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Abstract

An essentially disconnected benzenoid system is defined as a Kekuléan
henzenoid system which has fixed (single or double) bonds. It is described and
strictly proved that the subgraph, obtained from an essentially disconnected
benzenoid system by deleting all the fixed single bonds and all the end vertices of
the fixed double bonds, is disconnected. This is just what the term "essentially
disconnected" means. A necessary and sufficient condition for a benzenoid systemn
1o be essentially disconnected is given. Two procedures for obtaining all effective

units are outlined.
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1. Introduction

A benzenoid system is said to be Kekuléan if it possesses a Kekulé structure,
otherwise non—Kekuléan. Essentially disconnected benzenoid systems are Kekuléan
benzenoid systems with fixed honds. Kekuléan benzenoid systems with no fixed bonds
are called normal.

A fixed single {double) bond is an edge which corresponds 1o a single (double)
hond in all Kekulé structures of a benzenoid system.

The term "essentially disconnected henzenoid" was used for the first time by
Cyvin et al.[1]. A great number of examples [2] of essentially disconnected benzenoic
systermns have been found o have the essentially disconnccted nature. This means thal,
such a system consists of two ore more "effective units" being normal benzenoids, and a
“"junction". The junction is, by definition, the set of hexagons possessing fixed bonds. A
general proof for the essentially disconnected nature of an essentially disconnected
benzenoid has never becen given before. [n the present paper a rigorous proof to this
effect is conducted.

Concerning the characterization of essentially disconnected benzenoid systems,
Cyvin and Gutman [3] found some sufficient conditions for a benzenoid system to be
essentially disconnected, hut these conditions are not necessary. A structural
characterization which amounts to a necessary and sufficient condition for a benzenoid
system to be essentially disconnected has never been reported before. In the present
paper we try to fill this gap. Two procedures for recognizing essentially disconnected

benzenoid systems as well as delecting all the effective units are outlined.

2. Fdge—cuts

ln the present paper benzenoid systems are always oriented with some of their



- 193 -

edges vertical.

Denote by n[w)(G) and n“))((;] the munbers of white and black vertices in a
colored bipartite graph G, respectively. Furthermore.

nG) = M6y - o¥Na). (1)

Let B be a beuzenoid system. In Rel. 4, an edge—cut of B was defined as a
collection of edges € such that the subgraph B-€ obtained from B by deleting all edges
in € has morc components than B. In the present paper, the definition of edge—cuts is
restricted as follows:

Let 3 be a benzenoid system and €):Lg.nnnnnCy SOME of its edges. Then € =
[01‘92,...4%{_} is called an edge—cut of B il

(a) by deleting the edges €]€eeny from B it decomposes into two parts I3' and
B:

(b) the black end vertex of e, belongs to B' (and therefore the white end vertex of
¢ belongs to B"). i=1,2,....,f;

(¢) each pair of edges e,e

i =12 e
ipqe =120 t-1, belongs to the same hexagon and e

and ¢, belong to the perimeter.

LEMMA 1

If B is a Kekuléan benzenoid system and € one of its edge—cuts, then for each
Kekulé structure of B the number of double bonds in € is an invariant, and is equal to
D(B'); as a consequence, the edges in € are all fixed single bonds if and only if (B')=0.

The above lemma can be easily verified [5].

Let € be an edge—cut of the benzenoid system B. Sometimes the value of D(B') is
also symbolized as D{C):

D(€) = D(B"). (2)

An elementary edge—cut (EEC) is an edge—cut realized by a straight line segment

(cut segment [5]) (see fig. 1).
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Fig. 1. The set of edges intersected by PP, is an EEC, the set of edges intersected by

“‘1"2"‘3 is a KEC. The set of edges intersected by QleQ3 is a CKEC because u,v,x,y
are all of degree three.

A K—edge—cut (KEC) is an edge—cut vealized by a broken line segment consisting
of two straight line segments which form an angle of 60° (sec fig. 1) and intersect the
perimeter only twice.

A characteristic K—edge—cut [6] (CKEC) is defined as a KIXC in which the four

end vertices of the two external edges are all of degree three (see fig. 1).
3. The essentially disconnected character of essentially disconnected benzenoid syslems

LEMMA 2 (this lemma is well known in a more gencral context)

Let B be a Kekuléan benzenoid system, e an edge which is not a fixed bond, and
K any Kekulé structure of B. Then there is in B a single—louble alternating
(conjugated) circuit which contains e.
Proof

There are Kekulé structures Kl’ 1(2 of B such that e is a single bond for K and a
double bond for K,), where K equals K, or K, Consider the subgraph S of B generated
by the edges which are single bonds for one of K, Ky and double honds for the other.
Clearly, e belongs to S and every vertex of S has degree 2: thus the components of S are

circuits, one of them — say, C — containing e. C is a conjugated circuit for K
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LEMMA 3

If B is an essentially disconnected benzenoid system with no fixed double honds,
then B has an EEC CE for which D((E)=0, or equivalently, the edges in CE are all fixed
single bonds.

Proof

Let e be a fixed single bond of B and (E the EEC which contains e (sce Fig. 2).

We shall show that all edges in (g, are fixed single bonds.

B having no fixed double bonds, none of e el', ey, e,', is a fixed bond. Let K be

a Kekulé structure for which e, is a double bond and let C; he a conjugated circuit
through e (see Lemma 2). C, does not contain € Or e,"s suppose the contrary, then
there is on C, a (directed) path P from x to y which starts and ends with a double bond
(note that on P all edges from a black Lo a white vertex are double bonds), thus P U {e}
is a conjugated circuit — contradicting the hypothesis that e is fixed. So there are disjoint
conjugated circuits C1 through € and C2 through €y and we may assume that both e
and ey are double bonds. None of Ups Ugy ey U is a double bond since, otherwise, we

find a conjugated circuit containing e (Fig. 3). Thus we have the situation of Fig. 4.

Fig. 3.
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Cl and C2 do not contain any of the edges Ujps Uge ooy U SUPPOSE, w.Lo.g., that
Cy contains the edge u, (see Fig. 4). Let Py be the path on €} starting from x with a
double bond and terminating in x; o1y, without containing u. Both of the first and the
last edge of F'1 are double bonds, and as the first vertex is black, the last one must be
white: thus Pl cannot terminate in X It cannot terminate in ¥; either, by topological
reasons (the circuit C1 cannot intersect itself, see Fig. 4).

If we now interchange the single and double bonds on €, and €, we conclude in
the same way that for the Kekulé structure K* so obtained, Vi Vi eV, are single
bonds, and since Uy, Ug, ..oey U remain single bonds for 1(*, all edges of CE are single

bonds for K*. By Lemma 1, all edges of C; are fixed single bonds. L

LEMMA 4

Let B be a benzenoid system which has a vertical flixed double bond. Let ¢ be a
vertical fixed double bond such that no other vertical fixed double bond is above e. Let
the upper vertex of e be incident to edge € (and no other edge # ¢) or to edges ey €y
(Fig. 5). If L lies on the boundary of B, then e determines an EEC Cl, alt of whose
edges being fixed single bonds. If e does not lie on the boundary of I3, then e and e,

determine a CKEC ¥ = €y, all of whose edges being fixed single bonds (Fig. 6).
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Fig. 6.

Fig. 7.

Fig. 8,



-~ 198 -

Proof

Consider Figure 7. e is a fixed single bond. The edge e' must be present. since et -
il it exists — lics above e and, therefore, is not a fixed double bond. There is a Kekulé
structure Kosuch that ' is a double bond. Since e and ¢ are double bonds for K, we
conclude as in the proof of Lemma 3 that all edges s Uy, Uy, o UL Are single bonds for
K. If e, lies on the boundary of B, then this means that all edges of the EEC tl are
single bonds for K, implying (by Lemma 2 that all edges of €, are fixed single bonds.

Now assume that ¢, does not lie on the boundary of B. Then e, exists and is a
fixed single bond. The edges ¢; and e, determine a KEC " (Fig. 6). If e" is a double
bond for K. then we conclude in the same way as above that also all edges Vs Vgu e v,
are single bonds for K, implying that all edges of €* are fixed single bonds and, in
addition, that €" is a CKEC.

11 ¢" is a single bond for K. then it cannot be a fixed bond since e** (which lies
above e, see Fig. 7) is not a fixed double bond. By Lemma 2, " lies on a conjugated
cireuit C. This circuit does not contain any of the edges Uy Mgy sy U Suppose that €
contains the edge u; and no edge u; with j < 7 (see Fig. 8). Let P be the path on C
starting from x with the double bond e and terminating in x; or y, without containing
U Both the first and the last edge of P arc double bonds, and as the first vertex is
white, the last one must be black; thus P cannot terminale in X, [t cannot terminate in
¥; either, by topological reasons (the circuit C cannot intersect itsell; see Fig. 8.).

If we now interchange the single and double bonds on €, we conclude in the same
way as above that for the Kekulé structure K™ so obtained, Vs Voo ey Vg are single
bonds, and since Uy, Uy, .oy U Temains single bonds for K**, all edges of € are single
bonds for K**. By Lemma 1, all edges of (* are fixed single bonds. Clearly, (¥ is a
CKEC. L4
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THEOREM 1

If B is an essentially discounected benzenoid system, then the subgraph from B
obtained by deleting all fixed single bonds and all the end vertices of the fixed double
bonds is disconnected.

Proof

According to Lemma 3 and Lemma 4, B has an EEC or a CKEC for which
IXB')=0. There are two cases:

(i) For every EEC, D(B')>0. Let €' be an EEC through one of the highest lines of
hexagons, then according to Lemma 4, any edge in €' is not a fixed double bond. Since
D(€")=1, €' contains an edge which is not a fixed bond. By the similar proof, an EEC €"
through one of the lowest lines of hexagons contains an edge which is not a fixed bood.
Then if € is a CKEC with D(C)=0 (we may assume the edges in €y are not vertical),
consequently both B' and B" have an edge which is not a fixed bond.

(ii) There exists an EEC "E such that D(CE)=0. We may assume the edges in (p,
are vertical; the upper and lower parts are B' and B", respectively. We use A (o
designate the Kekulé structure count. See fig. 9, where the benzenoid system B* contains

B' and the hexagons which contain the edges in Cp. The system B, is obtained by

Fig. 9.
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adding an edge {x,y} and a vertex y to B*, where x is the lower end vertex of an
external edge in Cp,. It is easy to see that

K(B') = K(B)). (3)
Use the notation

h*=number of hexagons in B*,

»*=number of vertices of B,

nf:number of internal vertices of B*.
Then [7.8]

=4 42— ”i*‘ (1)
In a Kekulé structure, the hexagon containing three double bonds is called an aromatic
sextet. If B1 has no aromatic sextets, then B* contains [.'z*~l)/‘2 double bonds, the
external edges of B* contain (n.*—n;h?.)/Q double bonds at most, and thus the internal
edges of BY contain at least (ni*+1)/2 double bonds. Consequently,

(R°-1)/2 < 28" — (n,"+1)/2

i.c. n*sclh*—n;, which contradicts the identity (4). Hence B, musl contain an aromatic

1
sextet, then K(BI)Z‘Z, and from (3) A{B")>2. By the similar prool, A{B")>2. Therefore
both B' and B" contain an edge which is not a fixed bond.

Consequently, the subgraph obtained from B by deleting all fixed single bonds
and all end vertices of the fixed double bonds must have at least two components, and

thus must be disconnected. This completes the proof. ¢

4. A npecessary and sufficient structural requirement for a benzenoid system to be

essentially disconnected

In a recent paper [6] by one of the present authors, a necessary and sulficient
condition for a benzenoid system to be Kekuléan, which is stronger than that of

Kostochka [9], was developed. According to Ref.6 a henzenoid system B is Kekuléan if
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and only if (i) D{(B)=0, (ii) for every EEC and every CKEC, D{B')>0.

Then according to Lemma 3 and Lemima 4, we obtain

THEQREM 2

A benzenoid system B is essentially disconnected if and only if (i} D(B)=0, (ii)
for every EEC and every CKEC, D(B')20, (iii) there exists an BLC or a CKEC such
that D(B")=0.

THEOREM 2'

A benzenoid system B is normal if and only if (i) D(B)=0, (ii) for every EEC and
every CKEC, D(B'}>0.

5. Two procedures for the effective units

According to Theorem 1, the subgraph obtained from an essentially disconnected
benzenoid system B by deleting all fixed single bonds and all the end vertices of fixed
double bonds is composed of m (m>2) normal benzencid units B1 B, B e which are

D IR

called effective units. Then a well known identity is that
K{B} = iﬂl KB} . (5)

Two procedures for obtaining effective units are given in the following,

PROCEDURE 1

We are using Theorem 2. Let B be a benzenoid system with J(B)=0. For cvery
EEC and every CKEC, calculate IXB'). If D(B'}<0, then B is non-Kekuléan. If
D(B')>0 for all EEC's and CKEC's, then B is normal. If for some EEC or CKEC

D(B')=0, then delete all edges in the corresponding EEC or CKEC. After deleting all
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pendent vertices together with their first neighbours, the bridges as fixed single honds
and the end vertices of the bridges as fixed double bonds in the remaining part, continue

with the components, and so on, until all remairing parts are normal benzenoids.

PROCEDURE 2

First by means of the algorithim of Sheng [10], rapidly judge whether B is
Kekuléan. IT B is Kekuldan, then a Kekulé structure drawn with single and double bonds
is obtained at the same time. If € is an EEC or a CKEC, such that the edges in € are all
single bonds, then delete all edges in €. After deleting the cut—edges as fixed single bonds
and the end vertices of the cut—edges as fixed double honds in Lhe remaining part,
continue with components, and so on.

The Procedure 2 seems to be simple, and it is not necessary to determine the

value D(B'). It is a diagrammatical procedure.

Acknowledgement

The authors wish to thank the Referee for helpful comments and significant

contributions to the last version of the manuscript.



= FYA -

References

[t} 5. J. Cyvin, B. N. Cyvin and 1. Gutman, Z.Naturforsch. 10a(1985)1253.

[2] J. Brunvoll, B. N. Cyvin. S. J. Cyvin and I. Gutman, Match 23(1938)209.

[3] S.J. Cyvin and 1. Gutman, J.Mol.Struct.(Theochem) 150( 1987)157.

[4]  F. Zhang, R. Chen and X. Guo, Graphs and Combinatorics 1(1985)383.

[5]  H. Sachs, Combinatorica 4(1984)89.

[6]  R. Sheng, Match 24(1989)207.

[7]  O.E. Polansky and D. H. Rouvray, Match 2(1976)63.

[8]  I. Gutman, Bull.Soc.Chim. Beograd 47(1982)453.

[9]  A. V. Kostochka, Proc. 30 Internat. Wiss.Koll. TH 1lmenau 1985, Vortragsreihe
I, p.49.

[16] R. Sheng, Chem.Phys.Letters 142(1987)196.



