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ABSTRACT

The degenerate rearrangement reactions of organic chemistry can be described with
the aid of the reaction graph R. In the present paper we discuss some problems
related with reaction graphs, especially with the determination of connectivity
components and the automorphism group Aut(R).

We give a brief survey of the algebraic techniques involved, and several reaction
graphs of particular interest are considered in detail.

1 Introduction

During the last decades the following two areas of applications of group theory to
organic chemistry became most popular:

- the use of group representations in quantum chemistry, and

- the application of algebraic tools o the examination of the symmetry of
molecular graphs.

The first area is now well-known. One can attribute to the second area tradi-
tional applications of group theory te organic chemistry like the identification of
molecular graphs, the description of its automorphism groups, the enumeration
of the substituted compounds using Pélya enumeration theory and so on, see e.g.
13,271, [31].

A new area of applications is concerned with the investigations of reaction graphs
for degenerate rearrangements. These investigations have passed through several
stages and on the modern level they need deep group theoretical techniques (see
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111],[20] for details). The present paper is the second one in a series which is
devoted to the systematical investigation of reaction graphs using the technique of
algebraic combinatorics (in the sense of [4]). We show that reaction graphs can be
interpreted with the aid of 2-orbits of suitable permutation groups and that some
problems concerning these graphs can be solved if we use the tools of permutation
group theory, especially results on centralizer rings of permutation groups.

The main topic of the first paper [20] of this series is the problem of connectivity
of a reaction graphs: the criterion of the connectivity is given, it is illustrated by
several interesting examples.

In this second paper we try to explain the mathematical essence of the chemical
questions, We want to give an exact formulation of the resulting mathematical
problems. Then we discuss the possible ways to solve these problems.

We suppose that the reader is acquainted with general facts from permutation
group theory [29] and algebraic combinatorics, especially association schemes the-
ory [4]. Here we use the notions of 2-orbit and centralizer ring (V-ring) in the
same sense as in [12],{30}, More detailed information about the technique used by
us can be found in our reviews [6],[15],[17] and in the textbook [18].

Here is a brief outline of the content: Section 2 contains the preliminary intro-
duction to different kinds of chemical graphs. The main facts about permutation
groups are mentioned in Section 3. A survey of problems related especially to
reaction graphs is presented in Section 4. Three kinds of these problems and the
methods for its solution are considered in Sections 5-7: coding, connectivity, au-
tomorphism groups. A more detailed consideration of the problems from Section
6 can be found in [20]. Some of results, mentioned in Section 7, are worked out
jointly with M.E. Muzichuk. In conclusion we announce the topic of the forthcom-
ing papers of this series.

2 Chemical graphs

By chemical graphs (in a broad sense) we mean all kinds of graphs which are used
in chemistry, see e.g. [2]. Two kinds of them are especially important for organic
chemistry: molecular and reaction graphs. The notion of molecular graph is closely
related to the phenomenon of isomerism: a molecular graph represents the so-called
constitutional formula of the chemical compound. The vertices of a molecular
graph are the atoms of the molecule (ion), the (possibly multiple) edges of the
graph correspond to chemical bonds between the atoms. Rigorously speaking, one
can treat a molecular graph as a pair of functions, defined on the sets N and N?
respectively [27], where N is the set of the numbers of atoms of the molecule. The
first function characterizes a brutto-formula while the second describes the bonds
between atoms (some details of this description will be discussed below).

It must be emphasized that two different kinds of mathematical graphs can be con-
sidered in order adequately to describe the notion of chemical graph: numbered and
abstract graphs. In a numbered graphT' = (V, F) with n vertices every vertexv € V
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carries an individual name (usually a number from the set N = {1,2,...,n}). This
gives us the possibility to identify an edge set of a numbered graph with a suitable
binary relation R over N : two vertices »; and v; are adjacent in I' if and only
if (1,7) € R. Let S, = S(N) be the symmetric group of the set N. Then we can
consider the induced action of S, on the set B of all binary relations over N. Every
orbit of this induced actien corresponds (in a one-to-one way) to a certain abstract
graph. Hence we can say that every numbered graph I’ is the concrete representa-
tion of an abstract graph. The analogous correspondence between numbered and
abstract multigraphs can be also established, if one uses functions defined on the
set N? and orbits of these functions.

Let M be a set of atom kinds. Every function f: N — M can be treated as a
numbered brutto-formula, f(i) = m means, that an atom of the kind m carries a
number i. A pair (f;I;), where I'; is a numbered graph, can be identified with a
numbered molecular graph. Finally, an orbit of the induced action of S, on the
set of all the pairs represents an abstract molecular graph (see [27] for details).
In order to simplify the notation we shall furthermore use the notation T'; not
only for the numbered graph T';, but for the pair (f,T;), if the function f can be
reconstructed from the context {e.g. by using the diagram of molecular graph).
In some cases we shall call a numbered molecular graph a numbered isomer, or
simply a numbering.

A more complicated kind of isomerism, the stereoisomerism, can also be described
by combinatorial means. For this aim, we must add to the already considered
levels of description (first and second member of the pair (f,T;)) a third level
which gives a possibility to describe the essential features of spatial arrangement of
the molecular graph using the functions, defined on the set N4t1, where d(= 2, 3)
is the dimension of the space considered in question. We shall not discuss the
details, referring the interested reader to [19], [27]. But the following fact should
be mentioned: on this way the notions of numbered and abstract stereoformula can
be obtained similarly. A special kind of chemical reaction is called rearrangement:
during this reaction a chemical compound transforms into an isomeric compound.
An example of rearrangement is depicted in Figure 1.
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Figure 1
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It is the well-known Beckmann rearrangement ({this reaction is the basis of the
production of kapron). One can consider a rearrangement as a transformation of
a molecular graph into another molecular graph (the brutto-formula remains un-
changed). Usually only a part of the atoms changes its neighbours in the course of
a rearrangement. Hence we need only consider the transformation of the subgraph
which is generated by this particular subset of atoms. This subgraph describes
what we call the {ype of the rearrangement. For example, the type of the rear-
rangement from Figure 1 is depicted in Figure 2. Tt should be emphasized that
the notion of the type is introduced here in a simplified manner. A more rigor-
ous definition can be found e.g. in [25], [26],(32], where we use for that the term
“reaction equation™. A similar approach which is also of interest is developed in

[7].

Figure 2

For the majority of rearrangements the following two requirements are satisfied:

1) if we fix the external conditions (temperature, pressure and so on) then a
reaction is practically irreversible, and hence we can distinguish the initial
and the final compounds;

2) molecular graphs representing the initial and the final compounds are non-
isomorphic.

However there exist many rearrangements for which the requirements 1) and/or
2) are not satisfied. If only the requirement 1) is not satisfied then we have the
phenomenon of taufomerism, which means that the chemical compound actually
is a mixture of two or more different isomers, which are permanently transforming
into one another. A classical example is the cyanic acid:

H-0~-C=N +— H-N=C=10

This tautomeric rearrangement proceeds so rapidly that it is impossible to abtain
one of two tautomers in pure form.

In this paper we shall consider the case when both requirements 1) and 2) are
not satisfied. This is the case of the degeneraie rearrangement, when a chemical
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compound exists in several (two or more), forms (which dynamically interconvert).
Each form is represented by a certain numbering of the same (abstract) molecular
graph. An example of a degeneraie rearrangement is given in Figure 3, this is the
well-known Cope rearrangement of cyclohexa-1,5-diene.

H H
YXIIN,
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H—C C-H H-C C—H
e sl
H | H H T H
H H
Figure 3

The type of this rearrangement is depicted in the Figure 4.

C
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£ C[_ 2=y |
Figure 4

Here the rearrangement includes two different numberings of the same graph. The
numbers of atoms in both molecular graphs can be recognized from the diagrams
(atoms at the same positions of diagram have the same numbers).

This particular kind of degenerate rearrangements occurs when some numbered
isomer can be transformed into several (two or more) differently numbered isomers
by means of rearrangements of the same type. In this case we shall call it a highly
degenerate rearrangement. Here, in order fo describe the rearrangement process,
one must deal with more than two numberings. The total amount of numberings
can be quite large. Moreover the rearrangement may transform not every pair of
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numberings into one another, but only part of the pairs. This naturally leads to
the introduction of the so-called reaction graph for a degenerate rearrangement.
The vertices of this graph correspond to different numberings of the same abstract
molecular graph. Two vertices are adjacent if and only if a rearrangement of
a given (fixed) type is possible between corresponding numberings. In order to
illustrate the essence of this notion we shall consider first of all a concrete example
of a highly degenerate rearrangement.

Example 1. Homotetrahedryl rearrangement.

The homotetrahedryl cation is a CsH{ system with the following constitutional
formula (see Figure 5).

H
e
R
ncen S
%7
@
H

Figure 5

This cation can undergo a degenerate rearrangement of the type which is denoted
as 1,2-shift and which is depicted in Figure 6.

Figure 6

In the molecular graph T' (see Figure 5) there are five vertices corresponding to
carbon atoms (hydrogen atoms will be further ignored). One of these atoms has
the special label, corresponding to C*. Hence, speaking rigorously, the description
of I' consists of two parts: the description of the graph itself and the description
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of labels on the set of vertices. But here the label C* corresponds to the unique
vertex of T' which has the valency 2 (we remind that T is now a skeleton with
only carbon atoms involved), hence the second component of the description is
redundant in this concrete case and we can suppose that [ is completely defined
by its diagram. Now, following [1], let us consider a concrete numbering I'; of T
and four other numberings which can be directly obtained from I'; by means of
the 1,2-shifts,

Starting from each of the four numberings I's, I'g, I' 4 and I';5, depicted in Figure 7,
one can produce new numberings, which can be directly obtained from these four
by means of 1,2-shift, and so on. It was shown in [1], see also [21], that there are 30
different numberings of I' and that the reaction graph R for the rearrangement in
question is a connected graph, each of the 30 vertices having the valency 4. Every
numbering of I' is completely defined by the number ¢ of carbon atom, having in
I’ the valency 2 and by the set {j,k} of numbers of two carbon atoms, which are
adjacent in I' with the carbon atom having the number i. Hence there exists
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Figure 7

the one-two-one correspondence between different numberings of I" and between
its codes, which are defined as the ordered pairs (4, {j, k}), where ¢, j, k are pairwise
different elements from {1,2,3,4,5}. Two codes (i, {j,k}), (7,{3,1}) (where differ-
ent letters denote different numbers) represent a typical edge of reaction graph R.
The codes of numberings of I' can be ordered lexicographically, this order of num-
berings is used in Figure 7. We shall return to the consideration of the Example
1 in the following sections.

This first example shows already that the definition of the reaction graph for highly
degenerate rearrangement can be rigorously described in group theoretical terms.
A buief survey of concerning publications can be found in [11] and [20].
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3 Permutation groups

A short list of the necessary notions from permutation group theory is given here,
more detailed information can be found in [4],[6],[12],{15],[17],(18], [28-30].
A permutation group (G,Q) is a pair, where G is a group, 2 is a set and G is
isomorphic to a certain subgroup of the symmetric group S(2); in this case we
say that G acts faithfully on the set Q. If a permutation g transforms an element
a € 0 to b € 1 then we write b = a®.
Let 0F be the k—th Cartesian power of the set (. We can consider the action of
G on the set O%: g transforms (a1, as,...,ax) € ¥ to (af,ad, ..., a}). The orbits
of this action will be called k—orbits, for 1-orbits the usual term orbit is used. A
transitive permutation group (&, ) has the set 2 as its orbit, otherwise (G, ) is
called intransitive.
Consider a € (2, the subgroup G, = {g € G | a® = a} of the group G is called the
stabilizer of an element a in G. A transitive permutation group (G, §1) is primitive
if G, is a maximal subgroup of G for every a € §1. Otherwise (G,) is called
imprimitive.
Let {®, ®1,...,%a} be the complete set of 2-orbits of a permutation group (G, ),
then d+1 is the rank of (G, ). In case when (G, () is transitive we put always that
&y = {(a,a) |a € Q}; @, is called the reflezive 2-orbit and all other 2-orbits are
said to be antireflezive. For each 2-orbit ®; we have the set ¢; = {{a,b} | (e,b) €
®;}, ¢:is called the symmetrized 2-orbit. If ®; is a symmetric binary relation then
we can identify @; with ¢;.
The graph 7; = (Q,®;) = 7(®$;) can be associated to &$;, sometimes 7; is called
an orbital graph. Let A; = A(7;) be the adjacency matrix for the graph 7. The
matrices Ao, A;,..., A4 generate a matrix algebra V = (Ay, Ay,..., Ag) which is
called the centralizer algebra V(G, Q) of the permutation group (G, ), or briefly
the V —algebra. This algebra is closed under the operation of Hadamard multipli-
cation (for matrices B = (bi) and C = (eix) the Hadamard productis defined to be
the madrix D = (dix), where dix = bji « cix). The matrices Ag, 4y,..., A4 form the
standard basis of 0,1-matrices of V(G,Q). One can consider an arbitrary matrix
algebra, having the basis Ag, A;,..., A4, where A; is a 0,1-matrix for 0 < i < d
and ¥% o A; = J (where J means the matrix in which every entry is equal to
1). The algebra W = {4, 41,..., Aq) is called a cellular algebra if it is closed
under the Hadamard multiplication and matrix transpesition. One can consider
a centralizer ring (V-ring) and a cellular ring instead of algebras, if the entries of
matrices are integers. For these objects we use the same notations as for algebras.
A cellular ring W is called Schurian, if it coincides with a suitable centralizer ring,
otherwise W is said to be non-Schurian.
For a permutation group (G,Q) the 2-closure G(*) is the maximal permutation
group, acting on { and having the same 2-orbits as (G, ). G can be identified
with

Aut(7, ..., Ta) = N Aut(r),
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where 7g,...,74 are all the orbital graphs of (G, Q). A permutation group (G, )
is called 2-closed if G = G®).

There are various other common names for these kinds of structures, especially:
association schemes, coherent configurations, double cosets. A brief survey of
interrelations between cellular rings and the other objects mentioned can be found
in (13],{17].

Let (G, ) be a transitive permutation group. Then it is similar (=permutationally
isomorphic) to the action of G from the right on the set {G.g | ¢ € G} of the right
cosets of G with respect to the stabilizer G, of an arbitrary element a € 0. (In
order to exclude all possibilities of misunderstanding we want to mention that
the same coset G,g was sometimes also called a left coset, see e. g. [9],[29], but
here we call it a right coset.) This interpretation of (G, ) is well-known, but
sometimes difficulties in its practical use can arise from the group theoretical
nature of this interpretation. In this connection we often use an alternative way
for the construction of transitive permutation groups which is called inducing.
Let us consider a transitive permutation group (G,Q) together with a permuta-
tion representation (G, N) of the same group G which we call the initial permu-
tation representation. Let H = G, be the stabilizer of an element a € §, then
we can consider the permutation group (H, N) as a subgroup of the initial per-
mutation group (G, N). Let us try to describe (H,N) as the full automorphism
group Aut(K) of suitable combinatorial object K, defined on N (we do not want
to give here a rigorous definition of the notion of combinatorial object; in most
of the easy cases it means one or several graphs). Then we can consider the set
K = {K? | g € G} of different images of K under the actions of G. Evidently, there
are |G: Aut(K)] = [G: G,] different images and there exists a bijection between K
and 2. We call the action of G on the set X as induced action and in many cases
(see the examples below) this action is very convenient for concrete investigations.
One can easily see that the procedure of inducing can be used in more general
situations, too, namely if (H,N) = Aut(K) (1 (G, N). Let us consider the partial
case when (G, Q) is a primitive permutation group, i.e. G, is a maximal subgroup
of G.

Let K be any combinatorial object, invariant under the action of (H,N) (this
means that < Aut(K)) and assume that K is not invariant under the action
of (G,N). Then (H,N) = Aut(K) N {G,N) and the inducing is always correctly
applicable. This way for the construction of primitive permutation group was
systematically used in [10], several examples of the inducing are described in {11]
{but actually the word “inducing” is not used in [11]).

4 Reaction graphs: rigorous definitions and prob-
lems

Let T be a molecular graph. Consider a degenerate rearrangement of I'. The
rearrangement process is the real physical dynamical phenomenon in which one
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can distinguish some elementary states, each state actually “lives” during a certain
time. The rearrangement is a permanent transforming between different states and
every step of this process transforms one state into another state so that each step
can be viewed as an elementary one, too.

The reaction graph for the degenerate rearrangement can be defined as the graph
with the vertices bijectively corresponding to the elementary states, and the edges
bijectively corresponding to the elementary steps. It is ezactly this graph that gives
an adequate mathematical model for a rearrangement process.

First of all we shall consider the situation when the notion of the numbering of a
molecular graph T corresponds to the notion of elementary state (more complicated
cases will be treated later). Let V be a set of vertices in T, n = |V| and Au#(T') be
the automorphism group of I'. Then we can consider the transitive induced action
of S, = S(V) on the set {2 of all possible numberings of I'. Here {2 is identified
with the “universal” set of vertices for the reaction graph. This means that the
set of vertices of the reaction graph is actually a subset of .

Furthermore we shall consider only such rearrangements, for which every elemen-
tary transformation of one elementary state into another can be obtained by means
of a rearrangement of the given type. In order to describe the reaction graph one
needs to fix certain elementary state (=numbering in the present exposition), e.g.
Iy, and to find the complete set A(I') of the numberings which can be directly
obtained from I’y by means of a rearrangement of the given type. Usually, this
part of work can be done on the “chemical” level; a spatial model of I playing in
this action the significant role. Then A(T;) is the set of vertices which are adja-
cent in the reaction graph to the vertex I';. It must be stressed that (taking into
account the reversibility of a degenerate rearrangement transformation) the edges
of the reaction graph are undirected. Now we obtain the whole graph if we apply
the action of the permutations from S, to the initial edges. In other words if E is
the set of edges of the reaction graph, then B = {{I'{,T'{} | I; € A(T:),g € S.}.
The reaction graph R = (2, E), constructed in this way will be called the general
reaction graph.

It follows from the procedure being described that R is invariant under the action
of the transitive permutation group (5,,2), i.e. Aut(R) > (S, ). Here (S,,81) is
the action of S, on the set of the right cosets of §, with respect to its subgroup H,
where H = Aut(I'). In this case (S,,{) can be interpreted as the induced action
of S, on the set of different numberings of the graph I'. Thus the set of edges
of R can be represented as the disjoint union of several 2-orbits of (S,,0). We
recall that only degenerate rearrangements are considered here, in which case the
vertices of the reaction graph represent structurally identical molecular species.
This kind of rearrangements is called in [1] a totally degenerate rearrangement or
topomerization. In all the topomerizations of a fized type, which we investigated,
the set E of the edges of the reaction graph consists of a single 2-orbit of (S,,8);
in other words, the reaction graph R is vertex- and edge-transitive. This is a
consequence of the following fact: the group Aut(T'y) acts transitively on the set



- 181 -

A(T;) of numberings, which are adjacent in R with T';.

The main question about a reaction graph is the following: how many vertices does
it contain? The answer is trivial for the general reaction graph R : the number
of its vertices is equal to the index [S,: H]. Let us try to apply this result in the
following example, taken from [11].

Example 2. 1,3-shifts in homotetrahedryl cation.

The typical edge of the reaction graph for this rearrangement is depicted in Figure
8. The number of vertices in R is equal to 30. One can easily see that the general
reaction graph R consists of ten connectivity components, each component being
isomorphic to the 3-vertex complete graph K;.

2 2
4
5 == B 7
3 3
Figure 38

One of these components R consists of the numberings I'y = (1,{2,3}),Iy =
(4,{2,3}) and T2 = (5,{2,3}). From the chemical point of view the graph R is
the genuine reaction graph, it adequately describes the rearrangement process in
the above mentioned sense.

Thus we can give a new definition. The connectivity component R of a general
reaction graph R is called a genuine reaction graph or simply a reaction graph. This
definition is correct because all the connectivity components of vertex-iransitive
graphs are isomorphic.

Hence we can give a more exact formulation of the previous question for a totally
degenerate rearrangement:

how many vertices does the genuine reaction graph R contain?

The answer to this question will be given in Section 6.

Let us discuss what the investigation of the reaction graph R means for a given
rearrangement. If a graph R is small, then one can try to find for it a good
visual description, ¢. g. to depict its diagram. However there are known reaction
graphs, which have thousands and hundreds of thousands of vertices - in these
cases the use of its diagram becomes impossible. Hence usually the investigation
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of reaction graphs amounts to solving some standard problems, one of which was
just formulated. Below we give a list of further very important problems.

* The coding of a graph: This means to find a way for a convenient repre-
sentation of vertices and edges of R. The coding of R, in Example 1 supplies
an illustration of this problem.

The automorphism group of R: It contains a subgroup of S, which
stabilizes R as a whole, but the full group Aui(R) can be greater. The
description of this full group usually requires special investigations. It must
be stressed that a group Aui(R) is the wreath product of the symmetric
group S, and Aut(fi). Here p denotes the number of connectivity components
in R.

e The deseripti_{m of certain cor_:nbinatorial properties of R: The values
of diameter d(R) and of girth g(R), hamiltonity, planarity and so on.

o The visualization of R: It means to find a good diagram for Rif it is
small, or to find a suitable schematic description of R otherwise.

A few of these problems (which are closely related to algebraic combinatorics) will
be briefly considered in next Sections. Some aspects of the problem of visualiza-
tion are treated in [16] where an information about certain kinds of subgroups in
automorphism groups of graphs is used.

It must be stressed in conclusion of this Section that sometimes vertices of the
reaction graph can correspond to more complicated objects than numberings of
the molecular graph I'. Let T' be the skeleton of a polyhedron P in 3D-space.
Then every elementary state of the rearrangement process can be associated with
a spatial arrangement of numbers in vertices of the polyhedron P, i.e. with a
numbering of vertices of the polyhedron; two numberings being equivalent if one
can be transformed into another by a proper rotation of 3D-space. In this situation
Aut(T') can be identified with the group of (proper) rotations and (improper)
reflections of the polyhedron P (the symmetry group of P). Let H be the subgroup
of index 2 in Au#(T'), which consists of only rotations of P. Then every elementary
state bijectively corresponds to a right coset of 5, with respect to H. In such a
way every numbering of I splits into two oppositely oriented numberings of P (a
kind of numeration enantiomers). The question arises: what of the two considered
models for reaction graph is more adequate? This question is discussional, see
{20}, and the rigorous answer to it is not described anywhere at present. We hope
to consider it in one of the next publications which will be written in frame of this
series.

5 Coding of reaction graphs

This problem will be considered by means of a concrete example.
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Example 3. Rearrangement of P;™-ion.

The molecular graph I' is depicted in Figure 9. It consists ov seven phosphorus
atoms, three of these atoms form a Py—ring. In the course of the topomerization
one P — P bond in the P3—ring is broken and a new P — P bond is formed.
The initial state I'; and three states from A(T';) are depicted in Figure 9. This
topomerization was outlined in [5), its reaction graph had been investigated in [22].
Here Aut(l'y) = S5 = (hq,hs), where

hy = (1,2,3)(4,5,6)(7), hz =(1,2)(3)(4,5)(6)(T).

A general reaction graph R can be constructed by means of two different models.
In both cases the vertices of R correspond to right cosets of S; with respect to
its subgroup H. The case H = Aui(T;) = S; leads to the Model I, the general
reaction graph is denoted by R ;. The case H = Z3 = (h;) leads to the Model II,
here the reaction graph Rs, is obtained. The connectivity components of these
two graphs will be described in the next Section. Here we are interested only in
the coding of its vertices and edges.

Model I In this case we have [S7: S3] = 7!/6 = 840 vertices. Each vertex bijec-
tively corresponds to a right coset of Sy with respect to 53, hence we can code the
vertices by means of

: 7
6 4 7 6 4
6 4
. ;AT =
3 1
2 3 1
2 2
t
7
6 4
3 1
2
Figure 9

representatives of corresponding cosets, but this mode of coding is not practically
convenient. Another mode of coding consists in using of the different numberings of
the molecular graph I'. Of course, we can use for every numbering the complete list
of pairs, forming the corresponding binary relation on N = {1,2,3,4,5,6,7}, but
codes, which can be obtained in such a manner, are redundant, Hence we must
try to find a more economical mode of coding. Let us consider more carefully

H = Aut(Ty).
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H is an intransitive permutation group, having 3 orbits. Obviously, H is not
1-closed. Omne can easily calculate that H has 10 2-orbits and 6 symmetrized 2-
orbits. The molecular graph T’y is a disjoint union of 3 symmetrized 2-orbits. #
is 2-closed because H = Auf(T';). But we can represent H as the automorphism
group of a graph, which is produced using only 2 symmetrized 2-orbits. Indeed,
H = Aui(B,, Cy), where By = {{1,2},{2,3},{3,1}}, C1 = {{1,4}, {zv‘r’}: {3,6}}.
In order to be more economical we can use the unary relation 4; = {1,2,3} instead
of By. Finally, we have H = Aut(4;,Cy). Let Q53 = {(4;,C1)¢ | g € 8.}, then
the elements of @ can be considered as codes of vertices of Rz;. These codes can
be numbered in the lexicographic order, e.g. the vertices depicted in Figure 9 will
obtain the following codes:

Iy = {{1v2>3}7{1=4}’{255}1{356}}:
Trog = {{415!7}!{1!4}x{215}1{677}},
Tro7 = {{41 617}9{1!4}!{316}1{577}},

Tass = {{51 8, 7}! {2! 5}1 {31 6}1 {4v 7}}
A typical edge of Ra; is the edge {{{1,,k}, {3, 1}, {j,m}, {k,n}}, {{l,m, 0},
{i,1},{s,m},{e,n}}}, where the different letters denote different elements of N.
The term “typical” means that the edge set of R, is a 2-orbit of induced action of
57 on the set {23, hence the whole set of edges is the set of images of the typical
edge under the induced action of the permutations from Sy.

Model II. Here H = Z3 = (h,}. Acting similarly as in the previous case, we can
work out the codes for 1680 vertices of the general reaction graph R, ,. Here the
code of the vertex Ty is the pair (B, C1), where By = {(1,2),(2,3),(3,1)} is a 2-
orbit of (A} (this 2-orbit is not symmetrized!). Then Q3 = {(B1,C1)¢ | g € S.}-
A typical edge of Ry can be obtained in a same manner.

The model I is used in [22], but the question of adequation of these model was
not discussed. We hope to consider this question and a similar one, related to the
bullvalene rearrangement (see [20]), in further publications.

It must be stressed that the used codes can be writien in a more compact form,
one of these forms is used in [22], but the group theoretical nature of produced
codes is not rigorously discussed in [22).

6 Criterion of connectivity

G.A. Jones and E.K. Lloyd have raised in [11] the following question: when a
reaction graph is connected. Considering several examples they have shown how
one can use a primitivity of the permutation action ($,, () as a sufficient condition
for the connectitivity of R. However they have stressed that the full answer is
unknown for them.

The complete answer to this question was announced in [14]. It is based on the
criterion of the connectivity of an orbital graph. Firstly we thought that this
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criterion is folklore. Later we found in [4] the reference to a paper [8] written by
G. Glauberman, where the connectivity of orbital graphs was firstly considered.
The detailed exposition of this criterion, illustrated on several examples, can be
found in [20]. Here we give only its formulation and a brief illustration.

Theorem 1. {Criterion for the connectivity of a vertex- and edge-transitive re-
action graph).

Let I' be a n—vertex molecular graph, V be its set of vertices. Let a highly
degenerate rearrangement of the given type exists for I'. Let 2 be the set of vertices
of a general reaction graph R, which consists of right cosets of the group S§(V) with
respect to a certain subgroup H. Let T';,T; € © be two numberings of T' (or of the
polyhedron P, associated with T') which are adjacent in the reaction graph R. Let
¢:T; — T'; be an isomorphism between the numberings I'; and I'; (in other words
let H and Hg be two cosets adjacent in R). Let a subgroup H act transitively on
the set A(I;) of numberings which are adjacent to T'; in R. Then:

1) the number of vertices in the general reaction graph R is equal to the index
[Sn: HT;

2) R is connected if and only if S, = (H,g};

3) the number of vertices in the genuine reaction graph R (a connectivity com-
ponent of R) is equal to the index [{H,g}: H].

Let us return to considered examples.

Example 1 (Continuation). Here n =5, H & Aut(l'}) = 5; x §; = {hy,hy),
where hy = (1)(2,3){4)(5), h: = (1)(2)(3)(4, 5). The numberings I'; and I's (see
Figure 7) are adjacent in R;. The isomorphism ¢: T’y — T'5 can be found visually:

(3138 -0mmu

Hence the number of vertices in R; is equal to [S,: H] = 5!/4 = 30. Let consider
the group (H,g) = (hi,ha,g). This group is obviously transitive. It contains
transpositions, €.g. hy. A transitive permutation group of a prime degree 5 is
primitive. A primitive permutation group of degree 5, containing a transposition,
coincides with the symmetric group S5. Thus {H,g) = S5 and Ri =Ry, Riisa
genuine reaction graph. As was mentioned, this result was obtained on the purely
combinatorial level in [1],[21].

Example 3 (Continuation). Here n = 7. Let us deal with Model II. Then
H = {hy); Ty and 77y can be interpreted as adjacent numberings of the polyhedron

1234567 3 : z
and g = (4571263) = (1,4)(2,5){3, 7)(6) is an isomorphism between I'y and ['7zg.

lence Ry, consists of [Sy: Zz) = 7!/3 = 1680 vertices. The group (H, g) = (h1, g} is
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transitive, thus it is primitive. Let us calculate: ¢, = hyg = (1,5,6)(2,7,3,4), 1, =
(h1g)® = (1)(2,4,3,7)(5)(6). The primitive permutation group (H,g) contains a
transitive subgroup (i) of degree 4, which fix 3 elements, Using Theorem 5.6.2
from [9], we obtain that (H,g) is 4-iransitive. A 4-transiiive permutation group
of degree 7, which contains odd permutations, coincides with S,. Hence {H,g) =
Sy, }_?3,1 = Ry, is a genuin reaction graph. Firstly this result was obtained in [22]
with the aid of a computer.

The examples, considered here and in [20], give reason to suppose that for ev-
ery reaction graph the computations, which Theorem 1 needs, can be made by
hand, without a computer, supporting only on the elementary knowledge from
permutation group theory.

Some methodological aspects are discussed in [20] too. Partially, we show that in
certain cases only a part of atoms in the molecular graph can be numbered. This
leads to another general reaction graph, but the final form of genuine reaction
graph R remains valid.

7 Automorphism groups

The problem of determining of the full automorphism group Aut(R) seems to be
the most interesting from the theoretical point of view. For some concrete reaction
graphs this problem was completely investigated in the series of papers (this series
includes at present 10 publications) written by M. Randi¢ and his colleagues,
e.g. [21] and [22] are the third and the ninth members of this series respectively.
Usually, a graph R to be investigated consists of a few tens of vertices. In this
situation an exact view of its canonical adjacency matrix can be found and this
leads to the knowledge of the full automorphism group. In most part of papers
of Randié et at the corresponding computations were made by hand. Sometimes
certain kinds of theoretical ad hoc methods were used too: e.g. the new graph is
homomorphically collapsed to a known and this gives the reduction of the problem
of determination of Aut(R) to a more small one. An interesting technique was
supplied in [22], where the graph Rs» with 1680 vertices was considered; however
the authors have not given a complete rigorous ground for this technique.

The next step in the problem was done in [11], where it was discussed from the
permutation group theory point of view. Jones and Lloid have shown that in
the most part of the considered cases the reaction graph R is an orbital graph of
the certain primitive representation (S5,,2) of a symmetric group S,. This repre-
sentation is usually a maximal subgroup of the symmetric group S(£2) or of the
alternating group A(Q) (the first result of this kind was obtained in [12]) and this
gives a reason to state that Aut(ﬁ) = (5,,1). A lot of similar results on maxi-
mality of permutation groups is discussed in [17]. During last years a significant
progress in this problem was achieved on the base of classification of the finite
simple groups, see [23],[24]. However all these results can not be directly applied
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in the case when (S,, (1) is an imprimitive permutation group: known examples of
rearrangements show that just this case is the most difficult. This gives a reason
to new investigations of the problem.

The problem, being here discussed, was considered in [17] in the frame of the
general scheme of investigations of the automorphism groups of graphs by means
of cellular rings. Let us consider a permutation group (G, 02), let I' = (2, E) be a
graph, for which its set £ of edges can be obtained as the disjoint union of suitable
2-orbits of (@, §1). Then I is invariant under (G, 2). First of all, in order to find the
full automorphism group of I' one can find the 2-closure G?) of the group G. In all
cases G(* < Aut(T'). Then we can find the cellular subring W = W(I') of the V-
ring V(G, ), which is generated by T, i.e. the intersection of all cellular subrings
of V(G, ), which include I' (here we identify T' with its adjacency matrix). Let
W(T) = V(G,Q), then we have automatically that Aut(T') = G(®). Otherwise,
we must elucidate if W(T') is a Schurian cellular ring. If it is so, then Au#(T') is
greater than G, and in all cases the problem is reduced to the determining of
Aut(W'), where W' is the least Schurian cellular subring of V(G, Q), which include
W. There are several modifications of this scheme, which allow in certain situations
to simplify the procedure and to omit some steps in it. All these questions are
considered in [17]. We do not give here a more detailed theoretical information
or concrete examples of using of the mentioned scheme, because all this questions
would be considered in one of the next papers of this series. The most part of
these results are obtained jointly with M.E. Muzichuk.

8 Conclusion

This paper was intended as an introduction to chemical reaction graphs, oriented
first of all to mathematicians and specialists in mathematical chemistry. For this
reason our main attention was concerned to definitions and formulations of prob-
lems but not to a rigorous exposition of concrete mathematical propositions. We
hope that this paper will become a methodological ground for further publications.
The following topics are planning to be considered in forthcoming papers:

- the complete exposition of our theoretical results on the automorphism
groups of graphs;

the comparison of different models, which give a possibility to construct
reaction graphs; the selection of the most adequate model;

the complete investigation of the most interesting reaction graphs, especially
of the chemical Monster - the reaction graph of Bullvalene which consists of
1209600 vertices (or 604800 vertices in another model);

the generalization of the developed technique to other kinds of rearrange-
ments (not necessarily totally degenerate).
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