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ABSTRACT

A simplification of Toiié and HodroZa's formula' is
given for the number of Eakuld atructures of unbranched
catacondensed benzenoid systems. Further, an explicit
formula i® derived for the number of EKekulé structures
of primitive coronoid systems (i.e. unbranched
catacondensed coronoid ayutems).

1. INTRODUCTION

The enumeration of Kekuls structures (1-factors) of
conjugated hydrocarbons has tremendously accelerated in
tha past few years, particularly for benzenoid hydrocarbons.
Numerous results have been obtained for benzenoid lyat«n;!'b
But much less work for this topic has been done for
coronoid systems. Several combinatorial K formulas are
available for special classes of primitive coromoid
syntonu._“ However, a general formula for primitive
goronoid systems has never been given before. In the
present paper, we put forward a simplication of Tosié
and Bodroza's fornul.a1 for unbranched catacondensed
benzenoid systems, and arrive at a polynomial expression
for the number of Kekuld structures of an arbitrary
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primitive coronoid syatem,

2. A SIMPLIFICATION OF TOSIC AND BODROZA'S K FORMULA FOR
UNBRANCHED CATACONDENSED BENZENOID SYSTEMS

An unbranched catacondensed bezenoid system contains n
linear segments, say LI'LZ"“'Ln' satiafying that two
terminal segments L‘ and Ln contain one kink respectively,
and Li(ZeS ig n-1) contains two kinks(PFig.1). This benzenoid
system is denoted by L (x,,Xyee0sx,) if L, possesses x,
hexagonm, i=1,2,...,0. Fig.2 shows L5(2,J.2,2,3)-

L

n-1
Ln\ Xn-{&
yieaae
X1 \ L
Fig.1 t

In their recent paper, ToSié and Bodro¥a adopted the
following notation:

[11.12, ceesx ] = Ln(x1 LATE PEI PRRPEL SU +I,::n). (1)
The number of Kekulé structures of [x1 1Tppeee .xn] is
denoted by ln[zl +Xys+009X s They got the following
recurrence relation:

K [xysxp000e0x ] = x K [x,. corXTy q]*En 2 [x450e 1%y o]0

while E,=1, K. [x] = 1+x. (2)

From (2) theydcducad the following formula,
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Ka(Xyreesozp] = 1 + } i Ta Mo A )
1411<12<...<1k‘\‘nv
1k—='-' n (mod 2),
1_1”-1'15 1 (mod 2)
for J=1,2,..4,k-1,
vhere x.l.xz....,xn are positive integers,

It is easy to sea that Kn['_o.:z,...,xn]-ln_ﬂ::z.....xn].
and that formula (3) also applies tc the case of xin.
Thus, from (1) and (3}, we can derive the following result.

THEOREM 1, For positive integers XysXpreeasXy

I{Ln(x:‘l 1E,+1 .131-1. ceapXy 41 'In)} = ln[:x'-i 1Xp1Tgs 000 Xy]

u1+> Xy X, cseXy o (h)
1‘ 1, ‘lk
t-$11<12<. R .<1k<n,
k=1 =n (mod 2),
1_j+1-135 1 (mod 2)
for j=1,2,.0.,k=-1.

1

It was shown that the polynomial (3) has Fo.p terms,

+2
where !‘i is the ith member of Fibomaceci sequence
Fono, F.laﬂ; Fi=1"i_1+1"i_a, for 2 2. Obviously, the number

of terms in polynomial (3) i equal to
E [1s1ye0as?] = F o0 (5)

Therefore, the number of terms in polynomial (4) is
KL (1,2,2,.002,1)) = E(0,7,1,..4,7]
=K _, [1,1,....1] =F g
The differenca between the numbers of terms in (3) and (4)

is F_ ,-F_ . ,=F,. Hence, (4) is simpler than (3).
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3. A K FORMULA FOR PRIMITIVE CORONOID SYSTEMS

A primitive coronoid system consists of a circular single
chain of hexagons, and its inner perimeter is not a hexagon,
A primitive coronoid system contains 2m (m > 3) linear

segments, say LI'LE""'Lzm' satisfying that L1 and Lzm

share a kink, while L; and L1+1 share a kink for

i=1,2,.04,2m-1(Fig.3). This coronoid system is denoted by
sz(xj,xz,...,xzm) if L, possesses x, hexagons, i=1,2,...,2m.

Pig.4 depicts Pg(5,2,b,4,2,2,2,2).

L
2m
N Xam

L2m-1 ,;f? \-i/
8
}
-~ 1,2

P, (X 9X,pecesX )
2m* 1772 2m Fig.h

Fig.3

Let u and v be two adjacent vertices ef a graph G,
and a={u,v} (Fig.5a). G-u-v denotes the remaining part
obtained by deleting u and v from G (Fig.5b), and G-e
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designates the remaining part obtained by deleting e
from G (Fig.5c). It is well known that
k{G} = K{G-u~v} + K{G-e}. (6)
Let R=P2m(x|+t,12+1,...,12m+1). (7)

R contains 2m linear segments LI'LZ""'Lzm' Consider

the kink hexagon L, shares with Lzm(Fig.GI). a,b,c and d

1
are vertices balonging to the kink hexagon, a'-{a,b},
czu{c,d}, and it is satisfiod that e, is parallel to e,

and both @ and b are of degree two.

Xomt|

Fig.6
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We obtain
E{R-a-b-c~d] = 1 {Fig.6II), (8)
K{R-e,-a,} = 1 (Fig.6III), (9)
x{a-a_b_.z}=I{L2m(x1,xz+1,x3+l,...,xam_1+1,12-[}(Fis-ﬁlv)n
{10)
KfR—en‘—o-—d}uK{Lzm_z(xz,x3+l IS ATTTTTT PN PE SN )} (Pig.6V).
11

From {6)}=(11), we get tys)
K[Py (X, 41,4 peuuyx 41 )} = K{R}
= k{R-a-b} + K{R-a}
= l{n—a—b-c-d} +K{R-a-b—e2} +I{R-el-n-d}+K£R—a1-¢2}
=2+ KL, (XXt x4l e s Xy 1 +193,)]

+ I{Lzu_z(xz,x3+1,xh+1.....xzn_2+1.x2-_1ﬂ. (12)

By (&) and (12), we can derive the following theorem.

THEOREM 2, For positive integers X 1X500003X

K{sz(x1+1 I R A TRRRRE Sl )‘}

2m"

=4 4 > Xy Xy eeek .
1,717 gy
1€1,<1,¢0 0 <L, € 2m,
134-1_1_15‘ {mod 2}
for J=lelsweny2k=1,

The number of terms in the above polynomial is
x{p, (2,2,...,2)}-3

= K{Ly (1,2,2,000,2,1)) +K{L2m_2(1,2.2,...,2,12}-1

= P Pz -1,

2m+1* 2m-1
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