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Abstract:

The importance of the Thomas-Fermi (TF) theory in the calculation of informational entropies for
neutral atoms is re-examined with respect to a recent work of Gadré. The present study, using a
modified Thomas-Fermi-Amaldi density functional (TFA) with a trial density function, brings out
interesting features about information entropies: the TF theory leads to entropies which incorporate
N In N linearly, for neutral atoms. Moreover, with the TFA functional it is possible to obtain
information entropies, also for ionic species, since each atom/ion is characterized through the

optimized parameters of the electronic density.
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1.  INTRODUCTION

The Density Functional Theory (DFT) has some advantages in the quantum theory of atoms,
molecules and solid state /1-6/, resulting from the one-particle picture of many body systems, and
it simplifies computational problems. Usually this approximate statistical theory is a tempting
alternative to the exact quantum theory either when the accuracy of the latter is not necessary, or
when the labor involved is not completely justified. The simplest and basic formulation of DFT is
embedied in the Thomas-Fermi (TF) model /7-9/, since the kinetic energy is approximated by that
corresponding to a free electron gas (homogeneous system) and only coulombic interactions are
including among electron and nuclei /10/ . This model is quantitatively described by an ordinary
non-linear differential equation of the second order, which has a universal solution for all neutral
atoms. For positive ions the solution is less favorable because for these, the TF equation does not
posses a universal solution, and has to be solved separately for each degree of ionization of each
atom /1-3/, chiefly because this formalism involves the electrostatic-self interaction of the
electrons /11/. From the universal TF atomic solution, which is obtained only in a numerical
form /9,12,13/ important physical properties can be computed, such as diamagnetic
susceptibilities, electronic potential and the electron density within the atom. A serious
shortcoming of the TF theory lies in the fact that it leads to a radial electron density, which
decreases as the inverse fourth power of the distance from the nucleus /6/ , whereas the Hartree
approximation, its quantum mechanical equivalent /14/ gives an exponential decrease. This failure
can be avoided by choosing a trial electron parametric function for the density with an adequate
dependence on the distance /15-17/. The parameters are determined from different variational
principles /15,18/ subjected to subsidiary constrains. Furthermore, these procedures are
equivalent to solve the TF differential equation in an analytical form.

Several attempts have been made /19-21/ to verify the efficiency of introducing the self-
interaction correction, proposed by Amaldi /22/ in the TF density functional. Within this context
some integrated properties like atomic diamagnetic susceptibilities /18-21,24,25/, interaction

energies between noble gas atoms /25,26/, etc., were calculated.
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Gadré /27/ computed the information entropy for neutral atoms within the Thomas-Fermi
Theory, but using the numerical solution of the TF equation.

The purpose of this work is to extend the calculation of the information entropy not only to
neutral atoms, but also for their isoelectronic series, by applying our particular TF-Amaldi

modified density functional together with an appropriate trial density function.

II. THEORY
THOMAS-FERMI-AMALDI DENSITY FUNCTIONAL

The atomic total energy in the Thomas-Fermi (TF) functional and in the one modified by the
correction of self-interaction as proposed by Amaldi /22/ are given in the following expressions
(hereinafter we will use atomic units):

Efp=2. mzf P03 dv +f p(H)Vn dv + pEREHdy dv.

Ir -1l )
Bipa =2 snzf P dv +I p@ Vi dv + o} [| DAY dv: @

p being the electron charge density in the atom, r the distance from the nucleus, dv = 4nr?, N is
the number of electrons and Vy the electron -nucleus interaction, which in an atom with nuclear
charge Z is (- Z /). The first term of Eq.(1) and Eq.(2) represents the kinetic energy of the
free electron gas, the second one the interaction energy of the electron gas with the nucleus and the
third one is the electron-electron interaction. In the last term of Eq.(1), each electron interacts not
only with the other ones, but also with itself. This spurius interaction is removed in the last term of
Eq.(2), by using the Thomas-Fermi-Amaldi correction, ( N - 1 /N ) which appears as a simple
factor. Obviously the main quantity is the electron density, p, that may be determined from the

numerical solution of the TF equation /7-9/,which is written in terms of the screening function ¢(x)

° T = 032 x1R ®
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where
x=r/a; a=0.8853 ap Z-13 @

and ag = Bohr radius. In the framework of TF theory p is related to ¢ by

= 4 ﬂza3 (%)J'Q ®

It is of considerable importance to point out here that p, (Eq.5), obtained by solving the TF
equation , Eq.(3), is the same that is possible to obtain by minimizing the energy density
functional, ETr or ETEa, regarding the variations in the density p, at the same time it is subjected

to the normalization condition

jP(!)dV =N (6)

INFORMATION ENTROPY IN DENSITY FUNCTIONALS

The development of information theory and entropy has been traced from the time of
Boltzman to the present /28/. Information-theoretic concepts have been employed in recent years
for synthesis and analysis of electron densities of atoms and molecules /27-29/ . Many measures
of information-theoretical entropy of a continuous probability distribution have been proposed, the
most widely used is the Shannon entropy /30,31/. Using the Shannon information entropy for

an absolutely continuous distribution with a probability p(r):
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Sp=- jp(r)ln p(r)dr ()]

The density p(r) is normalized to the number of electrons N in the system (Eq.(6)).
Gadré {27/ computed S, for neutral atoms within the Thomas-Fermi theory, since the electron
density p is the basic variable in the density functional formalism. By introducing p of Eq. (5)

into the expression of the entropy (Eq.(7)) he obtained

Sp(N)=-NJ‘¢3-’2 x1/2 (In K.+%ln¢-3§ln x) dx (8
; zZ 3 :
with K= , and integrating:
41 ald
SpG (N) =N(5.59-21n N) &)

He used the universal solution ¢(x) of the TF equation for neutral atoms, Eq.(3). However
as it has been already pointed out, this ¢(x) falls off too slowly as the distance from the nucleus
increases. It is possible to eliminate this " too big" feature of an atom by choosing and electron
density with an adequate dependence on the distance and by using a2 minimum energy criterion for
the energy density functional. In this work we suggest the Jensen function which has been widely

used /18-21/.

p =% i—; (1+ex)3 1o

with

1/2
x=zlfﬁ(%) i wa ke 5 (11
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¢ and A are variational parameters obtainable from the minimization of the energy density

functionals, Egs.(1) and (2), while Ly, is a polynomial in c. Integrating S, in the coordinate space:
Spy=- f py(0) In py(r) dF 1)

By replacing py, (Eq.(12)), into the latter expression of S, with x from Eq.(11):

oo

S (N)=-% x2 &% (14¢x)? In py dx (3)

[+]

we call

E;j=x2e*(l +cx)> and

o

Sp;(N)=-2Ll;B[J'E](In N+InZ+3lnk-1In B)dx +
o

+J'E|(fx -3Inx + 3In (1 + cx))dx] (14)
o
With B= 16nL, and Lo =1 + 9c+ 36c2+ 60c3 (15)

For neutral atoms, N = Z, Eq.(14) takes the particular expression:

o0

N
Sps (N)=-2—Lrj[!e,(zln N+3lnA-In B)dx +
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o

+J-E](»x -3lnx +3n (L + cx))dx] (16)
[

In the case of ETF it is possible to obtain universal values for ¢ and A. In the case of ETpa
the minimization gives a particular set of (c,\) for each element (neutral atom or ion).also for those
ongs belonging to the same isoelectronic series. So, it is possible to calculate the entropy not only
for neutral atoms, but also for the corresponding ions, via the general expression given by

Eq.(14), which can be fairly well represented by the form
Sp (N) = aN + B NInN an

So, one special case of the STgp is the Stg, in which N =Z,with ¢ =0.265 and
X, =1091. By integrating with the Simpson's Rule, it is obtained convergence for x =30, with

1000 intervals and the final result is:

Sp3(N) = N(5.087 - 2In N) (18)

I1I. RESULTS AND CONCLUSIONS

‘We have chosen a set of 40 atoms and 16 singly and doubly charged ions with a noble gas
electronic structure. In previous papers /20,21,23/ we minimized the TF and TFA energy density
functionals, associated with the Jensen function, Eq.(11). Thus, for TF formalism we have
obtained the universal parameters ¢ =0.265 and A = 10.91. For the TFA energy functional there
is a set of (c,A) values for each atomic species /23/. With that choice of the parameters we have

used the optimum p to compute the TF, and TFA information entropies, in Eq.(14).and Eq.(16).
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In Table I we present the TF and TFA entropies for neutral atoms, Str and STra with the
optimum {c,A) values /20,21/, while identical quantities for ions are given /23/in Table II. In
Table I for the sake of comparison we also display the values of Gadré entropies, Strg, for
neutral atoms. In Figure 1 we analyze the behaviour of the S1gy as a function of N.

From the Figure and from the Tables we can observe a particular feature of Stpg with N.
Owing to the fact that the TFA screening function (or the electron density} is more "compact’,
since the Amaldi correction leads to a contraction of the electron cloud, the respective entropy is
smaller than the TF one. Furthermore, we obtain a family of curves Sj, with i= 1+,2%,1-2-. 8, is
correlated with neutral atoms, Sy* and S;+ represent the single and double charged positive ions,
while S1- and 87 show the behaviour of single and double charged negative ions. For the same
value of N it is possible to obtain different entropies within each isoelectronic serie. This is one of
the advantages of this TFA functional, since each atomic species is characterized for the optimum
(c,A) set, so it is applicable to neutral atoms, their anions and cations.

As regards ST, the expression en Eq.(18) is similar to that one obtained by Gadré, SpG,
Eq.(10}, /27/. In our formalism Stg, Eq.(16), is obtained as a particular case of Stpa, Eq.(14),
when N = Z, (neutral atoms) and (c,A) are the abovementioned universal parameters. As it has
been already pointed out by Gadré, the TF theory leads to entropy which incorporates N In N
linearly and it brings out an interesting feature of TF information entropy. Moreover, our STf is
smaller than SpG, since our py has an adequate exponential dependence on the distance.

These improvements over the TF theory are also the results of using the modified TFA
density functional with an appropriate trial density function, which let to avoid the shortcomings
owing to the non-realistic expansive TF electronic density.

As far isoelectronic series are concerned Gadré et. ai . /31/ have presented values for the
respective information entropies, but using in Eq.(7) near-Hartree-Fock atomic densities
(NHF) /32/. In Ref, /31/ it is observed for Be(ls) and Ne(ls) isoelectronic series, that Sp
diminishes with increasing Z, but it is not possible to infer any other general trend for all the
negative and positive ions. We have obtained the same characteristic without taking recourse on
the particular NHF density for each neutral atom or ion, since the more concentrate the density is,

the lower the entropy.
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Our density functional formalism allow us to calculate the respective information entropies,
but starting from the same trial density function (Eq.(11)) and using the appropriate (c,A) optimum
parameters.

Moreover, we are able to obtain a numerical adjustment of the information entropies shown
in Figure 1, using a polynomial in N. By this way, it is possible to interpolate for every N, in each
curve, between 0 to 100.

Tt is important to highlight that our "good" entropies are built from trial density functions,
which minimize the energy functional, or when the "information" of the energy is maximal.

To appreciate properly the abovementioned differences, we consider interesting to take into
account that a considerable computational effort is involved in calculating the near-Hartree-Fock
wave functions, while the present proposed Density Functional -Entropy formalism is direct,

simple and fast.
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TABLE1

At N STEG STE STFA c A

Li 3 10.178 8.645 6.983 0.379 15.030
Be 4 11.270 9.226 T7.513 0.351 14.014
B 5 11.856 9.301 7.543 0.335 13.424
C 6 12.039 8.973 7.181 0.324 13.023
N T 11.887 8.310 6.492 0316 12732
(0] 8 11.449 7.361 5.545 0.309 12.484
F 9 10.760 6.161 4.305 0.305  12.335
Ne 10 9.848 4.738 2.874 0.301 12.190
Na 11 8.736 3.115 1.225 0.298 2.083
Mg 12 7.442 1.310 -0.980 0.295 11.977
Al 13 5.981 -0.662 -2.576 0.293 11,904
Si 14 4.336 -2.788 -3.853 0.291 11.883
P 15 2.608 -5.057 -4.937 0289 11763
S 16 0.717 -7.459 -9.415 0.288 11.725
C 17 -1.299 -9.986  -13.253 0.286  11.657
Ar 18 -3.433  -12.631  -14.603 0.285 11.626
Cu 29 -33.193  -48.012  -50.122 0.278 11.368
Zn 30 -36.372 -51.702  -54.017 0.277 11.336
Ga 31 -39.617 -55.458 -57.573 0.277 11.334
Ge 32 -42.927 -59.279 -61.332 0276 11302
As 33 -46.299  -63.162  -62.264 0276  11.300
Se 34 -49.733  -67.106 -69.254 0.276  11.298
Br 35 -53.224  -71.109 -73.178 0.275 11.266
Kr 36 -56.773 -75.169  -77.289 0.275 11.270
Ag 47 99,184 -123.201 -125.485 0.273 11.192
Cd 48 -103.315 -127.843 -130.178 0.273 11.191
In 49 -107.488 -132.527 -134.880 0.273 11.190
Sn 50 -111.702 -137.252 -139.481 0.272 11.160
Sb 51 -115.956 -142.017 -144.278 0272 11.159
Te 52 -120.249 -146.821 -149.114 0272 11.158
1 53 -124.581 -151.069 -153.987 0272  11.157
Xe 54 -128.950 -156.544 -158.957 0.272 11.160
Au 79 -248.763 -289.132 -291.817 0270 11.085
Hg 80 -253.924 -294.804 -297.529 0.270  11.085
T 81 -259.111 -300.502 -303.257 0.270  11.085
Pb 82 -264.322 -306.224 -308.993 0.270  11.084
Bi 83 -269.358 -311.970 -315.153 0.269  11.054
Po 84 -274.817 -317.741 -320.963 0.269 11.054
At 85 -280.101 -323,536 -326.799 0269 11.054
Rn 86 -285.408 -329.354 -332.655 0.270 11.080
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TABLEII

At N Z STFA c A
o 10 8 13.878 0.216 7.947
s 18 16 -3.151 0.241 9.314
Se— 36 34 -67.299 0.254 10.132
Te 54 52 -149.244 0.258 10.348
F 10 9 7.832 0.265 10.171
cr 18 17 9,679 0.265 10.503
Br 36 35 72431 0.265 10.708
Ir 54 53 -154.014 0.265 10.776
Ne 10 10 4.738 0.301 12.190
Ar 18 18 -14.603 0.285 11.626
Kr 36 36 -77.289 0.275 11.270
Xe 54 54 -158.957 0.272 11.160
Na+ 10 11 -1.352 0.329 14.071
K+ 18 19 -19.097 0.303 12.713
Rbt 36 37 -82.030 0.285 11.832
Cst 54 55 -163.560 0.278 11.512
Mg+t 10 12 -5.014 0.351 15.825
Catt 18 20 -23.194 0.318 13.739
Sr++ 36 38 -86.367 0.293 12.345
Batt 54 56 -168.104 0.284 11.871
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CAPTIONS FOR TABLES

TABLEI:  TF and TFA-.informaticn entropies for neutral atoms,

TABLEIl: TFA-Information entropies for ions with noble gas structures and for noble gas

atoms.

CAPTIONS FOR FIGURES

FIGURE 1: TFA-information entropies for neutral atoms and their isoelectronic series.



