMR chemical shifts or coupling constants or C-H stretching
frequencies. The self-similar molecular structure is argued to
implicate a heirarchy of spectral splittings of ever diminishing
scales, so that the conseguent spectrum itself takes on a self-
similar character, with a fractal dimension which is a fraction of

that asscociated to the molecular structure.

2. Simple Structural Features

Many structural features of the sequence of corc™enes are
revealed from a study of the construction leading from one stage to
the subsequent one. Indeed we may view the (n+l)®" stage as being
constructed by the fusion of six n‘® stage species, as in figure 3.
In any single fusion two neighbor pairs of C-atoms are merged into
a single neighbor pair. Thence letting ¥, denote the number of C-
atoms in the n'® stage species and noting that there are six fusions
in figure 3, we see that
(2.0 Ypo1 = 6%, - 6%2
Similarly if we note that four hydrogens are lost at each fusion,

then with M, denoting the number of H-atoms at the n*™ stage we have
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Figure 3 - The manner of combination of six coro!™enes
to yield the next stage cora!™!'ene.

Figure 4 - Illustration of the length-recursion relation
of egn. (2.3) for n=2.
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(2.2) Moy = 6M, - 6%4

Further we let I, be the n'* stage "molecular span® measured as the

distance between two minimally separated parallel lines fully

enclosing an n*" stage diagram. As illustrated in figure 4 the span

at stage n+l is but a slight correction to three n'® stage spans

(for n21),

(2.3) 1,.; = 31, - 2n(%)

where we assume perfect hexagons and choose the unit of length to

be that of the C-C bonds. The length p, of the outer periphery of

an n* stage species is nearly 6 times 2/3 of that for the preceding

stage, except that for each fusion one bond length is lost, so that

(2.4) Doy = 4D, - 6

Readily one sees that the number of hexagonal rings in the (n+1)*

stage is

(2.5) Biey = 6B,

so long as n21, the exceptional relation h, = 7h, applying (unless

one were not to count the hexagon in the center of a coronene).
The recursion for the area enclosed in the outer periphery

needs a little more explanation. If we denote this area for an n*"

stage molecule by a, and the area enclosed in the center by i, then

it is clear that

(2.6) Bpg = 6a, * i,

and the problem devolves to a recursion for the inner area. Now one

n** stage gasket can be fit in the center of an (n+1)*™ stage one

usisng edge fusions and leaving six remnant empty areas, as

indicated in figure 5. Examination reveals each such empty area is
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surrounded by six (n-1)'" gaskets so that each empty area is that
in the center of an n** stage gasket. That is
(2.7) i,y = 8, + 61,
Thence we have a pair of coupled recursions.
All the recursions are in essence of a straightforward type.

They typically are of the form
{2.8) Hoap = A%, + b
and have solutions
(2.9) X,= A% + [

o= A" (x,-B)

B= (1-A)"'b
where x, is some (usually small-gasket with e=0 or 1) initial
condition. The recursion for areas may be brought into the desired
form of (2.8) if we substitute (2.7) into (2.6) and write the
result along with (2.7) as
(2.10) &n,1 7 €\ /a

- A 1 6l

Of course x,,, %, and b in (2.8) are now interpreted as column
vectors {with b=0) and A as a 2 by 2 matrix, but still the solution
of (2.9} applies (with the ordering of the different factors now

c¢rucial). Thus we have
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=1_85+L2.
1o = 226 s\;
6 24
nn=-§6“+-—§- nz0
(2.11) P, = 4™ %2
3
1“—53“1'1/1 1
h, =7x 673 > n2l
3 2
a, = =97 + =4°
£ 85 5 !
|
. 1 1 f
i, = =92 - =42
o 5 5 P

where in the last two equations the areas are in units of a single
hexagon (and 1, is in units of bond lengths). Moreover the
molecular weight is M;n,+M.Y, where M, and M, are the atomic weights
for H- and C-atoms.

Various asymptotic properties of the fractal limit may now be
identified. Most simply the ratio of hydrogen to carbon approaches

a constant value

limn,/y,=%
-

Of more present interest is the (mass-based) fractal dimension

& - In6
d = 1lim 11:3- 1.63093

ne=

1n(Mn,+M.Y,)
in 1

Notice that this does not depend on the values of the atomic
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weights (even if the species were to be perfluorinated). Nor does
it depend upeon our particular choice of characteristic length
—which we could also take as the maximum distance between two
points on the molecular diagram, or as the mass-weighted mean
radius of gyration. Thence d represents a ‘pure* structural
characteristic. In fact d is not altered if we initiate the growth
procedure with a seed of hexagonal symmetry other than benzene:
starting with coronene merely shifts the stage numbers by 1, but
starting e.g. with Kekulene (of figure 1) initiates a whole new
family. Evidently too the outer periphery is fractal with ancther

dimension

_,. Inp, Inda
%S s T enias

Indeed this is exactly the fractal dimension of the boundary of the
hexagonal "Koch snowflake", which entails a related construction.

See, e.g., pages 42 and 43 of reference 2.

3. Kekulé Structure Enumeration

Kekulé-structure counts are often deemed a reasonable
indicator of resonance energy. Thence these counts for the corolM-
enes are of interest. This can be accomplished via recursions
reminescent of those of the last section but more involved. Indeed
we utilize several *auxiliary" counts for subclasses of Kekulé
structures with fixed arrangements of (double) bonds at the pairs

of neighbor sites where fusion may take place. There are five such
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patterns as shown (and named) in figure 6. Then we define K,{x,y,z)
to be the number of perfect pairings (i.e., Kekulé structures)
possible within an n'" stage gasket if there are local arrangements
x, Y. z at each of the potential points of fusion, as indicated in

figure 3. A diagrammatic notation is convenient

(3.1) = K,z

@_X = 4(x0) +Sx,0)

and if we had a quantity doubly indexed by the local arrangements,
it would be represented by a "pod* with two dangling lines. Joining

two dangling lines while removing their labels indicates a

summation

on =G = TIO=1EC)

where £ denotes the local arrangement needed to accomplish fusion

of one fragment to another when the other has local arrangement &.
That is,

(3.3) B ol B, O a0, Cms Bn

Then one readily sees the recursion



- 118 -

Figure 6 - The five local patterns of m-bonds at the
location of a fusion (as encircled here by a dashed
line).

(3.4)

z
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in close correspondence to the construction of figure 3. Further

one sees that the total Kekulé-structure count for coro'™ene is

(&)

{3.5) K. = 9 @
(>

as is desired.

Perhaps a digression is in order concerning the computational
efficacy of our scheme. Eqn.{3.4) applies for 5’=125 guantities at
each stage (as one varies x, vy, z) while for each of the 9 internal
bond there is an independent 5-fold summation thereby leading to a
§%=2 10° fold overall summation. Thence the iteration can be
somewhat time consuming unless one takes at least one of several
(easy) steps to accelerate the process. Perhaps the most

significant is to introduce a second auxiliary array

b/

(3.6) i qi!” "Ei,
‘E’ X

it
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which entails a 5°-fold overall summation for 5’ quantities. Then

instead of (3.4) utilize

(3.7 LA

which entails an overall 5’-fold summation for 57 quantities, with
effort here added to (rather than multiplied by) the effort
entailed in (3.5). Further one could make use of the 3-fold
(rotational) symmetry in the K,(x,y,z), and also not sum over
zeroes. (Since the local states ¢ and ¢’ can only occur when the
other does, there are 80 of the K,(x,y,z) that must be 0.)

We have implemented the iterative scheme outlined here to
obtain the results of table I. Clearly the asymptotic value of the

per-site Kekulé structure count

lim K7 = 1.143320
ot

(3.8)
is quickly approached very closely. Of course the molecular gaskets
also grow very rapidly in size so that at stage n=12 it should be
about 0.1 mm in diameter. Corresponding to the per-site Kekulé
structure count we also anticipate the resonance energy per site to
quickly approach its asymptotic value. That is, if we make the

approximation
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(3.9) RE, = A In K,

as is reasonable' for Kekulé-structure rich benzenoids, then

lim RE,/Y,€, = 0.829
-

where €, = 0.212eV. is the asymptotic (per site) value® for
graphite. This is higher than the corresponding ratio of 0.715 for

benzene, or of 0.773 for coronene.

4. Fractal Perturbation

The question naturally arises as to how the fractal character
of the coro'enes might be manifested in their NMR or IR spectra.
An answer to a related question is indicated by Alexander and
Orbach® who consider regular fractal structures with all bonds
equivalent which in the large-gasket limit give rise to a fractal-
characterized low-frequency vibrational {i.e. phonon) spectrum
Their ideas do not directly carry over to the C-C bond stretching
vibrational spectrum because there is generally some complication
due to double-bond localization as governed by resonance, as in the
preceding section. Here we consider a different problem as concerns
the effects of the fractality in perturbing a localized spectral
feature such as the frequency of the proton- or carbon-13-NMR
chemical shifts or vibrational CH-stretching frequencies.

The question of H-NMR chemical shifts relates to equivalence
classes of H-atoms. For a coro'"ene the global symmetry is D, with

no H-atom left fixed by any symmetry elements other than the
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reflection ¢, and the identity 1. Thus there are 12 H-atoms in each
(global symmetry) equivalence class of which there must be 1,/12
(where as in section 2 1, is the number of H-atoms at the n®®
stage) . But these global equivalence classes tell little about the
extent of inequivalence (or freguency shifting), this being more
fully addressed if one considers *"local" equivalence classes. At
the local extreme of just focusing on single hexagons, one sees
that every H-atom is in a hexagon with but one other H-atom at a
nearest-neighbor position so that at this extreme there is but a
single equivalence class.

Between the global and local extremes of the previous
paragraph one may lcok at intermediate stage equivalences. We
define two H-atoms as m-equivalent if they are in like environments
within an m*® stage component f{of an n'" stage gasket with n>m).
Thence m=0 and m=n correspond to the two extremes already
discussed. There are secondary and tertiary n*® stage components (or
m-gaskets) attached to either 2 or 3 other such m-gaskets.
Evidently the 1M,-4 and 1.-6 H-atoms of these two respective types
of m-gaskets belong to disjoint sets of m-equivalence classes (or
m-classes) to which we may then also apply the adjectives
*secondary" and ‘"tertiary". A secondary gasket has local C,,
symmetry (the 0, element of which leaves H-atoms fixed) so that its
H-atoms fall into (M,-4)/2 m-classes. Similarly the D,, local

symmetry of a tertiary gasket leads to (M,-6)/6 m-classes. Thus we

have a total of
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m-classes. Further if we define s, and t,, as the numbers of
secondary and tertiary m-gaskets in corof"ene, then we see that
each secondary m-class contains 2s,, H-atoms, while there are 6s,,
H-atoms in each tertiary case.

Spectral splitting patterns turn out te be related to
equivalence class splittings, so that the splitting of m-classes
into m+l-classes is of interest. For instance, secondary m-gaskets,
which of course are all m-equivalent, are no longer m+l-equivalent
and indeed fall into m+l-equivalence types associated to o, B, 7,
8. But there may be some further splitting if symmetry of an m-
gasket is lowered on extending consideration to its location in its
m+l-gasket. Thus the m+l-classes arising from p (or p U B} split in
two, while those from §(or § U 8" U §7) split in three. So letting
A be a label for a secondary m-class we see that it splits into
m+l-classes as
(4.2} Ch = Caa Y Caps U Cppz U Gay U Cpgy Y Cpgz U Cpss
That is, each secondary m-class splits into 4 secondary and 3
tertiary m+l-classes. This and the corresponding (similarly
derived) result for the splitting of tertiary m-classes might be
abbreviated
(4.3) sec.-m= 4 sec.-m+1 U 3 tert.-m+l

tert.-m— 2 sec.-m+1 VU 3 tert.-m+l

That is, the second of these relations tells us a tertiary m-class
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splits into 2 secondary and 3 tertiary m+l-classes.

We now seek a qualitative description of the spectral

splittings. Imagine that for a given spectral resolution only
interactions over m'" stage gaskets are relevant but that for an
increased resolution interactions over (m+l)™ stage gaskets are
relevant. Then one anticipates via (4,3) that a "secondary" lower-
resolution spectral line will split into 4 secondary and 3 tertiary
spectral lines as one proceeds to the higher resolution. Similarly
also via (4.3) each tertiary lower-resolution line should split
into 2 secondary and 3 tertiary spectral lines. Further this manner
of splitting should repeat on proceeding to even higher resolution.
Morecover, the splitting patterns should be the same except for
scale. The change in scale is related to the asymptotic form of the
interaction strength, say -1 for two sites a distance 1 apart
(where, e.g., a=3 for dipole-dipole-like interactions). Thence if
we let A, be the splitting magnitude due to interactions over a
length I, characterizing an m-gasket, then upon recalling (2.3), we
see that
(4.4) A, = A/
Thus the relevant magnification factor is 3°. Moreover, from the
discussion in the paragraph before the preceding cone, we see that
the secondary lines at any stage have the same intensity, while the
tertiary ones have a second common intensity.

A final interesting point is that the self-similar spectra
described in the preceding paragraph are themselves fractal. At a

resolution of A, one anticipates a number of distinguishable lines
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proportional to the number of H-atoms in an m*" stage gasket, this
later number being ~6", as we may recall from (2.2). Thence the
spectral fractal dimension should be

_ qi. BN, _ Ine
4= LB TR, " g - e

That 1is, it is simply a fraction of the structural fractal
dimensicn d, of (2.13). For the dipolar case of a=3, this gives
4,~0,54364, Such low-dimensional fractals (distributed along a
line) are sometimes called’® "Cantor dusts". The present Cantor dust
"spreads out" more if a is allowed to decrease toward d. For asd
the interaction is in effect 1long range (there being more
perturbative strength due to sites at greater distances) so that
the perturbative framework no longer applies. Of course the finer
structure of the splitting pattern can also be washed out when it
comes to correspond to distances where the effects of sites
external to a gasket become comparable to the effect of the

intragasket sites (at the same distance).

5. Conclusion

A self-similar sequence of ever more multiply corona-condensed
benzenoid species has been investigated with a view to the
identification of special characteristics associated to their self-
similar character. The Kekulé-structure count and associated
resonance-energy estimate seems to behave in a smooth (perhaps

unexceptional) fashion. On the other hand excitation spectra for
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local modes are argued in a general context to manifest the self-
similar molecular structure as a self-similar splitting pattern of
the excitation spectra itself. Indeed such local-mode spectra
should exhibit their own fractal dimension distinct from (but
intimately related to) that of the geometric structure of the
molecular gaskets. The identification of other novel features would
be of interest.

The self-similar sequence {of figure 2) seems to us a natural
one beginning with benzene and coronene, so that the preparation of
even just the next member (with over 37 million Kekulé structures)
would be an interesting synthetic challenge. We recall Roald
Hoffmann’s remark that’ traditional directed (or rational)
synthetic organic chemistry has proven successful for gquasi-0-
dimensicnal species (i.e., nonextended molecules), less successful
for quasi-1-dimensional systems (e.g., thermoplastic polymers), and
almost entirely unsuccessful (sc far) for 2- or 3-dimensional
lattices (such as structurally regular thermosetting polymers or
silicates). Amusingly our fractal gaskets may be viewed to offer an
intermediate synthetic challenge at intermediate dimensions. Indeed
our earlier considerations® of possible classical synthetic routes
(for another fractal family, exhibiting trigonal symmetry) seem to
us to present a circumstance of such an intermediate difficulty.

Finally it can be surmised’® that fractal benzenoids might
serve as zero-order models of various natural carbonaceous
substances: coals, lignites, chars and soots. Perhaps those

substances can profitably be viewed as having (covalent)
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interconnections between aromatic fragments on a range of scales,
though the patterns would be randomized and heteroatoms would
occur.

It seems there are a variety of rationale for interest in
fractal benzenoids and their possible novel properties.
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Foundation of Houston, Texas, and to the Donors of the Petroleum
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