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An introduction to the enumeration of catafusenes (certain polyhex systems
which have chemical counterparts in C 1k +2H~zn 4 arenes) is given. Explicit
mathematical formulas are presented for the numbers of catafusenes belonging to

different symmetries.
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1 Iniroduction

The enumeration of chemical isomers is a classical problem, especially in
organic chemistry.2 Perhaps best known is the question, which has been asked at least
125 years ago:3 — How many alkanes with the formula Cnu‘ln+2 can be constructed?
Already in this old problem the "topological” isomers were counted, as we today would
call an enumeration of nonisomorphic chemical graphs.(1 Within this frame, e.g.
Schrader? listed 1 isomer each of methane, ethane and propane, 2 butanes and 3
pentanes. Now we know the numbers through n = 80; the number of CSOHlﬁ‘Z alkane
isomers is:5

10 564 476 906 946 675 106 953 415 600 016

When the polycyclic aromatic hydrocarbons (arenes) are considered, Schrader's
book? (among almost every textbook in organic chemistry) includes 1 isomer of CgHe
benzene, 1 of ClOHS naphthalene, but 2 CI4H]0 isomers, viz. anthracene and
phenanthrene. This is actually the start of an enumeration of catafusene isomers, the

topic of the present paper.
2 Catafusene Systems and Hydrocarbons

2.1 Definitions

The terminology in mathematical chemistry of polyhexes {benzenoids, fusenes,
hexagonal systems, hexanimals, etc.) is manifold and partly cr.n'iltroversia,].6‘8 Therefore
it is especially important to define the terms which shall be used presently.

A polyhex system (or briefly polyhex) is a connected geometrical object
consisting of congruent regular hexagons, where any two hexagons either share one and
only one edge, or they are completely disjoint. A polyhex has a chemical counterpart in a

polycyclic hydrocarbon (synthesized or hypothetical) with six—membered (benzenoid)
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rings exclusively. Such a ring corresponds to what was referred to as a hexagon in the
above definition.

A catafuseneg (system) is a catacondensed, simply connected polyhex. A
catacondensed system has no internal vertices; an internal vertex is shared by three
hexagons. The simple connectivity implies that there should not be "holes", and
therefore coronoids®!? (circulenes, coronafusenes, etc.) are excluded.

The chemical formula of a catafusene hydrocarbon is C4h+2H2h+4’ where fi is
the number of hexagons.

A catafusene may be either a geometrically planar or a geometrically
nonplanar system, and is accordingly referred to as a catacondensed benzenoid (system)
or a catacondensed helicenic system (shortly called helicene), respectively. We shall refer
to these classes still shorter as catabenzenoids and catahelicenes.

Finally it is distinguished between unbranched and branched catafusenes both
among catabenzenoids and catahelicenes. A branched catafusene has at least one
branching hexagon, which is directly connected to three other hexagons.

A polyhex may be represented in terms of hexagons; usually drawn so that two
edges of each hexagon are vertical. An alternative representation is the dua.lisl:,“ where
each point (black circle) represents a hexagon. Below is a catafusene depicted in these

two representations.

2.2 Ezamples
Polycyclic hydrocarbons (arenes) which correspond to catabenzenoids, both

R . 2
branched and unbranched, are known in copious amounts from organic chemlsuy.1 But
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also a great number of helicenic hydrocarbons (helicenes) have been synthesized, the first
of them being hexahelicene or [tS]helicerm.13 Tt was followed by a homologous series
corresponding to unbranched catahelicenes up to (14]helicene.“ Also interesting is a

synthesis of 04.2H24, a branched helicene:'?

It was mentioned that coronoids fall outside the class of catafusenes. A
corresponding hydrocarbon among molecules with "holes" and belonging to a class called
cycloarenes, is the famous C48H24 kekulene;16 notice that its formula is not compatible
with Cyp ooy

Additional examples of catafusenes (C*1 h +2H2 It 4), presented in a more

systematic way, are found in the following section on symmetry.
3 Symmetry

3.1 Definitions, some Properties, and Notation

Benzene (A = 1) is the only catafusene of regular hexagonal symmetry, Dﬁh'
Otherwise the catafusenes are distributed among the symmetry groups Dy, Cyp, Dzh'
CQh, C‘)u and Cs. In this classification the nonplanarity of helicenes is not taken into
account; the catahelicene C,,H,, in Paragraph 2.2, for instance, is classified under Coy
Certain subdivisions of the symmetry groups of interest have been defined. Tn the
present context it is especially important to distinguish between sz(a) and C'zu(b”
depending on whether the two—fold symmetry axis cuts edges or passes through vertices,

respectively. Otherwise one finds that all trigonal catafusenes are of the first kind,
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Dy (i) or (,‘Sh(i), characterized by possessing a central hexagon each. A further
subdivision places all regular trigonal catafusenes into Dah.(ia) inasmuch as all their
wwo—fold symmetry axes cut edges. The dihedral (Di.’h) and centrosymmetrical (Cy)
polyhexes are in general of the first or second kind, depending on whether the number of
hexagons is odd or even, respectively. Those of the first kind, identified by D, (i) and
C‘Zh(i)’ have a central hexagon each; those of the second kind, viz. Dzh;[ii) and C‘.M[ii],
have a central edge each.

All trigonal (0311 and CM) catafusenes are branched. Those belonging to Dy,
are branched except for the single linear chains (polyacenes). Catafusenes belonging to
each of the classes Cop Gy la), CZv(b) and Cs are either branched or unbranched.

In the following the numbers of nonisomorphic catafusenes of a certain class
and having A hexagons are denoted by X » where X stands for the following symbols in

the different cases.

I # regular hexagonal (D) catafusenes (trivial)
T # regular trigonal (D.'i ) catalusenes

R # nonregular trigonal (C.'}h) catafusenes

D # dihedral (D2 h) catafusenes

C: # centrosymmetrical ( Cyp) catafusenes

@),

: # mirror-symmetrical catafusenes belonging to 02 v(a)
M(b): # mirror—symmetrical catafusenes belonging to C,, p(h)

U: # unsymmetrical (Cs) catafusenes

3.2 Examples
Figure 1 shows, in a systematic way, the smallest catabenzenoids of different
symmetries, and also hexahelicene under %, i'(b), h =6,

Catahelicenes are most conveniently depicted as dualists. Figure 2 shows the
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Fig. 1. Forms of the smallest catabenzenoids of different symmetries, including one

catahelicene.
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Fig. 2. Forms of the smallest catahelicenes of different symmetries. The dualist

representation is employed.

forms of the smallest such systems of different symmetries.

4 Catafusenes Rooted at an Edge

The first task in the analytical enumeration of catafusenes concerns the

systems rooted at an edge. It means that a unique "root edge" is distinguished in one of

the hexagons. It is not allowed to add any other hexagon incident to the root edge.
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Neither is any symmetry operation allowed. Hence, for 2 hexagons for instance, there

S

Here the root edge is indicated in bold. Figure 3 shows the forms of the "edge-rooted"

will be three rooted naphthalenes:

catafusenes (as dualists) for 2 and 3 hexagons.
Harary and Read'” have given a general solution for the numbers of
edge—rooted catafusenes in terms of a generating function. Below we present an

alternative form of this solution.

—1
=N+ } NN_; (2> 1) (n
i=1

=N =1, N,=3, NJ:—H

Also this recursive algorithm (like the generating function) allows the computation of N,
with arbitrarily large z. Table 1 shows the aumerical values up to z = 20. The definition

N(} =1 is convenient to make in view of the deductions in the following.

5 Catafusenes Classified According to Symmetry

5.1 Preliminaries

The numbers of edge—rooted catafusenes (N,) give a clue to the enumeration of
(unrooted) catafusenes. We have in fact achieved to express the numbers of
nonisomorphic catafusenes belonging to any of the symmetries of interest explicitly in

terms of the Nz numbers.



= T =

=2

o b o=

7 Mo

Fig. 3. Forms of the edge—rooted catafusenes /—0 <

with 2 and 3 hexagons. The dualist

representation is employed. White circles represent o

hexagons containing root edges.

Table 1. Numerical values of Nz, the numbers of edge—rooted catafusenes with r

hexagons. Trivial value: Ny=1

T Nx z N:C

1 1 11 751 236
2 3 12 3 328 218
3 10 13 14 878 455
4 36 14 67 030 785
5 137 15 304 036 170
6 543 16 1 387 247 580
7 2219 17 6 363 044 315
8 9 285 18 29 323 149 825
9 39 587 19 135 700 543 190
10 171 369 20 630 375 241 380
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5.2 Symmetry Dy,

I = |1/4) (2)

This is the trivial case. Here and in the following we make use of the "floor" function:

| a] is the largest integer smaller than or equal to a.

5.3 Symmetry DSh
L(h-4)/8]
T =Ty=Ty=0, T,=(h-1DA3]=|(h-2)/3)) § N, (>3 ()
=0
5.4 Symmetry Cap
Rl = 32 = R3 =0
[(h-4)/6]

Ry =1 =1/3) = L= 2/3) [N pgyygy = 1 N k>3 @

5.5 Symmetry D‘Zf;

[(r-2)/4]
D=0, D= 2 N, (h>1) {5)

5.6 Symmetries C,, and Cy (b)

L(~-2)/4] (6)
c=m®_y, ch=Mh(b)=%NW!J—é N (>
&
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5.7 Symmetry Gy (a)

1"1(3) = M"Z(a) =0, Ms(a) =,

L(h-2)/4]
RIS
Ltt-1)/6]
—(h-DB]-(=-23) ] N, (h>3)
=0

5.8 Symmetry Cs
Uy=Uy=Us=0, Uy=1, Ug=5
v,=in  +ipn-()w (3N +1)
e T L(h=1)/2) BN\ (h-1)/2)

=315 = N Ny =g 10+ 0 Ny Vg =1

. L(a-2)/4) 3 [(R/2)-1] [(#-1)/2]

+3 01 N+E L MMtz 1 NNy
i=0 i=1 i=1

+ R (U= 1)/3) = =231 [N 1y Wty =)

[(r-4)/8]
+3 ) NJ
i=0

1(~-2)/3) h—2 i-2

1 h
30 Y N{NN+ LW, Nh_i_j_l)] (h> 5)
=1 =i+l

(7)

(8)
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3.9 Interrelations

There are many interrelations between the quantities considered above. Some

of them are specified in the following.
= (LA =1)/3] = (A= 2)/3]) D|(9p9)/3] (h>1) (9)
By =310 1)/3] = L(h = 230N 51y /3) = Pyanaysa))
= (Uh=1)/3] = (k= 2/3))C(gppys (R>1) (10)
(h>1) (11)

b
ey =P = %(N[h/'zj = Dy)

@ =L ]NW2J -3D,~ T,

:%[1-(-1}"]%;/2] +Cy=T, (b>1) (12)

T+ Dy + M 4 3,0 = L3 )y Nippa) (h>1) (13)

5.10 Numerical Values

The formulas reported above were used to compute the numbers of interest.
Table 2 gives a listing of the results up to A = 20. The totals are consistent with the
generating function denoted by H(z) from the work of Harary and Read.!” Furthermore,
the sums of numbers according to Eq. (13) are consistent with the generating function

W(z) from the same work. !
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6 Branched and Unbranched Catafusenes

6.1 Unbranched Calafusenes
The numbers of unbranched catafusenes, classified according to symmetry,

were derived by Balaban and Harary“

using combinatorial methods. Powers of 3 are the
essential ingredients of their explicit mathematical formulas. The numbers of
nonisomorphic catafusenes of a certain class and having h hexagons are denoted by Ipe

where z stands for the following symbols in the different cases.

a # acenes (linear); Dy for h > 1, Dﬁh for h = 1 (benzene)

c # centrosymmetrical (C2 4) systems (unbranched catafusenes)
m(a). # mirror—symmetrical systems belonging to Cgv{a)

m{b): # mirror—symmetrical systems belonging to C, v(b)

u # unsymmetrical (C') systems

The explicit formulas are given in the following. Most of them are only modified

8,18,19

forms of the original solution;ll only the subdivision for the types C%(a) and

Cgv(b] is new.

Symimetries D6 A and D2 %
o= (14)

Symmetries Cyy, and C%(b):

q=m® =0, g=m®=Lal®2Uy gy (15)
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Symmetry Cy (a):

m® = m@ =0, m @ =] [1 = -] 3l (h 5 9) (16)

Symmetry C, ¢

a =0, =102+ 1)l sy amn

Numerical values of the numbers of unbranched catafusenes have been tisted®
up to k = 20. For these systems also the separate numbers for the catabenzenoids and
catahelicenes are available.39 A corresponding analysis for the branched catafusenes is
virtually an original contribution of the present work. This issue is treated in the next

paragraph.

6.2 Branched Catafusenes
The numbers of branched catafusenes within the classes under consideration
are now obtained simply by subtractions. There are no such systems for the Dﬁh

symmetry. Otherwise we find the numbers as specified in the following.
Ds.'é Th; C3h: Rh; D2h: Dh -1
Co G5 Cpyfals My(®) = m, (@),
Coyfb): Mh(b) - mh(b); Cs U=y
In Table 3 the numerical values of the numbers of branched catafusenes are

listed (arbitrarily) up to & = 20. Herein the specific numbers for the different symmetries

are displayed for the first time.



82

VLFOLOESIELT 6 TEEBGBIET 818CL 65968 8I8SL 0s 0 0 02
6¥F08L890¢ 09E¥69290E 88191 68L2S 88F91 0g 692 [ 61
8LCZ6T169 VYSLBETT69 28¥91 89L61 28591 0g 0 0 8l
90.8269¢CT GL860£9S1 orset EELTT ohSE ¥ 0 0 LI
EES86FSE PELOBFCE CFSE 0€9% 4417 ¥1 9 g 9
0608508 800rS08 8e! 2657 seL v 0 0 o1
BEISHBI 9£CCHBI gL 011 8EL ¥1 0 0 ¥l
ZELTTY 9¥81ZF 8kT 196 8F1 ¥ Ll 4 £1
9pL96 LLT96 8F1 69¢ 8¥1 14 0 0 ¢l
Faxiréa PeRIC 92 ol 97 ¥ 0 0 It
<108 988%F 9z 9 9z 2 2 4 01
SItt 0801 ¥ 9% ¥ 1 0 0 6
052 el 14 Il ¥ I 0 0 8
£g 9% 0 4 0 [ 1 I L
Gl L 0 ¥ 0 I 0 0 9
4 L 0 1 0 0 0 0 4
1 0 ] 0 0 0 0 T 12
s s a
re1o], fo) @% (% 125 Yeq ¥, ¥y Y

AnpwwiAs 03 Suipiode

PolIsse[D ‘(SoULDI[EYEIR) + SPIOUIZUSQEIED) SIUISTIIRILD PIYIURIQ JO SIDqQUINY °E S[qeL



- 83 =

7 Branched Catabenzenoids and Catahelicenes

7.1 Branched Catabenzenoids

For the numbers of catabenzenoids (without helicenes) of the different classes
no exact mathematical solutions are available. But extensive enumerations by computers
have been executed in such cases. In Table 4 the numbers of branched catabenzenoids

8 They are

are listed up to & = 15. Most of these data are documented in a recent review.
taken from diffesent sources.5118:20-24 ye splitting inte the (a) and (b) types for the

G,y Systems is an original contribution.

7.2 Branched Catohelicenes

Numbers of catahelicenes of the classes under consideration are now obtained,
up to A = 15, simply by subtractions of the numbers of catabenzenoids from those of the
catafusenes in total. Here we are all the time speaking about the branched systems
exclusively. It should be clear that the results (cf. Table 5) were obtained by a
combination of a mathematical analysis and computer programming.

The numbers in Table 5 are seen to be consistent with the depictions of Fig. 2,

where the branched systems easily are recognized.
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