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Abstract. McClelland-type approximate formulas for total n-elec-

tron energy have the form C m’ ni-p vhere n and m are the numbers

of carbon atoms and carbon-carbon bonds, respectively, of the

conjugated hydrocarbon examined, p is a fixed parameter and C is
an empirically adjusted constant. The original McClelland appro-—
ximation corresponds to p = 1/2. We show how McClelland-type for-
mulas are obtalned by combining the information contained in va-

rious spectral moments.

Introduction

One of the general goals of theoretical chemistry is to reveal
the dependence of various physico-chemical properties of substances on
molecular structure. A long examined special problem of this kind is
the question how the HMO total m-electron emergy (E) of a conjugated
molecule depends on the topology of the m-electron network. Bearing in
mind the direct relation between E and the standard gas-phase enthal-

pies of the respective compounds {1,2] the answer to this question

-
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would help us to better understand the structural factors influencing
the thermodynamic stabiility (and, consequently, the aromaticity) of
polycyclic conjugated molecules. The relatively simple mathematical
form of E gives hope that the elucidation of its topology-dependence
is a feasible task. The first work along these lines appeared in the
eariy fourties [3] and the problem is continuously examined ever
since.

For a bibliography of the early works on E see [4]. A detailed
survey of the theory of total m-electron energy can be found in [2].

An Important step forward in the study of E was the discovery ma-
de by McClelland [5] that in the case of conjugated hydrocarbons, E is
bounded from above by a simple function of the numbers of carbon atoms

(n) and carbon-carbon bonds (m):
E=<v2mn . (1a)
The finding of the estimate (la) stimulated a number of further inves-

tigations [B-10] which resulted in a variety of lower and upper bounds

for E. In particular, the folleowing lower beound for E

E2 (168212 V2 m n (1b)
was recently shown to hold for benzenoid hydrocarbons [10].

In the same paper [5] McClelland showed that a fairly good linear

correlation exists between E and its upper bound, namely that E can be

approxXimated by means of
ExCm “n (2)

where C is a constant obtained by least-squares fitting. Taking inte
account eqgs. (la) and (1b) it is reasonable to expect that formula (2)

may correctly reproduce the size-dependency of E. Indeed, numerical
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testing revealed [11-14] that in the case of benzenold hydrocarbons
the McClelland expression (2) gives excellent results and is able to
reproduce some 89.6% of E. Furthermore, (2) was found [11-14] to be
the most accurate approximation among all known (n,m)-type formulas
for E.

In this paper we develop a method for approximating E by using
the spectral moments. We then show that the McClelland formula (2) is
a necessary consequence of taking into account only the structural in-
formation contained in the second spectral moment. By employing high-
er spectral moments we arrive at a class of generalized forms of the

McClelland approximation, namely
ExcCa’n'? . (3)

Numerical testing shows that the best results with formula (3) are ob-

tained by choosing p = 1/2 and p = 1/3.

Eigenvalues and Spectral Moments of Conjugated Molecules

Let the conjugated hydrocarbon considered be represented by a
molecular graph in the usual manner [2]. Let R L the
eigenvalues of the adjacency matrix of this graph. In other words x].

X x constitute the spectrum of the respective molecular graph
n

e
[15].
If the graph eigenvalues are arranged in a non-decreasing order,

then the HMO total m-electron energy (in £ units) conforms to the re-

lation
{nr2]
E=2 [ x (a)
1=t
where [n/2] denotes the integer part of n/2. If R} = 0 E Hpuila



= 126 =

then eq. (4) is readily transformed into
Ew F lxll £ (8)

Eq. (5) is true for the great majority of conjugated systems of chemi-
cal interest; it holds for all benzenoid hydrocarbons.

The quantity

2 k

Mx = |§1 Exl) (6)
is called the k-th spectral moment (of the respective graph of the
respective conjugated molecule). Although spectral moments have been
empolyed in the topological thecry of conjugated molecules already in
the early seventlies [1B,17) only quite recently they found remarkable
applications in both molecular [18-20] and solid-state physical che-
mistry [20-23].

According to the definition (6) the zeroth spectral moment is, in

a trivial manner, given by
M=o . (7)

Because of the pairing theorem [2], the odd spectral moments of alter-

nant hydrocarbons {and therefore of all benzenoids) are equal to zero:

M2k41=0 k= 1,2,3:..:

It is well known that the secon spectral moment conforms to a simple

relation:
M=2m , (8)

The fourth spectral moment of benzenold systems was first reported in
[17] and was eventually rediscovered several times [7,8,24,25). It has

a remarkably simple form:



S

M6=18m~12n
Dias {26] and later independently Hall [25] arrived at results which

are equivalent to the formula

= D
MGAMB-*SI‘S

where
M =158 m - 144 n + 48
and where s denotes the number of bay regions. Since Te is much
smaller (usually two or more orders of magnitude) than the term M; ;
it can be neglected in many practical applications (see e.g. (9,13]).
Combinatorial expressions for the eight and the tenth spectral
moments of benzenoid hydrocarbons are also known [27]. They are of the

form

° = 1330 m - 1364 n + 704

=
1]

M':o = 10762 m - 11710 n + 7380

and where 142 and v, 2re small correction terms which in a complicated
(but precisely determined way [27]) depend on the structure of the

benzenoid molecule considered.

In this work we approximate Mk , k =6,8,10 by means of M: 1
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Spectral Density of Conjugated Molecules

The spectral density (called also [20,22] density of states, DOS)

is a function T(G, x) associated to a graph G with the property that

b
[(G, x) dx 1s equal to the number of eigenvalues of G lying in the

p
a
interval (a, b), Within the spectral-density-formalism egs. (4)-(8)

are rewritten as

E = 2 xT(G %) dx = I ixt TG, x) dx (8)
[1] -0
M = Jx*T(G x)dx . (10)

-0

The spectral-density formalism seems to be first intrcduced inte
the topological theory of conjugated molecules by Burdett and Lee
[21-23] and independently by Cioslowski [28-31]. Bearing in mind that
a finite graph has a discrete spectrum, the respective spectral densi-
ty is of the form

n
re, x) = § 8&(x - x,) (11)
1=1

where &8(x) stands for the Dirac delta function. Obviously, the know-
ledge of I'(G, x) is equivalent to the knowledge of all the eigenvalues
of G. However, in many applications it Is meaningful to approximate
the right-hand side of (11) by a reasonably chosen analytical function

[13,28-31].
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On_the Origin of the McClelland Approximation

Suppose that the entire information which we possess about the
graph spectrum of a conjugated system it its k-th spectral moment
{plus the trivial zeroth moment). What can we say about E ?

We may try to represent the spectral density by means of an ana-
lytical functlon. Since this function must depend on the structure of
the molecular graph and since we possess a limited information about

this dependence, at most what we can do is to employ the Ansatz
TG, x) = A (B x) (12)

where A and B are scaling parameters depending on G whereas y(x) is a
universal function equal for all members of a class of conjugated sys-
tems (e.g. for all Kekuléan benzenoid hydrocarbons). The Ansatz is es-
sentially the same as Cioslowski's "universal distributicn approxima-
tion" [31].

Substituting (12) back into (8) and (10) we immediately obtain

= -(ks1) N
Mk =AB Lk k =0,2,4,6,...

=2

E=AB L

where the auxiliary quantity Lk depends sclely on k :

+00
L= 7 X y(x) dx
-0

while L is a constant:

+®0
L= [ Ixl v{x) dx

=@
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Direct calculation yields

(k) ey AR

E = Qk [Mk (Mo) ] (13)
where the multiplier Qk depends solely on k :

xer 170K
g =t [Lk w) ]

Here E'®

stands for the approximation of E obtained by using the k-th
spectral mement and k = 2,4,6,...

Now, if k = 2 then because of (7) and (8) formula (13) reduces to
the original McClelland approximation (2). Thus we proved the follow-
ing result.

If the only available information about the spectrum of the mole-

cular graph are the zeroth and the second moments, and if the

spectral density conforms to (12), then irrespective of the ac-

tual form of the function y(x) the total n-electron energy is ap-

proximated by means of the McClelland formula (2)..

Beyond the McClelland Approximation

For k = 4,6,8 and 10 substituting M, H;. H: and M:n. respective-

ly, back into (13) we obtain novel (n,m)-type topological formulas for

E, namely,
1/4
EY = 18)' g [ m-2n 7 ] (14)
1/8
g'® = (188)® Q, [(m—%n+%) n5] (15)

1/8
8 178 [ (m - g82 n :—3'5—2) n7] (16)

E = (1330) Qﬂ
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(10}

E

1/10
5855 3690) ns] (17)

_ 1710 pet
= (10782)'""° g [ (m - S3g1 ™ * 5381

In benzenoid systems the structural parameters n and m obey the iden-

tities [32]
n=4h+2—ni (18)
m=5h+1~ n, (19)

where h and nl are the numbers of hexagons and internal vertices, res-
pectively. Note that ni is usually much smaller than n, m and h. Bear-
ing in mind (18) and (19) we conclude that for sufficiently large ben~
zenoid systems (i.e. for large values of h) the parameters n and m are
roughly related as n/m = 4/5

Now, for large benzenoid systems the expressions in brackets on
the right-hand sides of eqs. (14)-(17) are several orders of magnitude

1

smaller than n*. L

Since E is already an approximation, we will not
lose much if we substitute n in these expressions by 0.8 m and neglect

the small constant terms. This results in

(k) k-1)/k

¥ = ¢ m % k = 4,6,8,10 (20)
where C, = (az2s5)""* q .cC, " (16906/395)'"® Q..
C, = (158802/665) "8 Q and C = (7501114/5381)"*° Q,, - Obvious-

ly, these are special cases of McClelland-type approximate formulas
(3), p = 1/k. As a matter of fact, egs. (20) provide a straightforward
motivation for the study of the class of topological formulas given by

(3).
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Numerical Werk

For testing the McCleiland-type approximation (3) we employed the
same data base as in our previous works [11-14], namely a sample
consisting of 106 Kekuléan benzenold hydrocarbons from the book [33].
The exponent p was systematically varied between -10 and +10 and
the correlation coefficients and the average relative errors were
determined. The correlation coefficient has a maximum ( = 0.99884) at
p = 0.49 + 0.02 whereas the average relative error has a minimum
(= 0.34%) at p = 0.35 * 0.03. Details of these calculations have
been reported elsewhere [34].

Thus the correlation coefficient as an optimization criterion
clearly indicates that the original McClelland approximation (namely
eq. (3) with p = 1/2) is the best in the entire class of topological
formulas examined. If, however, we optimize the exponent p with res-
pect to the average relative error, then a value apparently close to
p = 1/3 is obtalned. Using p = 1/3 in the expression (3), the expected
error of a calculated E-value is reduced by almost 20%4 relative to the
analogous error of the original McClelland formula (2).

The tantalizing fact in connection with this finding is that
p = 1/3 does not correspond to any of the approximations of the type
(13). Because p = 1/k, the optimal value of k found by us is close to
3. This ls in disharmony with eq. (13) in which k must be an even

number.
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Formally, this difficulty could be resolved by averaging g
over two or more values of k ; a geometric mean would suit here the

best. Taking into account formula (20), it is not difficult to see

that the cembination E'Z*% . [(E® g g% has the required
behaviour, namely
Etz.l.{] =C m1/3 nzts . (21)

It is, however, not at all clear why such an artificial construction
would have to be applied. Since our empirical testing [34] shows that
the formula (21) is superior to the approximation (20), it remains a
task for the future to find a convincing theoretical explanation for

its success.
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