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Abstract

Programs for exhaustive and irredundant generation of stereoisomers,
corresponding to the adjacency matrix of a molecular structure have
been elaborated. The display of stereoisomers is performed by usage
of generally accepted symbols for stereobonds. An algorithm, designed
for calculating the Cartesian coordinates of atoms within the molecule
on the basis of known internal coordinates and given symmetry, is pro-
posed. The spatial models of a sterecisomer family are automatically
generated basing upon the Cartesian coordinates of the initial struc-
ture. The programs are written in FORTRAN for IBM PC AT. They
are designed for the solution of the molecular modelling problem, for
calculation of the molecular spectra in an expert systems, aiming at
the elucidation of the molecular structure by their spectra, etc.

1 Introduction

Both physical and chemical properties of chemical substances are known finally
to depend upon the spatial disposition of the atoms composing them and linked
by the chemical bonds. Each configuration determines certain energy and charge
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densities on atoms and bonds, which in turn determine force and electrooptical pa-
rameters, dipole moment, reactivity of a molecule, etc. Therefore, the elaboration
of structural isomer generation algorithms becomes one of the principal tasks of
mathematical chemistry, as well as exhaustive and irredundant enumeration of all
the theoretically possible stereoisomers, answering some structural formula, and
the creation of methods of the stereoisomer spatial model generation.

These investigational trends are closely connected with the development of quan-
tum chemistry, molecular mechanics, molecular spectroscopy, the design of artifi-
cial intelligence systems aiming at the search for new ways of synthesis of chemical
compounds with prescribed properties, molecular structure elucidation based on
spectra, prediction of the biological activity based upon the “structure-property”
correlations, etc.

During the recent years our laboratory has been engaged in the development of
the RASTR expert system for molecular structure elucidation, based on spectra
[1-4]. The elucidation of the most probable structures within the limits of this
system is carried out on the basis of the isomer vibrational spectra prediction,
which in turn requires the complete list of all possible sterecisomers and data on
the Cartesian coordinates of the atoms. In the case when a molecule possesses
a symmetry, calculation of its vibrational spectrum is significantly simplified [5].
Therefore, the coordinates of the stereocisomer atoms in the process of constructing
its spatial model for the consequent calculation of its vibrational spectrum should
be calculated taking into account the conservation of its symmetry.

All of the previously available algorithms of calculating Cartesian coordinates in
space using geometrical parameters (bond lengths, valence and dihedral angles) 6-
15] either did not take into account the symmetry at all, or they demanded for the
active interference of the user for its consideration. The Go-Sheraga algorithm [16]
takes into consideration only one of the possible elements of symmetry by solution
of nearly a hundred of transcendental equations. We have recently elaborated the
original algorithm (algorithm of symmetrization), which uses the coordinates of
atoms calculated by the Crippen method [15] as the initial approximation, and
then builds a model with the required symmetry. Crippen’s method {15] does
not evidently consider the molecular symmetry, nevertheless our experience has
shown that in many cases the spatial models of the complex polycyclic structures,
calculated according to this method possessed the required symmetry. However,
there is no guarantee for success. For example, a caleulation of coordinates of
the trans-decalin atoms by Crippen’s method resulted in a spatial model with
distorted symmetry (C; instead of Cy;) and geometric parameters being distinctly
unlike the experimental ones. The calculation of the atomic coordinates of the
structure, shown on Fig. 1, has produced a model, characterised by the required
geometrical parameters, but lacking symmetry. An application of our algorithm
of symmetrization made it possible to restore the required symmetry (Cyh and Cs
correspondingly) in both cases, retaining the correct geometric parameters.



Figl. “Skeleton” of hexaphosphorheptamin

However, the atomic coordinates, calculated by means of this algorithm, generally
do not cover the total variety of spatial models corresponding to the given molec-
ular structure. A molecule possessing n stereocentres may have up to N = 2"
stereoisomers, differing in the spatial orientation of the atoms, Various stereoiso-
mers of a molecule may have different physico-chemical features. Therefore, the
detailed identification of a molecule by its spectral and other physical and chemi-
cal characteristics demands for the list of all theoretically possible non-coincident
stereoisomers, and of their spatial models. The prediction of the spectra within
the stereoisomer family is possible if the coordinates of the atoms are calculated.
We elaborated both an algorithm and a program for the exhaustive and irredun-
dant generation of sterecisomers. The approach used is based upon the ideas of
Nourse [17]. This paper presents the algorithm of symmetrization for the construc-
tion of spatial models as well as of methods for the generation and the display of
stereoisomers. All the algorithms are realized as Fortran programs for the personal
computer, compatible with IBM PC AT.

2 The algorithm of symmetrization

The initial point of the symmetrization algorithm work is the calculation of spatial
coordinates of the atoms in a molecule on the basis of the internal coordinates,
using the method [15]. According to [15], the matrix of the lower and upper bounds
of distances between all the atom pairs in the space is produced as an initial step:
LU = [L\U], I S dsj Swijy Vi, (1)
This step is followed by the G(LU) metric matrix formation according to Crippen’s
principle and then its eigenvalues and eigenvectors are calculated. The latter are
used in the calculation of the initial Cartesian atomic coordinates’ approximation
Zik,1 = 1,...,n, where n is the atom number and & = 1,2,3. As this approxi-
mation does not commonly fit (1), the further minimization of the function F is
required:
na [(dE —ul), di > ow
F=5% 40, Lj<dy<w;  (2)
= (1 - dh), dy <y
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where d% = ¥i., (zi — ;x)>. This is the fast step of Crippen’s method. The
algorithm of symmetrization requires the specification of the point group of the
molecular symmetry to be given by researcher in the symbolic form (Dag, Cy, etc.).
Constructed according (18], the graph automorphism group (GAG) partitions the
set of atoms into the orbits, the number of atoms within an orbit presenting its
index. Then, the equation of the presumable principal symmetry axis is derived out
of the corresponding GAG permutation by means of regression problem solving,
and the Crippen model is oriented in the space by geometric transformations so
that to meet the following conditions:

a) the presumable principal axis coincides with the OZ axis;
b) one of the o, planes coincides with the YOZ plane;
¢) one of the C; axes coincides with the OX axis;

d) the fixed point, in case of being the single one, coincides with the coordinates’
origin.

The next step of our algorithm results in the formation of the set A of atoms,
taking one (as “representative”) from each orbit according to a certain rule. Let
N be the order of point group, and L the index of the orbit R containing the
selected atom - “representative” a; € R. Then in case of N = L the coordinates
of a¢; € R taken from the Crippen model, would be preserved. If L < N, the
atom a; € R is projected onto a symmetry element of the point group. The
choice for such an element depends upon several factors: relation between L and
N (L =N/2 L=NJ/4, L =2 # N/2 etc.), the type of the point group, the
location of the atoms, previously placed in the space and in some cases on the
value of the third coordinate of a; in the Crippen model. Coordinates of the other
atoms of the orbit are found by the application of generator combinations to the
“representative” of this orbit. The correlation between the orbits and symmetry
elements are illustrated by the fol|l‘?wing example:

Fig. 2. Illustration of correlation between the orbits and symmetry elements
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Here the symmetry group is Cay, N = 6, and L(A) = L(B) =3 = N/2

orbit 1: (4,4, 4"),L(A) =3,A€o0,,0, =Y0Z
orbit 2: (B,B',B"),L(B) =3,B € 0y,,0,, L[AA]

The spatial model (let us denote it by M(XJ,)) obtained by means of this tech-
nique, possesses the required symmetry, but highly different geometrical param-
eters if they are compared to the real ones. It is necessary to optimize the co-
ordinates of all the “representatives” in order to restore the given geometrical
parameters, keeping the required symmetry. So we arrive at the optimization
problem:

min F'(z), = € R™, p~ <=z <p*,

where F' = F((LU)') + ¥; i, F is similar to (2) in the Crippen method, but with
new parameters (elements of a new matrix (LU)' of the lower and upper bounds
of distances) and additional terms @;, which serve for preserving the required
symmetry; ¢ means a vector of the coordinates of the point set E, where E =
AUBUC (let A = AU B) where A4 is a set of “representatives”, B a set of
certain atoms, added to the set of atoms A in order to fix all given geometrical
parameters, C' is a set of additional points; p~ and p* are the vectors of lower
and upper bounds of variables’ variation accordingly. We shall describe the rules
for construction of C, the formation of the terms (;, the calculation of the matrix
(LUY, the bounds of the variables’ variation and the initial values for the variables.
The set C of auxiliary points, situated at the symmetry elements, is added to the
set A. Let the atom a' be an image of the atom a € A relatively the symmetry
element a : @ — ', the distance between the image and the prototype being
fixed, i.e. lsat = uaw. Then the C set includes the point ¢ € «, the distance
between ¢ and a and between ¢ and a; € A atoms, participating in the formation
of the valence angles /a;aa’, being calculated. The method of these distances’
calculating depends upon the kind of symmetry element a. If @ possesses the
order k = 2 the distance between a and c equals d,. = 1/2 d,q, and the distance
between a; and c equals do;e = (d2,, + d2, — 2de,a - dac - cosLa;aa’)*/?. The Fig. 3
illustrates the case, when aa = C3,i =1:

)

] .0

0,

Fig. 3. Distances between atoms and auxiliary point (when k = 2)
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If o is a proper axis, possessing the order k > 2 (let a & a"), the distance d.
and dg,. is calculated as follows (Fig. 4):

doc = dar[(2sin (7/k))

cos B = (d2 g + 2w — 2 00)/ (2dayardaran)

laf[* = do + |a'f[* — 2da,ar}e’f] cos B

where f is the middle of [a'a"]

laf| = daarcos[m(k — 2)/2k]
cos v = (dga + |af* — |1 f*)/(2dasalaf1)
dmc = (dz 2z

a1a

+ d:c — 2dq,0dacc08 7)'/

a f a
Fig. 4. Distances when k > 2 and a symmetry element is proper axis
If @ is an improper axis of the order k > 2, the calculation of d,; and d,,. distances

demands for more complicated formulas, and log# = ugqan, where @ =y a", becomes
the necessary condition for calculating do and da.e. If @ -+ @' and a' € B, then
l.f,nc =l

In all these cases the lower bound of distance is equal to the upper bound (£, =
= duc).

The distance bounds between the A—set atoms are taken from the LU—matrix,
built according to Crippen (& ., = laag Uh;a; = Yasass When ay,az € A).

The distance bounds between the other points of the A—set and points of the
C—set are defined quite widely. Therefore, a new matrix (LU) of the distance
bounds between the points of the set B = AU C is being formed. (LU)" elements
serve as parameters of the F' function (2).

We should then add to the function F the terms containing the condition of ¢ =
o transits. The direction vector b may correspond to the symmetry element a if
@ is an axis, or it is the perpendicular vector, when « is a plane.

Let’s suppose vector b coincides with one of the coordinate axes, l.e. b, = 0
b;, = 0, b;; = 1, and the transition a —— a’ produces the point ¢ € @, [, equals
to g Then, if a is a proper axis, the i3 coordinates of the points a and ¢ should
be equal, but in case o’ € B, the i3 coordinates of the points a, ¢’ and ¢ should be
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equal. Therefore, the function F is supplemented by terms which become zero if
the conditions mentioned above are met:

Pr= (2,(, = 20‘;)’! Ps = (ma"‘, — Ty )z

In the case when « is a plane, two analogous terms are used instead of each of the
given ones: i, is used instead of i3 within one of them, and i, - instead of i3 within
another. When a is an improper axis of order k > 2, then «||0Z, a -% a/, o' € B,
the i3 coordinates of the points a and o' become antipodal, and the corresponding
term @, = (Zai, + Zari,)* should be added to the function F.

This is illustrated by the following example, where oy = C3, a; = 03, and the
coordinates of vector b are (0,0,1) for both elements of symmetry (Fig. 5).

nal
0 i a
g
Gh
T

Fig. 5. Location of auxiliary points

Leta €4, a5 d,a 2o o ¢B,a"¢gBandt € a, € € az. Then
F' = F(LU') 4 (Zas — Tz3)? + (2ar — 25, ) + (Zaz — 25,)* +-..

Simultaneously, the bounds of the coordinates’ variation are being determined for
those points of the set E, which are situated on the symmetry elements. In case
e€c E, e € a and « is an axis, Z.i, = T, = 0, i.e. the bounds of these variables’
variation are zero. When « is a plane, z.;, = 0. The Fig. 5 illustrates, that if
a; = C; and e = §, z, and 2z, go to zero, and if a; = o5 and e = G; 27, goes
to zero. When the transition @ — a', where « is an improper axis, produces the
point ¢, the point ¢ € C is situated in the origin of the coordinates (point 0), and
all the bounds of its coordinates’ variation are zero. The bounds of the variables
which are not located on the symmetry elements are accepted to be rather wide.
Let us consider a — a' (I being equal to u,.) and a point ¢ € a which is
produced by this transition as well assume a vector b, not coinciding with any of
coordinate axes, which corresponds to the element a. Then the function F should
be supplemented by terms containing expressions for the cosines of the angles v1, v,
between two pairs of vectors b, O and b, a¢, correspondingly. Let a be a proper axis,
then cos 71 = %1, and cos 2 = 0, if « is a plane, then cos v1 = 0; cos 42 = +1.
Therefore, in case when « is a proper axis, the function F' is supplemented by
the terms (cos*y, — 1) and cos®yz, which turn into zero, when cos 7, = 1 and
cos v, = 0. The values cos v; and cos ¥, are expressed by coordinates of the vector
b and points a and c. Analogous terms are added to the function F by the points
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of the set 4, situated on the symmetry elements, non-coinciding with eigther any
coordinate axis or any coordinate plane. Thus, for the structure, illustrated by
Fig. 2, we have: A = {1,2,8,7}, B = {8}, 2 € 0., (cos(27/3), sin(2r/3),0).

In this case, the function F should be supplemented by the following term:

(=21 - cos(2m/3) + T3 - sin(27/3) + 225 - 0)?
- (zh + 23, +25) -1

v

Now let us assume, that a -+ o', @ € A, @' € B, la2 # Uga, i-e. the distance
between the image and the prototype is not settled. Then the function F is
supplemented by the term v, = T, [%i(a) — za]?, where ¥ is a vector-function
of geometrical transformation which corresponds to the symmetry element a.
The initial coordinates of the set A of points are taken from the symmetrized
spatial model M(X%) and the initial coordinates of the set of points C' defined
in the following way. Let ¢ € C be produced by the transition a = a, then
X% =¥k, X2j/k (j =1,2,3), where g; are the images of a relatively k degrees
of the symmetry element a, the coordinates in the right part being derived from
the symmetrized model M(X5). For example, in the structure, displayed on
Fig. 1, the point g, produced by 2 — 6 transit, receives initial coordinates
X% =1/3 (X3 + X%+ X%;), 1=1,2,3.

Coordinates of atoms of the set A, gained in the process of optimization, are used
for calculation of coordinates of all the other atoms within the molecule by means
of “reproducing” the “representatives” relatively generators.

The algorithm of symmetrization can be discribed in short as a sequence of the
following steps:

1. Obtain the graph automorphism group according to the adjacency matrix.

2. Construct spatial model of the molecule by means of Crippen’s method using
the adjacency matrix and geometrical parameters.

3. Input symbols of the point symmetry group. Identify the point group gen-
erators and symmetry elements.

4. Separate the atom set into the orbits.
5. Orient the Crippen model in the space.
6. Determine coordinates of atoms belonging to the first orbit.
6.1 Select an atom - “representative” and determine its coordinates.

6.2 Calculate coordinates of the rest orbit atoms “reproducing” the “represen-
tative” by means of the generator combinations.

7. Repeat step 6 for the remaining orbits.

8. Optimize the coordinates of all “representatives”.
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8.1 Set up the optimization problem:

i) Form the set of the independent variables presenting the coordinates of
a definite part of atoms and additional points,

ii) Form the target function,
iii) Form the bounds of the variables’ variation,

iv) Calculate the initial values for variables.
8.2 Solve the optimization problem.

9. Determine coordinates of all the rest atoms applying generator combinations
to the “representatives”.

In a majority of cases it doesn’t make any sense to optimize the coordinates of
all the atoms in molecule according to Crippen’s method. It is more profitable
to induce the symmetry, basing upon the coordinates, expressed by the eigenval-
ues and eigenvectors of the matrix &, as upon the initial approximation. This
allows to save time. For example, it was found that calculation of adamantan
molecule by Crippen’s method required 5 times as much of processor time as in
the case when the symmetrizing algorithm without optimization of all molecular
atom coordinates was used.

Crippen’s algorithm and the algorithm of symmetrization, worked out by us, were
realized as a Fortran program, effectivity of which has been checked up on a great
number of complicated polycyclic organic and inorganic structures, examples of
which are given on Fig. 6. While applying the algorithm of the symmetrization to
the structures given on Fig. 6, we discovered, that the maximal deviation of the
calculated geometrical parameters from the prescribed ones is within the average
error, usual for the programs in quantum chemistry. In special cases, when the
algorithm of symmetrization also gives not satisfactory results the spatial struc-
ture may be built with the aid of programs in quantum chemistry and molecular
mechanics. With the initial approximation, obtained, using the algorithm of sym-
metrization, the computer time of calculation with the help of quantum-chemical
programs can be shortened essentially.
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Fig. 6a. Molecules for which spatial models were built.

Digits in the square brackets refer to the sources of the values of inner coordinates
of molecules. The structures marked by one star were calculated by method [15] the
symmetry being disturbed. The structures marked by two stars were calculated by
the same method both the symmetry and geometric parameters being disturbed.
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Fig. 6b. Further molecules for which spatial models were built.
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Fig. 6¢c. Further molecules for which spatial models were built.
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3 Generation of the steroisomers

The generation of the stereoisomers of the structure assigned only by its adjacency
matrix was performed using method [17] based on the molecular topology analysis.
The main idea of a method proposed by Nourse is the identification of the stereo-
centres using the analysis of their local topological symmetry and construction of
the configuration symmetry group (CSG) (on the basis of GAG), containing per-
mutations of the stereocentres, the definite stereocentres of which are supplied with
the symbols of inversion. The steroisomers are generated as binary n—dimensional
vectors, n being the number of stereocentres.

Generation is a process of multiplication of such vectors beginning with the zero
one by the elements of the CSG. The binary vector representing a lowest integer
which has not been involved in the process of multiplication before is a code of
next stereoisomer from the list of the different ones. The process stops when all
the 2" n—dimensional vectors are exhausted. Below you can see a structure where
the stereocenters are marked by stars.

The results of multiplication of the stereoisomers’ codes by the elements of the
CSG are shown in Table 1. Every column of Table 1 contains a class of equivalence
referring to every distinct stereoisomer. Thus, four different steroisomers have been
obtained: 0000; 0001; 0011; 0110. Only the assymetrical stereocenters and double
bonds are decoded by the program - R/S configuration is given to the former,
cis-trans configuration is given to the latter.

CSG\STEREOISOMERS | 0000 0001 0011 0110
M@)(3)@) 0000 0001 0011 0110
(1)(24)(3) 1010 1110 1100 1001
(12)(34) 0000 0010 0011 1001
Table 1: (12’ 34') 0101 1101 1100 0110
(13)(2')(4") 0101 0100 1100 1001
(1'3")(2'4") 1111 1011 0011 0110
(1'432) 1010 1000 1100 0110
(14")(2'3") 1111 0111 0011 1001

In the development of the Nourse method we’ve offered an approach, which com-
bines in itself both the analysis of the molecular topological symmetry and the
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consideration of the geometrical qualities. Accounting of the spatial structure lets
us identify the symmetrical group (global symmetry) and the stereocenters of the
molecule more precisely. The atomic coordinates are used by the program to as-
certain the molecular point symmetry group (this group is used instead of GAG)
and to analyse the potential stereocenters local symmetry.. Our approach allows
to generate non-coinciding stereoisomers which can’t be distinguished by Nourse
method.

4 Determination of the coordinates of the ste-
reoisomer atoms

On the basis of the heuristic criteria the algorithm allows us to reject the impossible
structures containing the transdouble bonds in the n—membered cycle with n < 8,
the small cycles, condensed in trans-position, inverted bicycles [26]. The atomic
coordinates are calculated for all the rest of the sterecisomers generated by the
program.

The spatial models of cis- and transisomers of the polycyclic structures with the
condensed cycles and the bridged fragments, as well as of the unsaturated struc-
tures with double bonds in the cycles, are built independently with the aid of the
symmetrization algorithm or Crippen’s method. In the rest of the cases the initial
stereoisomer atomic coordinates, found by these algorithms are used in the deter-
mination of the atomic coordinates of the generated steroisomers. The main idea
of the algorithm of the determination of the atomic coordinates of the stereoiso-
mer family using the origin sterecisomer coordinates is the following. The initial
stereoisomer is coded by means of the n—dimentional binary vector the i—th com-
ponent of which is the configuration code of i—th stereocentre. Configuration I
corresponds to code 0, configuration II - to 1:

{ 4

2 3

I I
Here 4 is the biggest ligand number. It is characteristic for configuration I that
the sequence of atoms 1-2-3 is carried out counterclockwise if one looks at it from
the atom number 4 position, and clockwise for the configuration II. The establish-
ment of the configuration type is fulfilled with the aid of the certain geometrical

transformations. The code of each stereoisomer is compared with the code of the
original one in order to find the atomic coordinates. The stereocentres with the
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non-coinciding codes have to be inverted. If the stereocentre’s valency is 4, the
ligand pair with the least number of bonds with the other stereocentres has to be
chosen. Afterwards a plane is drawn through the other ligand pair and invertable
stereocenter, reflecting the first pair together with the bonded atoms. This as-
sumes the possibility of the other stereocenters inversion, reasoning the necessity
of the constant revision of the code range from the left to the right until the com-
plete coincidence of the codes of the initial and the consequent stereoisomers is
achieved.

5 The stereoisomer graphic image construction

Special coordinates are calculated for the graphic image construction indepen-
dently of the occurrence of the 3-dimensional space coordinates. Here the usage
of the 2-dimensional coordinates of the original molecular picture is possible. The
fictitious third coordinates are assigned to the stereocentres and their ligands. The
obtained conventional space-model is exposed to the procedure of coding and the
stereocenter inversion as it was described above. In this way we manage to pos-
sess the conventional 3-dimensional coordinates of all the stereocenters and their
ligands, necessary for construction of their graphic image: the first two coordi-
nates are used for the plane depiction, the third ones for the introduction of the
stereobond symbols (if the third coordinate of stereocentre is greater than the
third coordinate of its ligand we use the symbol <« between them, otherwise -
the symbol < ). The final stage includes the coloured stereoisomer display in
the graphic regime using the generally accepted symbols of the stereobonds. The
stereobond symbols are not to be used for the bonds connecting the two stereo-
centers in order to avoid ambiguity and therefore some of the stereocenters are
placed in the separate picture together with the ligands.

6 Conclusion

Thus in the present work a unified approach has been developed, which allows to
solve the following tasks:

a) to compute the Cartesian coordinates of a molecule if its geometric param-
eters and point symmetry group in symbolic form are given;

b) exhaustively to generate and graphically to construct all the non-coincident
stereoisomers;

c) to generate the spatial models of the stereoisomer family using the Cartesian
coordinates of one family member.

The elaborated programs are part of an expert system (RASTR) designed for eluci-
dation of the molecule structure according to its IR; PMR and NMR C-13 spectra.
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They can be used independently for solution of the molecular modelling problem,
for molecular spectra prediction, as well as in the capacity of the components of
the artificial intelligence systems, etc.
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