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The homologous series of structures built out of stacks of benzene rings
is considered. All non-isomorphic cycles of maximal length in corre-
sponding molecular graphs are enumerated. As a consequence of ob-
tained mathematical results the efficacy of IUPAC nomenclature rules
is discussed.

1 Introduction

The pioneering works of Cram and coworkers on synthesis of paracyclophanes’ has
originated great interest in synthetic design of stacking aromatic structures®-%.
The subject of the present paper is a graph theoretical study of a homologous
series of structures built of stacks of benzene rings connected with each other by
equally long polymethylene chains in meta-position (Figure 1). The compounds
corresponding to two initial members of this series have been synthesized®®.

Qur interest in this type of structures is motivated by the following reason. The
TUPAC nomenclature rules’ are not adequate for these bridge polycyclic com-
pounds with several aromatic cycles (below, this fact will be confirmed just for the
fourth member of the series). In fact, there exist several non-isomorphic cycles of
the maximum length in these cases, and the selection between them on the basis
of only the IUPAC rules becomes ambiguous (starting from the fourth member
of the family). Nevertheless the use of additional comments given in® (see also®)
makes it possible to elaborate the unique name.

*Author for correspondence
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Our first attempts to solve this and related problems empirically’® have met some
difficulties. As a result, that initial approach had been transformed into an inter-
esting mathematical problem'!. The description of its solution and the application
of the solution to the producing of the IUPAC names are the main topics of this
paper.

2 The statement of the problem

In order to consider the homologous series of structures given in Figure 1, it is
convenient to represent them using planar graph diagrams. Such diagrams can be
obtained by projecting on a plane according to the rules of central direct linear
perspective!? : projection of the 3D-spatial models is performed along the axis
which connects the centres of all benzene rings of the pile. Such 2D-projections
for the first four members of the series are shown in Figure 2. The polymethylene
chains in these graphs (which are designated by dots, m denotes (CH,),,) later
will be replaced by edges. This contraction operation simplifies the understanding
of the problem without influencing the solution.

Figure 1. Spatial models of the first members of the considered series,

The main goal of the present paper is to solve the enumeration problem for cycles
of maximum length in the mentioned graphs. Proceeding from the diagrams given
in Figure 2, it is easy to give a set-theoretical description of the graphs under
consideration (we recommend' as a standard guide to graph theory). Thus we
shall consider the series of graphs which we shall name n—piles and designate by
the symbol P, . The graphs P, have 6n vertices, these vertices are situated in n
layers, numbered by 1,2,...,n (each layer corresponds to a benzene ring).
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Figure 2. Planar diagrams of graphs which correpsond to the models, depicted in
Figure 1.

The vertices of every layer are designated by a;, b, ¢;, d;, €;, fi, with the subscript
i denoting the number of the layer. As a result, the set of vertices V(F,) of the
graph P, can be written as:

V(Pn) = L“J L;, where L; = {al'sbi'lci:d-heivfi}'

=1

The vertices within each layer are connected by edges

{a,-, b‘-}, {bir Ci}: {C-'v d.}, {du Ei}s {e.-, fl'}v {fh a-'}!

forming a cycle of the length 6. There exist also three edges between every two
neighbouring layers, namely the edges {a;,a:+1}, {ci,cis1}, {€;, i1} for i odd and
edges {bi, b1}, {di,dis1}, {fi, fiy1} for i even. Edges connecting neighbouring lay-
ers will later be called crossings. There are 6n edges inside the layers and 3(n—1)
crossings in the graph P, : altogether the graph has 9n — 3 edges. The diagrams
of several graphs P, supplied with the numbering of vertices are shown in Figure
3a. We now raise the problem to describe all cycles of the maximum length in
graphs P, for n > 2.
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a,

& +3,44,-4,-4
/ i
gal(z):-é, -1,~3,+3

Figure 3. Planar diagrams of graphs with the numbering of vertices (a);one of
the hypohamiltonian cycles in graph P; and it’s code (b).

3 Enumeration of the cycles of maximum length
First consider several simple useful propositions.

3.1 Proposition The graph P, is bipartite.

Proof: Let us represent the set V(F,) as V(P,) = V' U V", where

V' = {ay,c1,e1,b2,dz, fr,03,63,03,...},
Ve = {blldhfllahb!sehbﬂsdﬁl.fﬂs'“}'

It follows from the description of the graph that any of its edges links a certain
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vertex from V' to a certain vertex from V", Now the bipartiteness of the graph
follows immediately from the fact that V' n V" = Q.
It is well-known that all cycles in a bipartite graph have even length.

3.2 Corollary Ewvery cycle in the graph P, has even length.

Before proceeding further it should be reminded that a graph I' is called Hamil-
tonian if there is a simple cycle which passes through all vertices. Such a cycle is
called a Hamiltonian cycle.

3.3 Proposition Graph P, is not Hamilfonian for n > 2.

Proof: Let’s assume to the contrary that there is a Hamiltonian cycle Z in the
graph. Then this cycle passes through all 6 vertices of the layer L, , in particular
through the vertices by, d,, fi. Since these vertices have valency 2, the cycle Z
goes through all the edges of the layer L; . This is a contradiction, because we
have obtained that the simple cycle Z contains a simple subcycle of length 6 (the
subgraph of the graph P, generated by layer L).

3.4 Remark The valency of a vertex v in a graph I' is a number of vertices
adjacent with ». A simple cycle is a connected graph every vertex of which has
valency 2. A simple cycle in a graph is its subgraph which represents a simple
cycle.

3.5 Corollary Each simple eycle in P, has the length which is equal to or less
than 6n — 2.

We shall use further the term “hypohamiltonian cycle” (HC') for every cycle of
the length 6n — 2 in the graph P, . It should be noted that in graph theory the
term "hypohamiltonian cycle” usually designates a cycle of length m — 1 in an
m-vertex nonhamiltonian graph. However, taking into account Corollary 3.2, this
term seems to be adequate for our problem.

Now we are able to prove that HC in the graph P, does exist (in other words,
every cycle of the maximum length is HC) and to describe all such cycles.
Consider every cycle as an ordered circular sequence of vertices. Let X be any set
of vertices. We shall say that cycle Z passes once (twice) through the set X if the
subgraph generated by X and cycle Z have one (two) common connected paths.

3.8 Proposition Let Z be a HC in P,, then Z goes once through four edges of
layers Ly and L, and twice through the edges of layers Ly, Lg,...,Ln_y - namely
one time through one edge, and the other time through three edges.

Proof: Reasoning the same way as in the proof of Proposition 3.3, we can show
that Z does not pass through one vertex of layer L; and through one vertex of layer
L, . This means that Z passes through all the vertices of the layers Ly, L, ..., Ln_1.
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Z is a closed way, which goes through 6n — 2 edges of the graph F, , with one
part of the edges linking vertices within the same layer, and the other part being
crossings. Since two neighbouring layers are linked only by three crossings, Z goes
through two such crossings and totally through 2(n — 1) crossings. Let us fix one
of the vertices of the cycle Z and name it the initial. Let this one be that vertex of
layer L,, which is linked with the layer L, by a crossing. Then the cycle Z makes
an odd number of steps through the layer L, , goes through crossing between the
layers L, and L3 and so on until it reaches the layer L, makes four steps through
it, goes through a crossing between L, and L, ; , makes an odd number of steps
through L, and so on until it returns to layer L; . Thus, the cycle Z goes
through four edges each in the layers L, and L, and twice through an odd number
of edges each in the layers Ly, Ly, ..., Lpey «

As a result, Z goes through an even number of edges in each of the layers

Ly, Ly, ..., Ly, thus totally going through 4(n — 2) edges. Taking into account the
fact that there are no layers where the cycle goes through 6 edges, we conclude,
that Z goes through four edges of each layer Ls, La, ..., Ln_1. Q.E.D.

3.7 Remark If each crossing of the graph P, is replaced by a chain of the same
length %, then - as follows from the proof of the Proposition 3.6 — the structure
of the cycle of maximum length (CM L) will not be changed. Therefore, in order
to {ulfil the goal formulated in the preceding section, it is sufficient to describe all
HC’s in P,.

Proposition 3.6 permits the introduction of a system of encoding for cycles. Let
us consider a diagram of the planar graph P,. In such diagram the system of con-
centric hexagons corresponds to layers Ly, ..., [, with vertices @y, 2s,...2, (where
z € {a,b,¢,d, ¢, f}) being situated in the same "radius”. The layer L, will be called
the external and the layer L, the internal hexagon of the diagram. Examples of
such diagrams for n = 2,3,4 were given above in Figure 3. When the orientation
of the plane has been fixed one can distinguish two opposite (namely positive and
negative) directions of the movement through each of subgraphs L;, 1 <1 < n.
Let plus correspond to the clockwise, minus to the anticlockwise motion.

Let Z be any HC in P,. This cycle passes through two such vertices of layer L,
and through two such vertices of layer L,, both of which are linked with vertices
of the adjacent layers by crossings. These four vertices of Ly and L, will be called
extreme vertices; let & be one of them. Then (as follows from Proposition 3.6)
the movement over the cycle Z, beginning from the extreme vertex z, can be
performed in the following manner: we go from the extreme vertex @ through a
crossing to the next layer, make p; steps through this layer. Then we go through
a crossing to the next layer, there making ps steps, and so on. In the last layer we
make p, steps and then we return through the crossing to the last but one layer
where we make g,_; steps. We proceed in the same manner until we return to the
starting layer, where we make ¢; steps to return to the initial extreme vertex.

As a result, we obtain that the cycle Z can be encoded by the following vector
€2(Z) = (P2, Pas+s Pr1y Pri G2 Gn2; -y §2, @1 ), With the cycle Z being uniquely
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determined by the value of z and the code itself. It should be stressed here
that all the components of the code are integers, and |p,| = || = 4, |nil, || €
{1,3}, |p:| + |g:| =4 for 2 < i <n—1. To make it clearer and to stress its circular
nature we shall sometimes use the following representation of the code:

Pa; P3 .-y Pn-1y Pn
/ /

Qs 92, 93 y--r5 Gnl

3.8 Example Figure 3b depicts the graph Ps , the cycle Z in the graph (bold
lines), and also its code ¢, (Z).
It should be stressed that HC, depicted in Figure 3, can be also encoded in three
other ways, namely relative to vertices e, f5 and ds . All these vertices are situated
either in the external or in the internal layer, and a crossing goes from these vertices
to the adjacent layer. In other words, these three vertices are also extreme; the
corresponding values of the codes are:

Co(Z) = (+1,43,-3,4+4;+1,~1,-3,+4),

Ch(z) o (+3: ”31 -1,-4;+3,+1,-1, "'4))

Cy(Z) = (+1,-1,-3,+4;+1,+3,-3,+4).
The rule observed on the basis of the above example can easily be generalized for
any arbitrary case. Let us fix the extreme vertex z of the external layer, and let
u,v be the extreme vertices of the internal layer, and let the path from z over Z
go through the crossing to the internal layer, firstly through vertex « and then

through vertex v, then the extreme vertices # and v will be said to be opposite
vertices of the cycle.

3.9 Proposition Let Z be HC in the graph P, with 2,y being extreme vertices
in Z of the ezternal layer and u,v being eztreme vertices of the internal layer, z,v
being opposite vertices. Let
C:(Z) = (phPSs ey Prin-lyeiey QZ;QI)A then
Co(Z) = (gn-1,0n-25 s 25 G1; P2, P8y -+es Put, Pr )5
Cu(z) = (_Pn-lw T Pne2y ey P83 TP2 Q1 42y oy —Gn-2y, —Gn-1, _Prl)7
Cy(Z) = (—g2y~Gss 1y =Gn-2s —@n-1, —Pni ~Pn-1s+, —P3 P2, —@1)-

Proof: Let us consider the circular representation of the code C.(Z) with the four
extreme vertices

z = s u
P2 P3  serey Pn-ly Pn
/ /
q1, g2y ey Gne2y n-l

Y= <=
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being denoted by the symbeols @,y,u,v, each supplemented by an arrow which
indicates the proper direction of the movement along the cycle. Now, in order
to prove the desired formula, it is sufficient to take into account the fact that, if
we change the direction of the movement along the cycle, then the signs of the
numbers p; and ¢ also change o the opposite.

Let us now prove the existence of HC' in graph P, .

Let us call the sequence (pa, Pay oy Pnj Gno1, - G2, G1 ) Of integers realizable if there
exists in P, a hypohamiltonian cycle Z and an extreme vertice z of the cycle, such
that C2(Z) = (p2, 3y Pri Gty s G2, @1 )«

3.10 Theorem The sequence (P2, Pay ey Pri Gnety e G2, 1) 18 realizable if and only
if it satisfies the following conditions:

@) pig: € {£1,43} for 2< i <m 1, pa, g € {~4,4},
B) Ipil = |pisa| © sgn (pi) = —sgn (pia), 2<i <n -2,
7) 6= —sgn(p)(4—pil) for2<i<an—1,

5) Pn = A 1-.fPﬂ-l £ {71, +3} . -4 ifq@e {_1=+3}
"TV 4 ifpar € {41, -3 T | 44 ifgue {+1,-3}"

The proof consists of twa parts. The necessity of condition «) follows from Propo-
sition 3.6. The complete proof of necessity of the conditions ) — §)'? is based on
the series of figures in which only three layers L;_i, L, L;y, are depicted. Every
such picture helps us for any given value of one parameter from the code to cut
out all but one formally possible values for another parameter. Similar pictures
(figures) can be used to prove the sufficiency. In this latter case it is necessary
to show that the conditions a) — §) guarantee the absence of obstacles during the
construction of the cycle Z on the way from the external to the inner layers as
well as backwards.

3.11 Theorem If n > 2 then there exist in graph P, ezactly 3 x 2"~? different
HC's.

Proof: Let us calculate the number of sequences which satisfy conditions o) — §).

From the conditions ), ¢) follows that every such sequence is completely defined
by the values ps,ps, ..., Pn-1.

Tt follows from condition «) that the value p, can be selected in 4 ways. It follows
from condition @) that the value p;,2 < ¢ < n — 1, can be selected in 2 ways
if the value p;,_; has been chosen. Thus one gets a total of 4 - 2"~ sequences
which satisfy conditions @) — §). These and only these sequences are realizable in
accordance with Theorem 3.10. In this case every sequence can be realized starting
from one of the 6 vertices of valency 3, which lie on the external and the internal
layers. Finally, every HC can be encoded in 4 ways, according to Proposition
3.9, depending on the choice of the extreme vertex. Therefore, there are totally
6-4-27%/4 = 3.2 different hypohamiltonian eycles in graph P.. Q.E.D.
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Thus, we have shown that if » > 2 then there exist hypohamiltonian cycles in P,
and their number grows exponentially with increase n. The next step is be able to
calculate the number of pairwise non-isomorphic cycles, t.e. the cycles of different
location in P,.

4 Application of Burnside’s Lemma

Let us designate the set of all hypohamiltonian cycles in graph P, as §,. Above it
has been proved that |2,| = 3-2"~2. However, not all of these cycles are essentially
different. Thus, if » = 2 then there are 3 cycles in graph P, which are similarly
located in the graph though they pass over different vertex subsets.

More rigorously, we can say that hypohamiltonian cycles Z;, and Z, are isomor-
phic in graph P, , if there exists such an automorphism g of graph P, which
transforms Z; into Z; . Therefore, two cycles are essentially different in P, if
and only if they are non-isomorphic. The problem which arises now is to cal-
culate the number of pairwise non-isomorphic HC's. This problem can be solved
by means of permutation group theory.

In accordance with'!, a permutation group will be considered as a pair (G, N),
with G being an abstract group, acting on the set N. The action of a permutation
g € G on the element z € N is designated by z¢ . An element ¢ € N is called fixed
by the permutation g if z¢ = z. We shall use Burnside’s Lemma (or, more correctly,
the Cauchy-Frobenius-Burnside Lemma; see'®1®). It states that the number O(G)
of orbits of the permutation group (G, N) can be calculated by the formula

o(6) = llﬁ ¥ x(9),
g€G

where x(g) is the character of a permutation g, i.e. the number of elements from
N which are fixed by the permutation g.

Let Aut(P,) be the group of automorphisms of the graph P, . Then G = Aut(F,)
can be considered as a permutation group acting not only on the set of vertices
V(F,), but on a new set Q,, of all the HC's in P, . We shall call the action of the
group G on 2, the induced action of the group G and designate it by G. Then
two cycles Z; and Z, are isomorphic if Z; = 2 for a suitable permutation g € G,
i.e. if these cycles belong to the same orbit of the induced group G.

First let us describe the group Aut(P,). It is convenient now to consider addition-
ally the graph Py as the simple cycle with six vertices. Designate the operation of
direct product of the group by x (see, for example!'?).

4,1 Proposition If n > 1 then Aut(P,) = S;3 x S;.

Thke proof is made by the method of mathematical induction. If n = 1 then the
proposition is true since Sy x Sy = Dg , where Dg is the dihedral group of order
12 (we use the notation for abstract groups). If n = 2, then the correctness of
the proposition is easily seen directly. For the induction step, we suppose that
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the proposition is proved for n — 1 and now we are proving it for n + 1 (see for
details®!).

4.2 Corollary G = Aui(P,) = (gn, hn, ™), where

= (al bl < di ey f1 [+%] 61 (%] d; €2 fz )

e dy €y Hha b e dy €, faaz by ..

= (411 by dyoe fl ag by ¢y d; e fz
a herdierbyay fresdycaby ..)’

s bheadeafia b ¢ d e fi. . abicidienfn
=
nbpcodnen fatuibnoi Cacrdicr €noy faorcccar b dioey fi

if n= 2k and

G = ay by ¢y dy ey ,fl a; by e dy e fo ~--aﬂbncndnen.fn
" dnen fon@nbrncndat€nt faci Guo1bnan1...di &g fl a b o

ifn=2k+1.

In order to prove the corollary one should show first that g,,h,,7. are really
automorphisms of the graph P,. After that it is easy to see that g., k. generate
the symmetric group S; , and that 7, is permutable with g, , h, .

Now it is possible to calculate the number of non-isomorphic HC's. For this
purpose, as was mentioned above, Burnside’s Lemma will be used not for the
initial group (in our case for the group 53 x §,), but for a new induced permutation
group obtained in two steps: firstly an element A from the abstract dihedral group
is considered, then the action of A on the set of vertices of one of the graphs, and
finally the action of A on the set of hypohamiltonian cycles of the graph under
study. In these cases the induced and doubly induced permutation is designated
by A, and A, respectively. Hence, we use the special method of application of
Burnside’s Lemma which was described in details in'®.

While calculating the character of the induced action on {2, we shall take into
account that representatives of the same class of conjugate elements have the
same character value during any inducing, and that a permutation A € G will
transform a cycle Z from Q, into itself if and only if A, is an automorphism of
Z. We recall that G = §3 x 8, . There are three classes of conjugate elements
in a group S3 : one containing the identity permutation, the other containing the
three permutations of the order 2, and the third containing the two permutations
of the order 3.

Let ¢, be the identity permutation and ga,hn, 7o~ be permutations of the orders
3, 2 and 2 respectively, as defined above. The numbers of the classes of conjugate
elements in the group G, their representatives and their cardinalities are given in
Table 1.
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Table 1: Characters of permutations from (G,Q,) :

N | representative | cardinality | character of induced action if n=
2| 2kk>1 2k+1

1 €n 1 313.2%2 328k

2 gn 2 0 0 0

3 hn 3 1 0 0

4 Tn 1 3 3.21 0

5 Gn " Tn 2 0 0 0

6 L 3 1| 2%t ol

First let us explain the values given in Table 1 for n = 2. In this case there are
only three cycles in the graph Pp:

Zyy = (an,bi,e1,d, 61,63, dy, 02,09, a5),
Zys = (e1, fr,a1,b1,61,62,b9, 0z, fo,€3),
Zas = (e1,d,e1, f1,00,82, fo,€2,d2,c2).

The identity permutation e, , evidently, transforms each of the three eycles into
itself, so that x(€) = 3. Since the permutation g, is of order 3, it cannot be an
autormorphism of the cycle of length 10, so that x(g;) = 0. The permutation
h, fixes vertices dy and d; , so it is easy to see that hy transforms Z;, into itself
and cycles Z;, and Z, 3 into each other, so that X(Eg) = 1. The permutation
transposes all the corresponding vertices of the internal and the external layers.
Therefore 7, transforms each of the three cycles into itself, that is x(7;) = 3.

For the same reason x(; - 7z) = x(7) and x(Rz - %) = x(h2). Now it is possible
to apply Burnside’s Lemma directly for the calculation of the number O(2) of
pairwise non-isomorphic HC's.

0(2) = 1/12(x(&) + 2x(@) + 3x(ks) + x(72) + 2x(72 - Fa)+

3x(hy %)) =1/12(3+0+3+3+0+3) =12/12=1.

Thus we have proved rigorously the evident fact that all three cycles are isomor-
pically embedded in graph P, , that is they are in the same orbit of the induced
action of the group Aut(P,). The calculations given above can be considered as a
preliminary illustration of Burnside’s Lemma. For an arbitrary n, it is impossible
to adhere to the above scheme completely since the cardinality of the set {2, in-
creases exponentially with increase of n. Here, in order to calculate the character
of the induced permutations, one has to consider the information about the HC’s
codes,

It turns out that a permutation action on the cycle changes, generally speaking,
the code of the cycle (recall that every cycle can be encoded in four ways). Then,
for each permutation A, from G, we can consider how the codes of cycles change
under the action of this permutation. We have two alternatives: either A, has
no invariant cycles or it is possible to describe the structure of the cades of such
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cycles. In the latter case the formula for x(X,) can be easily obtained from such
a description . The detailed evidence of all values given in Table 1 can be found
in'!, here it is omitted since it is routine. Now we can apply Burnside’s Lemma
and calculate the number of non-isomorhic cycles.

4.3 Theorem Let O(n), n > 3, be the number of hypohamiltonian cyeles in graph
P, which are pairwise non-isomorphic under the action of the group Aut(P,). Then

_f 2%3(2%2 1), ifn =2k,
Gl { 252241 1), ifn =2k +1.

Proof: Let n = 2k, %k > 1. Then

O(n)= 1/12-(3-2%-*4+3.2+1 4 3.001) =
1/12-3 2571 (2821 4 1) = 23 (282 4 1),

Let n =2k + 1,k > 1. Then
O(n) =1/12-(3-2% 1 4+3.2F) =1/12. 8. 2%(2F1 4 1) = 2%-2(2%1 4+ 1),

The theorem has been proved.

5 A sketch of the extract from the IUPAC rules

Knowledge of all the cycles of maximum length in a chemical molecular graph I’
makes it possible to find the “name” of I' according to the IUPAC nomenclature
rules. In the next section we shall consider from this point of view the graphs F,
being investigated. In order to make our exposition self-contained, let us consider a
small portion of the IUPAC rules directly connected with these graphs. We treat
TUPAC rules by means of mathematical language, trying to find more rigorous
formulations,

Let us consider a graph [' = (V, E) without loops and multiple edges and assume
I' be biconnected (this means that I' is connected and it remains connected after
deletion of any vertex). Let valencies of all vertices are equal to 2 or 3.

Let Z be a simple cycle in I'. We shall call graph T' chain-decompozable with
respect to Z if the set E\Z can be decomposed into disjoint union P, U ... Py of
chains, such that different chains have no common vertices and the end-points of
every chain belong to the vertex set of Z. In what follows we shall consider only
graphs which are chain-decomposable with respect to every cycle of maximum
length. If cycle Z is fixed, then every chain from decomposition of E\Z will be
called a bridge. All vertices of a bridge which are distinct from its end-points are
called internal (i.e. internal vertices of a bridge have valency 2 in a graph T').

Let Z be a cycle of length ! in ' and P; be one of its bridges with the end-points
z;,%- Then Z can be decomposed into 2 chains with common end-points z; and
y;. Let u; + 1 and v; + 1,u; + v; + 2 = {,u; > v;, be the lengths of these chains.
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The cycle Z is said to be divided as symmetrically as possible by the bridge
P, if u; — v; takes the minimal value with respect to all bridges of Z.

Let P; be a fixed bridge of cycle Z. The numbering of vertices of Z by means of
elements of the set {1,2,...,1} is called admissible with respect to P;, if edge-set
of Z coincides with {{1,2,},{2,3},...,{l - 1,1},{1,1}} and number 1 is assigned
to an end-point z; or 3 of F;. It is obvious that every cycle has exactly four
admissible numberings with respect to its bridge F;.

Now let I be an n—vertex graph, let ¢ be the value of its cyclomatic number. Let
us fix the cycle Z, its bridge P, and an admissible numbering of Z with respect to
Py. Then one can produce the following code for graph T':

(5.1) clug.vo.by b3 55752, b2eg?Pe-a]n,

where ug > vo > bp > b = by > ... > b3, b; being the number of internal
vertices in a bridge P; and aj, B; being the numbers of end-points of the bridge
Pj,a; < B, 1 < j < c—2. Let us assume that for ¢ > j the equality b = b; implies
that a; < aj. In addition, let us assume that if ¢ > 3, then vertices with the
numbers 1,2,...,%0 + 2 belong to the same chain of Z in the decomposition with
respect to the bridge Py. Having all these assumptions the following proposition
can be proved easily.

5.2. Proposition For a given graph I let us consider all cycles of maximum length
l and for a given cycle Z all bridges which divide Z as symmetrically as possible.
For every such cycle and bridge let us consider all admissible numberings and all
orderings of bridges and let us produce all codes (5.1) which satisfy the above
assumptions. Among all these codes let us select that one for which the vector

(=byy=bsy..y—bez o, B1, 02, B2y -y Oz, Bem2)
is lexicographically minimal. Then such code will be established uniquely and it
determines graph I up to isomorphism.
In what follows, the code (5.1) uniquely determined for a given graph I' according
to Proposition 5.2, will be called the canonical IUPAC code.

In conclusion of this section, we stress that the above definition of canonical [UPAC
code can be treated as “mathematical reconstruction” of IUPAC Rule A-32 from?
for the coding of polycyclic hydrocarbon system. The additional comments® have
been also taken into account. According to these rules the bridge Py is called
the main bridge. However IUPAC rules are formulated in more sophisticated
manner which sometimes can not be uniquely interpreted, see section 7 for details.

6 Analysis of applicability of nomenclature rules
to the objects of the series under study

We shall now apply the IUPAC rules to the initial members of the homologous
series corresponding to the graphs of the series P,,n > 2.
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First we shall depict all non-isomorphic HC’s for several small values of n. We
know that O(2) = 1. Using Theorem 4.3, we obtain that

0(3) =1,0(4) = 2,0(5) = 3.

Considering the problem of constructive enumeration of non-isomorphic HC’s, we
must stress that the encoding of the cycles introduced in section 3 is redundant.
Indeed, it follows from Theorem 3.10 that a half of the code suffices, for example the
values pa, ..., pa_1. Moreover, taking into account Proposition 3.9 and condition (¥)
one can always consider that |p;| = 1. Then, taking into consideration condition
(), one has to consider only the signs of all values p,, ..., p.—1 of the code (because
[pit1] can be retrieved from the value p; and the sign of p;;1). Let us agree to
use the notations P for plus and M for minus. Then all different HC’s in P,
which pass over the same extreme vertex are encoded by words of the length n —2,
namely by sequences of the symbols P and M. Under such agreement one HC
can have several codes, which correspond to various isomorphic HC's of the same
orbit under the group (G, 2,).

In order to distinguish a cycle in the diagram of the graph, we shall agree to
consider that cycle dissects the plane of the diagram into two parts, an internal
and an external part. The internal part will always be shaded. Figure 4 depicts
all non-isomorphic cycles for n = 2,3,4,5 and also gives additional information,
which will be mentioned later. It should be stressed, that polymethylene chains
are again shown in this diagram. Let us consider the third member of the series
{n = 4), which contains two non-isomorphic HC’s. If we proceed according to
the JTUPAC rules, then we must prefer one of two cycles. Both HC’s have three
pentamethylene bridges (with 5 internal vertices). In HC (a) these three bridges
bisect the cycle in the same way and less symmetrically in comparison with HC
(b), where one of the bridges bisects the cycle more symmetrically than the other
two. Thus cycle (b) will be selected for producing canonical IUPAC code.

A more difficult situation can be observed for the fourth member of the series
(n = 5). Out of three non-isomorphic HC’s only one (c) can be rejected due to
the fact that it is divided less symmetrically by it’s four pentamethylene bridges.
The other two HC's (a) and (b) have the same degree of symmetrical subdivision
of HC the only difference being, that in () such a subdivision of HC is performed
only by one out of the four pentamethylene bridges, but in {a) by two.

On our opinion in this case it is difficult to produce unique name, according only
to the [IUPAC rules (without additional comments). Here the same fourth member
of homologous series can be called by one of the two following ways:

1. tridecacyclo[41.25.5,5%00,51737 5184 125.20 | 58,62 .52 (9,42 (110,45 (/16,35 19,36, 151 .64)

nonacontane.

2 tridecacyclo[41 ‘25‘5-59.19.510.68.512.52.117,21'] 50.5!'02.35‘08,27.01l.28_031;67_041,60.041,51]
nonacontane.



= 1A =

Both in the first and in the second name the verbal parts coincide as do the first
three numbers in brackets showing that the basic bicycle in both names is the
same. However, using the mathematical interpretation of the IUPAC rules and of
the additional comments® (see Section 5), we obtain that canonical [UPAC code
coincides with the first one (we stress that according to Section 5 IUPAC canonical
codes are given in a simplified manner: parts of the codes after the brackets which
show double bouds in a molecular graph are here omitted).

<
o

tn. J

MMM(peP) PMM<M®  (Mpo=PPM)

(519 [s;,sjr
MPM (PMP)
Figure 4. All non-isomorphic hypohamiltonian cycles in graphs F,, n < 2 < 5,

with it’s simplified codes.

7 Discussion

First we discuss problems related to improvement of the IUPAC nomenclature
rules as well as to the facilitation of their use.

On our opinion, the IUPAC nomenclature rules can be formulated on two dif-
ferent levels: empirical and rigorous. We subtend as empirical the level actually
presented in”: the rules are formulated without use of mathematical language; all
obscurities are cleared up by means of examples. This level is most convenient
for the majority of chemists because it is based on a system of notions which are
well-known in chemistry. However, sometimes the empirical level yields misun-
derstandings, ambiguities, gaps in formulation of rules, and even mistakes (see
numerous examples in®).
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In the contrast, the rigorous level must be completely based on mathematical
language, especially on the notions and results of graph and set theory. We treat
the sketch in Section 5 as one of possible preliminary versions for a more rigorous
description of the extract from the IUPAC rules.

The rigorous level is closely related to a general tendency of computer-assisted
treatment of chemical information, see, e.g.'® In particular, some computer pro-
grams for the determination of IUPAC names were elaborated'®®.

The description of program POLCYC in® gives a nice illustration of all problems
being discussed. Actually, every computer program is based on a certain rigorous
interpretation of the IUPAC rules. By this reason G. and Ch. Riicker, the authors
of POLCYC, were obliged to introduce a big amount of precise formulations: a
part in evident form is given in ?; another more complicated part, related to the
hierarchy of secondary bridges, was only mentioned.

The beginning of intensive computer-assistant activity in IUPAC nomenclature
will also imply some new problems in frames of theoretical computer science. The
elaboration of effective (=non-exponential time) algorithms for finding of canonical
IUPAC code seems to be the most important. The use of backtrack-procedures and
of the isomorph rejection (in the sense of **) must be very helpful. We hope that
the theoretical results presented in this paper can be used for the verification and
estimation of efficacy of computer programs concerned with enumeration of cycles
in chemical graphs as well as with the automatic naming of chemical compounds
according to the IUPAC rules.

In conclusion, we want to stress that at present the more general problem became
topical: what will be the future of the system for chemical nomenclature as a
whole?

The notion of a canonical numeration of a graph based on the use of its ad-
jacency matrix was elaborated in mathematics?’'*? and mathematical chemistry®.
The use of this notion makes it possible to define a canonical code for any chemical
graph in a unified and non-sophisticated way. A rigorous non-heuristic algorithm
for producing such codes can be elaborated taking into account the results of?*. A
comparison of the different approaches to the coding of chemical graphs can not
be done in frames of our exposition. An interesting discussion of this question can
be found, e.g., in'5.

Finally, we shall draw attention to some other possible applications of our math-
ematical results.

We emphasize that, as follows from Proposition 4.1, all the automorphisms of
the graphs in the series P, have a natural geometric interpretation. They are
generated by the symmetries (either rotations or reflections) of the 3D-spatial
figures which correspond to the graph. This implies an opportunity for a more
exact classification of HC's as the orbits of some subgroups of the groups Aut(P,),
in particular as the orbit of the subgroup of index 2, generated by all rotations
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of corresponding figures. Such classification can be used to detect enantiomeric
structures, obtained from P, by means of substitution. However, it seems more
reasonable to use directly Polya’s theory instead of Burnside’s Lemma (see for
details®®). An elementary introduction to Polya’s theory can be found, for example,
in'6.

Acknowledgments

The authors wish to express their sincere gratitude to S. S. Tratch for help in
setting up the problem and eliminating misunderstanding between chemists and a
mathematician. We thank I. A. FaradzZev for useful remarks on the mathematical
parts of the text. We also thank L. V. Epishina, L. I. Suvorova, T. B. Markova
for fruitful cooperation.

A preliminary version of the paper was carefully considered by A. Dreiding, B. Mc-
Kay and Ch. Riicker. We are obliged to them for numerous improvements and
useful suggestings. Especially, we are much grateful to Ch. Riicker for very fruitful
discussion of the IUPAC rules. The help of A. Kerber and Mrs. E. Rettner in
preparing the final version is also acknowledged.

References

1. Cram,D.J.; Steinberg,H. "Macro Rings. Preparation and Spectra of the
Paracyclophanes”. J.Am.Chem.Soc. 1951, 73, 5691-5704.

2. Kim,K.; Collman,].P.; Ibers,J.A. "Structure of the Dicobalt ”Face to Face”
Porphyrin with Two Four-Atom Amide Bridges: CO, (FT'F4) - CH;0H -
1.6 CH,Cl;”. J.Am.Chem.Soc.1988, 110, 4242-4246.

3. Sako,K.; Hirakawa,T.; Fujimoto,N.; Shinmyozu,T.; Inazu,T.; Horimoto,H.
?Conformational Analysis of 12,12,21,21- Tetradeuterio-1,4-Dioxa-[4.3.3]
(1,3,5)Cyclophane”. Tetr.Let. 1988,29,6275-6278.

4. Sendhoff,N.; Kissener,W.; Végtle,F.; Franken,S.; Puff,H. "Drei- und Sechs-
fach Verbriickte Phenyloge Cyclophane”. Chem.Ber.1988, 121,2179-2185.

5. Hubert,A.J.”Multimacrocyclic Compounds. Part 1. Novel Triply Bridged
Dibenzenoid Cage Compounds”. J.Chem.Soc.C 1967,6-10.

6. Hubert,A.J. "Multimacrocyclic Compounds. Part 3. Attempts to Prepare
Benzenoid Cage Compounds from Novel Polyacetylenes”. J.Chem.Soc.C.1967,
13-14.

7. "IUPAC Nomenclature of Organic Chemistry”. Butterworths: London,1971;
2nd ed.



10.

11.

12.

13.
14,
15.

16.

i

18.

19.

20.

21.

= 150 =

. Chem. Abstr., 1988 Index Guide, Appendix IV, Paragraph 155(d), 1360-

1361.

. Riicker,G.; Riicker,Ch.” Nomenelature, of Organic Polycycles out of the Com-

puter -How to Escape the Jungle of the Secondary Bridges”. Chimia, 1990,
44, 116-120.

Lebedev,0.V.; Epishina,L.V.; Pivina,T.S.; Suvorova,L.L.; Markova,T.B.

”About Insufficiency of IUPAC’s Rules for Unique Numeration of Some
Bridge Polycyclic Compounds and Configuration's Description of Their Chi-
ral Derivatives”. (In print, Russian).

Klin,M.H.; Lebedev,0.V.; Pivina,T.S. "Enumeration of Maximum Length
Cycles in Graphs Corresponding to Structural Formulas of One Homolog-
ical Series of Polycyclic Compounds of Carcass Type”. In "Vychislitelnye
Sistemy, 130”. S.B.of Academy of Sciences of USSR: Novosibirsk,1989,39-
68.(Russian}.

Raushenbah,B.V. "Space Constructions in Painting”. Nauka: Moscow,1980
(Russian).

Harary,F. "Graph Theory”. Addison-Wesley: Reading, 1969.
Wielandt,H. "Finite Permutation Groups”. Academic Press: New York,1964.

Neumann,P.”A Lemma that is not Burnside’s”. Math.Scientist. 1979,4,133-
141.

Klin,M.Ch.;Péschel,K ;Rosenbaum,K. ” Angewandte Algebra. Einfiihrung
in Gruppentheoretisch-kombinatorische Methoden”. VEB Deutscher Verlag
der Wissenschaften: Berlin,1988.

Hall,M.” The Theory of Groups”. McMillan Co.: New York,1959.

Piottukh-Peletsky, V.N.; Scorobogatov, V.A. “The development of modern
chemical nomenclature”. Chem. Int. 1987, 9(4), 139-142.

Conrow, K. “Computer generation of Baeyer system names of saturated
bridged bicyclic, tricyclic and tetracyclic hydrocarbons”. J. Chem. Doc.
1966, 6(4), 206-213.

Fillmore, J.P.; Williamson, S.G. “On backtraking: a combinatorial descrip-
tion of the algorithm”. SIAM J. Comput. 1974, 3(1), 41-55.

Arlazarov, V.L.; Zuev, L1; Vskov, A.V_; Faradiev, .A. “An algorithm for
the reduction of finite undirected graphs to a canonical form”; Zhurnal Vy-
chisl. Math. i Math. Phys. 1974, 14, 737-743. (In Russian).



22.

23.

24.

25.

- X5l =

Weisfeiler, B. (editor) “On construction and identification of graphs”™. Lect.
Notes in Math. 1976, 558,

Randié, M. “On discerning symmetry properties of graphs”. Chem. Phys.
Letters 1976 42(2), 283-287.

Luks, E.M. “Isomorphism of graphs of bounded valence can be tested in
polynomial time”. J. Comp. Sys. Sci. 1982 (25), 42-65.

Zefirov,N.S.,Tratch,S.S.,Chizhov,0.5.” Cage and Polycyclic Compounds Mo-
lecular Design on the Basis of Isomorphic Substitution Principle. Results of
Science and Technics, Organic Chemistry”. VINITI:Moscow,1979; Vol.3 (In
Russian).



